Luso Academia

Início » 00 Geral » 1.1. Exercício sobre Dilatação Térmica (Parte 2)

1.1. Exercício sobre Dilatação Térmica (Parte 2)

Exercício 4 Considere o micro-sistema abaixo formado por duas pequenas peças metálicas, I e II, presas em duas paredes laterais. Observamos que na temperatura de {16 \ ^oC}, a peça I, tem tamanho igual {2 \ cm}, enquanto que a peça II possui apenas {1 \ cm} de comprimento. Ainda nesta temperatura as peças estavam afastadas por uma pequena distância {d} igual à {6 \cdot 10^{-3}\ cm}. Sabendo que o coeficiente de dilatação linear da peça I é igual a {4 \cdot 10^{-5}(^oC)^{-1}} e que o coeficiente de dilatação linear dada peça II é igual à {5 \cdot 10^{-5}(^oC)^{-1}}, qual deverá ser a temperatura do sistema, em graus Celsius, para que as duas peças estejam afastadas a uma distância igual ao dobro de {d}?

 

NÍVEL DE DIFICULDADE: Regular.

Resolução 4 .
Trata-se de um exercício sobre dilatação linear, quando um corpo o sistema é submetido a variações de temperaturas.A figura do enunciado, na situação 1 apresenta o fenómeno quando o sistema estava em uma temperatura {t_o} e as peças tinham comprimentos {l_{o1}} e {l_{o2}}, respectivamente, e estavam separadas a uma distância {d}.

 

A situação 2, representada na figura a seguir, apresenta o fenómeno de dilatação, quando o sistema sofre variação de temperatura {t_o} para {t} e as dimensões das peças também variam de {l_{o1}} para {l_1} e de {l_{o2}} para {l_2}, respectivamente, e a distâncias entre as peças aumenta de {d} para {2d}.

Dados

{t_o =16 \ ^oC}

{l_{o1} = 2 \ cm}

{l_{o2} = 1 \ cm}

{d = 6 \cdot 10^{-3} \ cm}

{\alpha_1 = 4 \cdot 10^{-5} \ ^oC^{-1}}

{ \alpha_2 = 5 \cdot 10^{-5} \ ^o C^{-1}}

{t \longrightarrow ?} {d' = 2d}

Temos a equação de dilatação linear que é:

\displaystyle \Delta l = \alpha l_o\Delta t

A equação da dilatação para as peças será:

\displaystyle \left\{\begin{array}{cccccccc} \Delta l_1 &=& \alpha_1 l_{o1}\Delta t\ \ (1)\\ \Delta l_2 &=& \alpha_2 l_{o2}\Delta t\ \ (2) \end{array} \right.

Para que as peças estejam separadas a uma distância igual ao dobro de {d}, é necessário que as duas peça se comprimam a uma distância total igual a {d}, como vimos na figura anterior.

Assim é suficiente que:

\displaystyle \Delta l_1 = l_1 - l_{o1}\ \ \ e\ \ \Delta l_2 = l_2 - l_{o2}

Sabemos que: {\Delta l_1+ \Delta l_2=-d}. A diminuição total de comprimento deve ser d. O sinal de menos (-) aparece devido ao facto de estarmos a lidar com uma diminuição de comprimento (variação negativa). Então:

\displaystyle -d = \alpha_1 l_{o1}\Delta t + \alpha_2 l_{o2}\Delta t

\displaystyle \Rightarrow -d = \Delta t (\alpha_1 l_{o1} + \alpha_2 l_{o2})

Isolando {\Delta t} na equação, obtemos:

\displaystyle \Delta t = \dfrac{-d}{\alpha_1 l_{o1} + \alpha_2 l_{o2}}

Substituindo os valores:

\displaystyle \Delta t = \dfrac{-6 \cdot 10^{-3} \cdot 10^{-2} }{4 \cdot 10^{-5} \cdot 2 \cdot 10^{-2} + 4 \cdot 10^{-5} \cdot 1 \cdot 10^{-2} }

\displaystyle \Delta t = -46,15 \ ^oC

Sabemos que a variação da temperatura é dada por:

\displaystyle \Delta t = t - t_o

\displaystyle ou \ t - t_o = \Delta t

Isolando {t}, tem-se:

\displaystyle t = \Delta t + t_o

Substituindo os valores de {\Delta t} e {t_o}, tem-se:

\displaystyle t = -46,15 \ ^oC + 16 \ ^oC

\displaystyle t = -30,15 \ ^oC

Exercício 5 Dois corpos, A e B, de massas { m_{A} = 600 \ g } e { m_{B} = 300 \ g }, são aquecidos separadamente por uma mesma fonte que lhes fornece calor a razão de { 300 \ cal/min}. O gráfico a seguir mostra a variação da temperatura { \theta } dos corpos em função do tempo {t} para o aumento dessa temperatura.

 

Determine:

  1. A relação entre os calores específicos das substâncias que constituem os corpos { (c_{B}/c_{A})} .
  2. Depois de quanto tempo o corpo A atinge a temperatura de { 90 \ ^{o}C }.

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .O problema em questão está relacionado a calorimetria. São dados dois corpos A e B que são aquecidos separadamente através de uma mesma fonte que fornece calor a razão de { 300 \ cal/min }. Esta quantidade de calor por unidade de tempo que a fonte fornece aos corpos representa a potência da fonte, isto é: { P_{F}=300 \ cal/min }. Então temos os seguintes dados.

 

Dados

{ m_{A}=600 \ g}

{ m_{B}=300 \ g}

{ P_{F}=300 \ cal/min}

  1. Buscaremos as equações da quantidade de calor para os corpos A e B.Da calorimetria sabemos que:

    \displaystyle Q=m \cdot c \cdot \Delta \theta \ \ \ \ \ (9)

    Onde:
    m – massa da substância;
    c – calor específico da substância;
    { \Delta \theta} = {(\theta_{f} - \theta_{i})} – variação de temperatura.

    Então temos para o corpo A:

    \displaystyle Q_{A}=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA}) \ \ \ \ \ (10)

    Para o corpo B:

    \displaystyle Q_{B}=m_{B} \cdot c_{B} \cdot(\theta_{fB} - \theta_{iB}) \ \ \ \ \ (11)

    Por outro lado, sabe-se que ambos os corpos, A e B, são aquecidos por uma mesma fonte com potencia { P_{F}=300 \ cal/min}. De acordo com gráfico, os dois corpos são aquecidos durante um intervalo de tempo { \Delta t=10 \ minutos }.

    Sendo assim, os dois corpos recebem a mesma quantidade de calor, isto é, { Q_{A}=Q_{B}=P_F \cdot \Delta t}.

    Dividindo a equação 5 pela 5, obtemos:

    \displaystyle \dfrac{Q_{B}}{Q_{A}}= \dfrac{m_{B}}{m_{A}} \cdot \dfrac{c_{B}}{c_{A}} \cdot (\dfrac{\theta_{fB}-\theta_{iB}}{\theta_{fA}-\theta_{iA}})

    \displaystyle \Rightarrow 1= \dfrac{m_{B}}{m_{A}} \cdot \dfrac{c_{B}}{c_{A}} \cdot (\dfrac{\theta_{fB} - \theta_{iB}}{\theta_{fA} - \theta_{iA}})

    Isolando a razão { \dfrac{c_{B}}{c_{A}}}, obtemos:

    \displaystyle \dfrac{c_{B}}{c_A}= \dfrac{1}{\dfrac{m_{B}}{m_{A}} \cdot \dfrac{\theta_{fB} - \theta_{iB}}{\theta_{fA} - \theta_{iA}}}

    Aplicando a regra de divisão de frações, obtemos:

    \displaystyle \dfrac{c_{B}}{c_{A}}= \dfrac{m_{A} \cdot(\theta_{fA} - \theta_{iA})}{m_{B} \cdot(\theta_{fB} - \theta_{iA})}

    O gráfico inicial dá-nos para o corpo A:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iA}=10 \ ^oC\\ \theta_{fA}=30 \ ^oC\\ \end{array}\right.

    Para o corpo B:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iB}=20 \ ^oC\\ \theta_{fB}=30 \ ^oC\\ \end{array}\right.

    Substituindo os dados, obtemos:{ \dfrac{c_{B}}{c_{A}}= \dfrac{600 \cdot(30-10)}{300 \cdot(30-20)}}

    \displaystyle \dfrac{c_{B}}{c_{A}}=4

    Então, a razão entre os calores específicos das substâncias que constituem os corpos é:

    \displaystyle \dfrac{c_{B}}{c_{A}}=4

  2. Para determinamos o tempo em que o corpo A atinge a temperatura de {90 ^oC}, precisaremos conhecer em primeiro lugar o seu calor específico({c_A}). Vamos obter o valor de { c_{A}} (calor especifico do corpo A) fazendo a análise através do gráfico.Para o corpo A:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iA}=10 \ ^oC \\ \theta_{fA}=30 \ ^oC \\ \end{array}\right.

    Consideremos a equação:

    \displaystyle Q_{A}=m_{A} \cdot c_{a} \cdot(\theta_{fA} - \theta_{iA})

    Entretanto, sabemos que:

    \displaystyle P_{F}=\dfrac{Q_{A}}{\Delta t}

    Isolando {Q_{A}}, temos:

    \displaystyle Q_{A}=P_{F} \cdot \Delta t

    Neste caso:

    \displaystyle P_{F} \cdot \Delta t=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    Onde: { \Delta t=(t_{f} - t_{i})} – Intervalo de tempo.

    Então:

    \displaystyle P_{F} \cdot(t_{f} - t_{i})=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    Isolando { c_{A}}:

    \displaystyle c_{A}= \dfrac{P_{F} \cdot(t_{f} - t_{i})}{m_{A}(\theta_{fA} - \theta_{iA})}

    Substituindo os dados, obtemos:

    \displaystyle c_{A}= \dfrac{300 \cdot(10-0)}{600 \cdot(30-10)}=0,25

    \displaystyle c_{A}=0,25 \ cal/g \cdot \ ^oC

    Obs: Não fizemos conversão pelo SI, mas determinamos a unidade equivalente.

    Agora, analisando para um novo intervalo de tempo desconhecido, buscamos o tempo necessário para que o corpo A atinja a temperatura de { 90 \ ^oC}, isto é, { \theta_{fA}=90 \ ^oC}.

    Sabemos que:

    \displaystyle Q_{A} =m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    \displaystyle \Rightarrow P_{F} \cdot(t_{F} - t_{i})=m_{A} \cdot c_{A}\cdot(\theta_{fA} - \theta_{iA})

    Isolando o intervalo de tempo { t_{f} - t_{i}}, obtemos:

    \displaystyle (t_{f} - t_{i})= \dfrac{m_{A} \cdot c_{A}(\theta_{FA} - \theta_{iA})}{P_{F}}

    Substituindo os dados, obtemos:

    \displaystyle (t_{f} - t_{i})= \dfrac{600 \cdot 0,25 \cdot(90-10)}{300}

    \displaystyle ( t_{f} - t_{i})=40 \ min

    Como no inicio, de acordo ao gráfico, o corpo A em { t_{i}=0} tem temperatura { \theta_{iA}=10 \ ^oC}, como substituindo acima, então temos:

    \displaystyle t_{f}- 0 =40 \ min

    \displaystyle t_{f}=40 \ min

    Portanto, o corpo A atinge de { \theta_{fA}=90 \ ^oC} depois de { 40 \ min} sendo aquecido pela fonte de potencia { P_{F}=300 \ cal/min}.

Exercício 6 Como resultado de um aumento de temperatura de {36 \ ^oC}, uma barra com uma rachadura no centro dobra para cima (ver figura abaixo). Se a distância fixa {L_o} é de {3,78\ m} e o coeficiente de dilatação linear da barra é de {26 \cdot 10^{-6} \ ^oC^{-1}}, determine a altura {x} do centro da barra.

 

NÍVEL DE DIFICULDADE: Regular.

Resolução 6Trata-se do fenómeno de dilatação térmica devido a variação de temperatura. Quando a barra se dilatar, o seu tamanho (comprimentos) aumenta. Fruto desse aumento de comprimento e do orifício já existente, a barra divide-se em duas partes iguais. Se a barra dilatada tem comprimento final { L }, então cada uma das partes (metades) da barra dilatada mede { \dfrac{L}{2} }.

 

Na figura acima, designamos:

A – ponto fixo de ligação da barra a uma extremidade:

B – centro da distancia fixa { L_o };

C – ponto onde, acima do centro, onde a barra se dobra.

{Dados}

{ \Delta t = 36 \ ^oC}

{ L_o = 3,78 \ m}

{ \alpha = 26 \cdot 10^{-6} \ ^oC^{-1}}

{ x \longrightarrow? }

Do triângulo ABC, é válido o Teorema de Pitágoras:

\displaystyle \Big( \dfrac{L}{2} \Big)^2 = x^2 + \Big( \dfrac{L_o}{2} \Big)^2

\displaystyle \Rightarrow \dfrac{L^2}{4} = x^2 + \dfrac{ L_o^2 }{4}

\displaystyle x^2 = \dfrac{L^2}{4} - \dfrac{L_o^2}{4} = \dfrac{L^2 - L_o^2 }{4}

Isolando {x}:

\displaystyle x = \sqrt{ \dfrac{ L^2 - L_o^2 }{4}} \Rightarrow x= \dfrac{ \sqrt{L^2 - L_o^2}}{\sqrt{4}}

\displaystyle x = \dfrac{\sqrt{L^2 - L_o^2}}{2} \ \ \ \ \ (12)

Antes da variação da temperatura a barra tinha o comprimento igual à {L_o}. Depois da variação da temperatura a barra passou a ter um comprimento igual à {L}.

Pela lei da dilatação linear, temos:

\displaystyle \Delta L = \alpha L_o \Delta T

Com { \alpha } em { ^oC^{-1}} e { \Delta t } em { ^o C }. A partir desta equação podemos determinar {L}.

Como { \Delta L = L - L_o }, então:

\displaystyle \Delta L = \alpha L_o \Delta T \Rightarrow L - L_o = \alpha L_o \Delta T

\displaystyle L = \alpha L_o \Delta t + L_o \Rightarrow L = L_o (\alpha\Delta t + 1) \ \ \ \ \ (13)

Substituindo 13 em 12, tem-se:

\displaystyle x = \dfrac{ \sqrt{L^2 - L_o^2} }{2} \Rightarrow x = \dfrac{\sqrt{[L_o (\alpha\Delta t + 1)]^2 - L_o^2}}{2}

\displaystyle \Rightarrow x = \dfrac{\sqrt{L_o^2(\alpha\Delta t + 1)^2 - L_o^2}}{2} \Rightarrow x= \dfrac{\sqrt{L_o^2[(\alpha\Delta t + 1)^2 - 1]}}{2}

\displaystyle \Rightarrow x = \dfrac{\sqrt{L_o^2}\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}}{2} \Rightarrow x= \dfrac{L_o\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}}{2}

\displaystyle \Rightarrow x = \dfrac{L_o}{2}\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}

Substituindo os valores dados, obtemos:

\displaystyle x = \dfrac{3,78 \ m}{2} \cdot \sqrt{(26 \cdot 10^{-6} \cdot 36 \ + 1)^2 - 1}

\displaystyle \Rightarrow x = 0,082 \ m \ \Rightarrow x= 8,2 \ cm

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1 Comentário

  1. edsonernesto diz:

    Batido 👏👏👏👏

    Gostar

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Donativos

Donate Button

Localização

wordpress com stats
%d bloggers like this: