Luso Academia

Início » 04 Ensino Superior » 01 Matemática » 20 Topologia

Category Archives: 20 Topologia

Demonstração do Teorema de Cantor

Demonstração: Na proxima aula. \Box

ilon>0}&fg=000000$, seja {N} tal que {diam F_{n}<\epsilon}, {\forall n\geq N}. Assim, se {m,n\geq N}, então ii) implica que {F_{N}\subseteq F_{n,m}},i.e., {diam F_{N}<diam F_{n}<\epsilon}, logo {x_{n}} é uma sequência de Cauchy, e como {(X,d)} é completo, então {\exists x\in X}: {x_{n}\longrightarrow x}.

Como cada {F_{n}} é fechado, então {x\in \cap_{n=1}^{\infty}F_{n}}. Se {\exists y\in \cap_{n=1}^{\infty}F_{n}}, então {d(x,y)\leq diam F_{n}}, logo {x=y}.

Seja agora {x_{n}} uma sequência de Cauchy. Tomando {F_{n}=\overline{\{x_{n+1}, x_{n},\cdots\}}}. Claramente {F_{n}} é fechado e decrescente. Seja {\epsilon>0} e seja {N} tal que {d(x_{n},x_{m})<\epsilon}, {\forall m,n\geq N}. Como {diam F_{k}=\sup\{d(x_{n},x_{m}):m,n\geq k\}\leq\epsilon\Longrightarrow diam F_{k}\longrightarrow0}.

Para qualquer {n\geq 1}, {d(x,x_{n})\leq diam F_{n}\longrightarrow0}, i.e., {x_{n}\longrightarrow x}, logo {(x,d)} é completo.

\Box

Topologia dos Espaços Métricos e Sequências

— 1.1.8. Topologia dos Espaços Métricos e Sequências —

Proposição 24 Seja {(X,d)} um espaço métrico. Um subconjunto {F} de {X} é fechado em {(X,d)}, se e só se, toda sequência de pontos em {F} converge para um ponto em {F}. ({\forall x_{n}\subset F: x_{n}\longrightarrow x\implies x\in F}).

Demonstração: Primeiramente temos de provar que se {x_{n}\subset F}, { x_{n}\longrightarrow x} e {F} é fechado, então {x\in F}.

Suponhamos pelo contrário que {x\notin F}, então {x\in X-F} que é aberto, logo pela definição 1.4, {\exists r>0: B(x,r)\subseteq X-F}, então a partir de uma certa ordem deve existir um {N}, tal que para todo {n\geq N}, {d(x_{n},x)<r}, i.e., {x_{n}\in B(x,r)\subseteq X-F}, o que é uma contradição,já que por hipótese {x_{n}\in F}. Portanto, {x\in F}.

Se {x\in F}, então {x\in\widehat{F}}, pela definição 1.5 {B(x,r)\cap F\neq\emptyset} {\forall r>0}. Em particular, para todo natural {n} existe umponto {x_{n}} em {B(x,\frac{1}{2n})\cap F}. Por isso {x_{n}\subset F} e {d(x,x_{n})<\frac{1}{2n}}, assim {x_{n}\longrightarrow x} e {x\in F}. \Box

Definição 14 Um espaço métrico é completo se toda sucessão de Cauchy nesse espaço é convergente.
Exemplo 12 Todo espaço métrico discreto é completo porque suas sucessões de Cauchy são constantes.
Lema 25 Se {x_{n}} é uma sucessão de Cauchy de elementos de {\mathbb{R}}, então sua imagem é um conjunto limitado.
Teorema 26 {\mathbb{R}} é completo.

Demonstração: Deixada ao leitor. \Box

Proposição 27 Se {(X,d)} é um espaço métrico completo e {Y\subseteq X}, então {(Y,d)} é completo se e só se {Y} é fechado em {X}.
Corolário 28 Os subconjuntos fechados de {\mathbb{R}} são espaços métricos completos.
Proposição 29 Todo producto {X_{1}\times \cdots \times X_{n}} de espaços métricos completos {X_{1},\cdots, X_{n}}, é um espaço métrico completo.
Teorema 30 (Cantor) Um espaço métrico {(X,d)} é um espaço métrico completo se e só se sempre que {\{F_{n}\}} é uma sequência não vazia de subconjuntos satisfazendo:

  • Cada {F_{n}} é fechado;
  • {F_{1}\supseteq F_{2}\supseteq\cdots};
  • {diam F_{n}\longrightarrow 0}, então {\cap_{n=1}^{\infty}F_{n}} é um único ponto.

Demonstração: Na proxima aula. \Box

Espaços Métricos e Sequências

Aula 6

— 1.1.7. Espaços Métricos e Sequências —

Nesta aula introduziremos o conceito de sequências em espaços métricos. Embora este conceito já seja conhecido de modo elementar no espaço dos números reais, {\mathbb{R}}, procederemos à generalização do mesmo para qualquer espaço métrico {X}

Definição 11 Seja {(X,d)} um espaço métrico. Uma sequência, num espaço métrico, é uma aplicação {x:\mathbb{N}\longrightarrow X}, onde os {(x_{n})_{n\in\mathbb{N}}} são pontos em {(X,d)}.
Exemplo 10 Em particular se tomarmos {X=\mathbb{R}} retornaremos ao conceito usual de sequências.
Definição 12 Uma sequência {\{x_{n}\}} em {X} converge para {x}, i.e., {x_{n}\longrightarrow x}, se {\forall\epsilon>0} {\exists N>0}: {d(x_{n},x)<\epsilon}, {\forall n\geq N(\epsilon)}.
Exemplo 11 Seja {(X,d)} o espaço métrico discreto, então uma sequência {\{x_{n}\}} em {X} converge para {x} se e só se existe um inteiro {N} tal que {x_{n}=x} sempre que {n\geq N}.
Proposição 21 Se {x_{n}\longrightarrow x} em {X} e {\{x_{n_{k}}\}} é uma subsequência, então {x_{n_{k}}\longrightarrow x}.

Demonstração: Deixada ao leitor. \Box

Definição 13 Uma sequência {\{x_{n}\}} em {X} é de Cauchy se {\forall\epsilon>0} {\exists n_{0}\in\mathbb{N}} tal que {d(x_{m},x_{n})<\epsilon}, para todo {m,n\geq n_{0}}.
Proposição 22 Toda sucessão {x_{n}} convergente de {X} é de Cauchy.

Demonstração: A proposição acima basicamente diz que se uma sucessão é convergente, então ela é de Cauchy.

Como por hipótese, {x_{n}\longrightarrow x}, então pela definição 1.12, {d(x_{n},x)<\frac{\epsilon}{2}} para algum {\epsilon>0} e para todo {n\geq n_{0}}, onde {n_{0}\in\mathbb{N}}. De modo similar, a partir de uma certa ordem,{m}, temos {d(x_{m},x)<\frac{\epsilon}{2}}, com {m\geq n_{0}}. Portanto, aplicando a desigualdade triângular obtemos:

\displaystyle  d(x_{m},x_{n})\leq d(x_{m},x)+d(x_{n},x)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.

\Box

Em geral,a recíproca da proposição anterior é falsa. Para isto, consideremos por exemplo a sucessão {x_{n}=\frac{1}{n}} no espaço {X=\mathbb{R}-\{0\}} com a métrica euclidiana usual.

Proposição 23 Se {\{x_{n}\}} é uma sequência de Cauchy e alguma subsequência de {X_{n}} converge para {x}, então {x_{n}\longrightarrow x}.

Demonstração: Por hipótese temos que {x_{n_{k}}\longrightarrow x} para algum {\epsilon>0}. Seja {N_{1}, N_{2}\in\mathbb{N}} tal que {d(x_{n_{k}},x)<\frac{\epsilon}{2}}, para todo {n_{k}\geq N_{1}}. Por outro lado, como {x_{n}} é umasequência de Cauchy, então {d(x_{m},x_{n})<\frac{\epsilon}{2}}, para {m,n\geq N_{2}}. Fixemos {n_{k}>N} e seja {N=\max\{N_{1},N_{2}\}}, então:

\displaystyle d(x,x_{n})<d(x,x_{n_{k}})+d(x_{n_{k}},x_{n})<\epsilon.

\Box

Topologia – Distância entre conjuntos e diâmetro

— 1.1.6. Distância entre conjuntos e diâmetro —

Definição 8 Seja {(X,d)} um espaço métrico e {x\in X}. Se {A\subset X} não vazio, o conjunto das distâncias {x} e os elementos de {A} é definido por

\displaystyle d(x,A):=\inf\{d(x,y):y\in A\}.

Ao número real {d(x,A)\geq 0} chama-se distância de {x} ao conjunto {A}.

Comentário 5 É óbvio que se {x\in A}, então {d(x,A)=0}, mas o recíproco, em geral, nem sempre é verdadeiro.
Exemplo 8 Se {X=\mathbb{R}} e {A=(a,b)}, então {d_{1}(a,A)=0} e {a\not\in A}. Temos também, {d_{1}(0,[1,2])=d_{1}(0,(1,2])=1}.

É evidente que {d(A,x)=d(x,A)}.

Proposição 17 Seja {A\subset X} e {x,y\in X}. Então:

\displaystyle \mid d(x,A)-d(y,A)\mid \leq d(x,y)

Demonstração: Sejam {x,y\in X}, então {\forall a\in A}:

\displaystyle d(x,a)\leq d(x,y)+d(y,a)

,i.e.,

\displaystyle d(x,A)\leq d(y,A)+d(x,y)

de modo análogo,

\displaystyle d(y,A)\leq d(x,A)+d(x,y).

Assim,

\displaystyle -d(x,y)\leq d(x,A)-d(y,A)\leq d(x,y).

\Box

Para cada conjunto {A} de {X} e {\epsilon\geq 0}, denotaremos o conjunto {A_{\epsilon}:=\{x:d(x,A)<\epsilon\}}, onde pode se dar o caso de {\epsilon=\infty}.

Proposição 18 Seja {(X,d)} um espaço métrico e {x\in X}. Então, para cada {A,B} e {\{B_{j}\}_{j\in J}} subconjuntos de {X},as seguintes afirmações são verdadeiras:

  1. {d(x,\emptyset)=\infty} e {d(x,A)<\infty} se {A\neq\emptyset}.
  2. {d(x,\{x\})=0}.
  3. Se {A\subseteq B}, então {d(x,A)\leq d(x,B)}.
  4. {\forall \epsilon>0},{0\leq\epsilon\leq\infty}, {d(x,A)\leq d(x,A_{\epsilon})+\epsilon}.
  5. {d(x,\cup_{j\in J})B_{j})=\inf_{j\in J}d(x,B_{j})}
  6. {d(x,\cap_{j\in J}B_{j})\geq\sup_{j\in J}d(x,B_{j})}

Demonstração:

  1. {d(x,\emptyset)=\inf\emptyset=\infty} (pela definição do ínfimo de um conjunto).
  2. Basta tomar {A=\{x\}\longrightarrow d(x,A)=0}.
  3. Deixada ao leitor.
  4. Seja {a\in A_{\epsilon}},existe {a'\in A}, {d(a,a')<\epsilon}. Portanto,

    \displaystyle d(x,A)\leq d(x,a)+d(a,a')\leq d(x,A_{\epsilon})+\epsilon.

  5. {d(x,\cup_{j\in J})B_{j})=\inf_{b\in \cup_{j\in J}B_{j}}d(x,b)=\inf_{j\in J}(\inf_{b\in B_{j}}d(x,b))=\inf_{j\in J}d(x,B_{j}).}
  6. Sugestão: {d(x,A)\geq d(x,B)} se {A\subseteq B}.

\Box

Definição 9 Sejam {A,B} subconjuntos de {X}, onde {(X,d)} é um espaço métrico. A distância entre {A} e {B} é o número

\displaystyle d(A,B)=\inf\{d(x,y):x\in A,y\in B\}.

É evidente que se {A\cap B\neq\emptyset}, então {d(A,B)=0}, em geral o recíproco não é verdadeiro e, obviamente {d(A,B)=d(B,A)}.

Proposição 19 Seja {(X,d)} um espaço métrico e {A,B,C} e {D} subconjuntos de {X}, e famílias {\{A_{i}\}_{i\in I}}, {\{B_{j}\}_{j\in J}} de subconjuntos de {X}. Então:

  1. {d(A,B)<\infty} se e só se {A} e {B} são não vazios.
  2. {d(A,B)=0} se {A\cap B\neq\emptyset}.
  3. Se {A\subseteq B} e {C\subseteq D}, então {d(A,C)\leq d(B,D)}.
  4. Para todo {\epsilon,\epsilon'}, {0\leq\epsilon,\epsilon'\leq\infty}, {d(A,B)\leq d(A_{\epsilon},B_{\epsilon})+\epsilon+\epsilon'}.
  5. {d(\cup_{i\in I}A_{i},\cup_{j\in J}B_{j})=\inf_{i\in I,j\in J}d(A_{i},B_{j})}.
  6. {d(A,\cap_{j\in J}B_{j})\geq\sup_{j\in J}d(A,B_{j})}.

Demonstração: Deixadas ao leitor. \Box

Definição 10 Seja {A\subseteq X}, onde {(X,d)} é um espaço métrico. O diâmetro de {A} é definido como

\displaystyle \delta(A)=\sup\{d(x,y):x,y\in A\}.

Exemplo 9 {\delta(\emptyset)=\sup \emptyset=-\infty}.
Proposição 20 Sejam {A,B\subseteq X}. Então:

  1. Se {A\subseteq B}, então {\delta(A)\leq\delta(B)}.
  2. {\delta(A_{\epsilon})\leq 2\epsilon+\delta(A)}, {\forall\epsilon>0}.
  3. {\delta(A\cup B)\leq \delta(A)+\delta(B)+d(A,B)}.

Demonstração: Deixada ao leitor. \Box

Topologia dos Espaços Métricos

— 1.1.5. Topologia dos Espaços Métricos —

Definição 4 Seja {(X,d)} um espaço métrico e {A\subseteq X}. Diz-se que {A} é um conjunto aberto se para todo {x\in A} existe {r>0}: {B(x,r)\subseteq A}. Um subconjunto {F} de {X} é fechado se seu complementar {X\setminus F} é aberto.
Comentário 4 É importante notarmos que o facto de um conjunto não ser aberto, não implica que ele seja fechado.
Exemplo 6 Observamos que {X} e {\emptyset} são ambos conjuntos aberto e fechado. É claro que a condição acima é satisfeita para ambos, i.e., {X} e {\emptyset} são abertos, logo, novamente pela definição acima, seus complementares são fechados.
Proposição 9 Toda bola aberta é um conjunto aberto.

Demonstração: Esta proposição é uma consequência imediata da proposição 1.3. \Box

Proposição 10 A união arbitrária de conjuntos abertos num espaço métrico, também é um conjunto aberto.

Demonstração: Seja {\{A_{i}\}_{i\in I}} uma família de abertos, e {A=\cup_{i\in I}A_{i}}. Temos de mostrar que {A} é aberto.

Seja {x\in \cup_{i\in I}A_{i}}, então existe {i_{0}\in I} tal que {x\in A_{i_{0}}}, pela definição 1.4 existe uma bola aberta {B(x,r)\subseteq A_{i_{0}}}, como {A_{i_{0}}\subseteq \cup_{i\in I}A_{i}}, concluímos que {B(x,r)\subseteq \cup_{i\in I}A_{i}}. \Box

Proposição 11 A intersecção finita de conjuntos abertos num espaço métrico, também é um conjunto aberto.

Demonstração: Seja {\{A_{i}\}_{i}^{n}} uma família de abertos e {A=\cap_{i=1}^{n}A_{i}}. Temos de mostrar que {A} é fechado.

Seja {x \in \cap_{k=1}^{n}A_{k} \Longrightarrow x\in A_{i}} para todo {i}. Então existem {r_{k}>0} tais que {B(x,r_{k})\subseteq A_{i}}. Se {r=\min\{r_{1},\cdots,r_{n}\}} então {r>0} e {B(x,r)\subseteq\cap_{i=1}^{n}A_{i}} é

\Box

Proposição 12

  1. Toda bola fechada num espaço métrico é um conjunto fechado.
  2. A intersecção enumerável de conjuntos fechados num espaço métrico é um conjunto fechado.
  3. A união finita de conjuntos fechados num espaço métrico é um conjunto fechado.
  4. Todo conjunto finito é fechado.

Demonstração: Deixada ao leitor. \Box

Definição 5 O interior de {A} é o maior conjunto aberto contido em {A}, i.e.,

\displaystyle int A=\cup\{U:U\subseteq A\text{ onde }U \text{ é aberto }\}.

O fecho de {A}, {\overline{A}}, é o menor conjunto fechado em {X} contendo {A}, i.e.,

\displaystyle \overline{A}=\cap\{K: A\subseteq K, K\text{ fechado }\}.

Exemplo 7 Da definição anterior podemos imediatamente verificar que {\mathbb{Q}\subset\mathbb{R}}, é tal que {int(\mathbb{Q})=\emptyset} (muito importante !!!) e {\overline{\mathbb{Q}}=\mathbb{R}}. Para provarmos isto, suponha que {U\subset\mathbb{R}} é aberto. Então, como as bolas abertas em {\mathbb{R}} são intervalos, existe um intervalo {(a,b)\subset U\subset\mathbb{R}}, onde {a<b}. Como entre dois números reais sempre existe um número irracional, segue-se que {(a,b)\cap \mathbb{R}\setminus \mathbb{Q}\neq \emptyset}, {U\nsubseteqq\mathbb{Q}} e por isso {int(\mathbb{Q})=\emptyset}. Se {\mathbb{Q}\subset K} é um subespaço fechado de {\mathbb{R}}, então {\mathbb{R}\setminus K} é aberto e não contém racionais. Segue-se que não contêm nenhum intervalo por que qualquer intervalo não vazio de números reais contém um número racional. Assim, {\mathbb{R}\setminus K=\emptyset} e {\overline{\mathbb{Q}}=\mathbb{R}}.
Proposição 13 Seja {A\subseteq X}. Então:

  1. {x\in int A} se e só se existe {r>0} tal que {B(x,r)\subseteq A}.
  2. {x\in \overline{A}} se e só se para todo {r>0}, {B(x,r)\cap A\neq\emptyset}.

Demonstração: 1. Seja {x\in intA}, pela Definição 1.5 significa que existe um aberto {U} tal que {x\in U\subseteq A}. Como {U} é aberto, então existe {r>0} e uma bola {B(x;r)\subseteq U\subseteq A}. A implicação inversa é simples, basta notarmos que se {B(x,r)\subseteq A} e {B(x,r)} é um conjunto aberto, então {B(x,r)\subseteq intA}.

2.Deixada ao leitor.

\Box

Proposição 14 Seja {A} um subconjunto de {X}.

  1. {A} é fechado se e só se {A=\overline{A}}.
  2. {A} é aberto se e só se {A=int A}.
  3. Seja {\{A_{i}\}_{i=1}^{n}} uma família de subconjuntos de {X}, então {\overline{\cup_{i=1}^{n}A_{i}}= \cup_{i=1}^{n}\overline{A_{i}}}.
  4. Seja {\{A_{i}\}_{i=1}^{n}} uma família de subconjuntos de {X}, então {int(\cap_{i=1}^{n}A_{i})=\cap_{i=1}^{n}int(A_{i})}.

Demonstração: deixada ao leitor. \Box

Definição 6 Um subconjunto {A} de um espaço métrico {X} é denso se {\overline{A}=X}. Um espaço métrico {X} é separável se contém um subconjunto denso enumerável.
Proposição 15 Um conjunto {A} é denso em {(X,d)} se e só se para todo {x\in X} e todo {r>0}, {B(x,r)\cap A\neq\emptyset}.

Demonstração: É uma aplicação trivial da proposição 1.13. \Box

Definição 7 Seja {A\subseteq X}, então um ponto {x\in X} é chamado de ponto limite de {A} se para todo {\epsilon >0} existe um ponto {y} em {B(x,\epsilon)\cap A} com {y\neq x}.
Proposição 16 Seja {A\subset X}, onde {X} é um espaço métrico, então {\overline{A}=A\cup A'}, onde {A'} representa o conjunto dos pontos limites de {A} ou derivado de {A}.

Demonstração: Por definição, o fecho de {A}, {\overline{A}}, é fechado e por isso {A\subset\overline{A}}. Segue que se {x\in \overline{A}}, então existe um conjunto aberto {U} contendo {x} com {U\cap A=\emptyset} e daí {x\not\in A} e {x\not\in A'}. Isto mostra que {A\cup A' \subset \overline{A}}.

Por outro lado, suponhamos {x\in\overline{A}} e {V} um aberto contendo {x}. Se {V\cap A=\emptyset}, então {A\subset(X\setminus V)} é um conjunto fechado e {\overline{A}\subset(X\setminus V)}. Mas, {x\not\in \overline{A}}, contradição. Se {x\in \overline{A}} e {x\not\in A}, então, para qualquer aberto {V} com {x\in V}, temos {V\cap A\neq\emptyset}. Logo, {x} é um ponto limite de {A}. Assim, {\overline{A}\subset A\cup A'}. \Box

Topologia – Introdução aos Espaços Métricos

— 1.1.4. Alguns Exemplos de Espaços Métricos —

Na aula de hoje, daremos alguns exemplos de espaços métricos, e só depois continuaremos com a topologia dos espaços métricos. Infelizmente, pela grande variedade de espaços métricos que existem, que são infinitos, não poderemos demonstrar que cada métrica definida em um conjunto dado realmente fora um espaço métrico, por isso as respectivas demonstrações são deixadas ao leitor.

Comentário 3 É importante notarmos que em um mesmo conjunto podemos definir várias métricas.
Exemplo 5

  1. Seja {X=\mathbb{R}}, este é sem dúvida o espaço métrico mais importante, podemos definir nele as seguintes métricas:
    • {d_{1}(x,y)=\mid x-y\mid }, {\forall x,y\in \mathbb{R},}. Esta é a métrica usual ou euclidiana.
    • {d(x,y)=\sqrt{\mid x-y\mid}}, {\forall x,y\in \mathbb{R}}. (Sugestão: para provarmos que esta métrica satisfaz a desigualdade triangular podemos aplicar a desigualdade: {\sqrt{a+b}\leq\sqrt{a}+\sqrt{b}}, {\forall a,b\in \mathbb{R}}).
    • {\rho(x,y)=\frac{d_{1}(x,y)}{1+d_{1}(x,y)}}, onde {d_{1}} é a métrica usual euclidiana.(sugestão: a função {f(a)=\frac{a}{1+a}} é crescente, logo, {\mid a+b\mid\leq\mid a\mid+\mid b\mid\Longrightarrow f(\mid a+b\mid)\leq f(\mid a\mid + \mid b\mid)}).
  2. Se {X=\mathbb{R}^{2}} podemos definir as seguintes métricas:
    • {d_{t}(x,y)=\mid x_{1}-y_{1}\mid + \mid x_{2}-y_{2}\mid}, onde {x=(x_{1},x_{2})} e {y=(y_{1},y_{2})}. Esta métrica é conhecida como métrica do táxi.
    • {d_{2}(x,y)=\sqrt{( x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}}}, {x,y\in\mathbb{R}^{2}}. Esta é a métrica euclidiana no plano.
    • {d_{max}(x,y)=\max{\mid x_{1}-y_{1}\mid,\mid x_{2}-y_{2}\mid}}, é a métrica do máximo.
  3. Se {X=\mathbb{R}^{n}}, temos:
    • {d_{n}(x,y)=\sqrt{\sum_{i=1}^{n}(x_{i}-y_{i})^{2}}}, onde {x=(x_{1},...,x_{n})} e {y=(y_{1},...,y_{n})}.(sugestão: use a desigualde de Cauchy-Schwarz: {(\sum_{i=1}^{n}\mid x_{i}y_{i}\mid)^{2}\leq (\sum_{i=1}^{n}x_{i}^{2})^{2}(\sum_{i=1}^{n}y_{i}^{2})^{2}}, {\forall x,y\in\mathbb{R}^{n}}).
    • {d_{\infty}(x,y)=\max\{\mid x_{i}-y_{i}\mid:1\leq i\leq n\}}, {x,y\in \mathbb{R}^{n}}.
    • Para {p\geq 1}, definimos a métrica:

      \displaystyle d_{p}(x,y):=\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}-y_{i}\mid^{p}}

      também é uma métrica em {\mathbb{R}^{n}}.(sugestão: use a desigualdade de Minkovsky: {\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}+y_{1}\mid}\leq\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}\mid^{p}}+\sqrt[p]{\sum_{i=1}^{n}\mid y_{i}\mid^{p}}}, {\forall p\geq 1}).

  4. Seja {B(A)} o conjunto de todas as funções limitadas no conjunto {A}, então a métrica {d_{\infty}:B(A)\times B(A)\longrightarrow \mathbb{R}^{+}} definida por

    \displaystyle d_{\infty}(f,g):=\sup\{\mid f(x)-g(x)\mid:x\in A\}

    torna-o num espaço métrico {\forall f,g\in B(A)} .

  5. Seja {C_{[a,b]}}, o conjunto de todas as funções contínuas no intervalo {[a,b]\subset \mathbb{R}} é um espaço métrico com as métricas:
    • {d(f,g):=\max\{\mid f(x)-g(x)\mid:x\in [a,b]\}}, {\forall f,g\in C_{[a,b]} }.
    • {d_{p}(f,g):=\sqrt[p]{\int_{a}^{b}\mid f(x)-g(x)\mid^{p}dx}}. (sugestão: para a desigualdade triangular use o equivalente integral da desigualdade de Minkovsky)
  6. Terminamos com a métrica {d_{0}:X\times X\longrightarrow \mathbb{R}^{+}}, definida por

    \displaystyle d_{0}(x,y):=\sum_{i=1}^{\infty}\frac{d(x_{i},y_{i})}{2^{i}}

    onde {d} é uma métrica em {X}. Demonstração: É evidente que {d_{0}(x,y)\geq 0} e que {d_{0}(x,y)=0} se e só se {x=y}. Também é fácil verificar que {d_{0}(x,y)=d_{0}(y,x)}, vamos portanto mostrar apenas a desigualdade triangular,

    {d_{0}(x,y)=\sum_{i=1}^{\infty}\frac{d(x_{i},y_{i})}{2^{i}}}

    {\leq\sum_{i=1}^{\infty}\frac{d(x_{i},z_{i})+d(z_{i},y_{i})}{2^{i}}=}

    {\sum_{i=1}^{\infty}\frac{d(x_{i},z_{i})}{2^{i}}+\sum_{i=1}^{\infty}\frac{d(z_{i},y_{i})}{2^{i}}}

    {=d_{0}(x,z)+d(z,y)}

    \Box

Definição 3 Seja {d:X\times X\longrightarrow \mathbb{R}^{+}} uma aplicação, o par {(X,d)} é chamado de pseudométrica ou pseudodistância em {X} se,

  1. {d(x,y)=0} se {x=y},
  2. {d(x,y)=d(y,x)} para todo {x,y\in X},
  3. {d(x,y)\leq d(x,z)+d(z,y)} para todo {x,y,z \in X}.
Exercício 1 Seja dada a aplicação {f:X\longrightarrow \mathbb{R}^{+}}, a aplicação

\displaystyle d:X\times X\longrightarrow \mathbb{R}^{+}

definida por

\displaystyle d(x,y)= \left \{ \begin{array}{cl} 0 & \mbox{, } x= y\\ f(x)+f(y) & \mbox{, } x\neq y \end{array}\right.

é uma pseudométrica se e só se {f^{-1}(0)} tem no máximo um elemento.

Exercício 2 Prove que se

\displaystyle d_{i}:X\times X\longrightarrow \mathbb{R}^{+}\,\,\,(i\in \mathbb{N})

é uma família enumerável de pseudométricas e

\displaystyle \alpha:\mathbb{R}_{\geq0}^{\mathbb{N}}\longrightarrow \mathbb{R}^{+}

é uma função que satisfaz:

  • {\alpha(x)=0} se e só se {x=0},
  • Se {x\leq y}, então {\alpha(x)\leq\alpha(y)}
  • {\alpha(x+y)\leq\alpha(x)+\alpha(y)}

então a função

\displaystyle d:X\times X\longrightarrow \mathbb{R}^{+}

definida por

\displaystyle d(x,y):=\alpha(d_{1}(x,y),...,d_{n}(x,y),...),

é uma pseudométrica, e que é uma métrica se e só se para todo {x,y\in X}, com {x\neq y}, existe {i\in \mathbb{N}} tal que {d_{i}(x,y)>0}.

Topologia – Introdução II

— 1.1. Bolas Abertas e Fechadas —

Definição 2 Dado {x\in X} e {r>0}. Definimos os seguintes conceitos:

  • (Bola aberta) {B(x,r)=\{y\in X:d(x,y)<r\}}.
  • (Bola fechada) {\overline{B}(x,r)=\{y\in X:d(x,y)\leq r\}}
  • (Esfera){S(x,r)=\{y\in X:d(x,y)=r\}}

Exemplo 4 Se, na definição tomarmos {X=\mathbb{R}}, então as bolas abertas (resp. fechadas) serão basicamente intervalos abertos (resp. fechados), i.e., {B(x,r)=(x-r,x+r)} e {\overline{B}(x,r)=[x-r,x+r]}. Se {x=0} e {r=1}, então {B(0,1)=(-1,1)}, {\overline{B}(0,1)=[-1,1]}.

Comentário 2 É enganoso pensarmos, conforme aconselha o Kreyszig, que as bolas(abertas ou fechadas) em espaços métricos arbitrários não euclidianos possuem as mesmas propriedades que as bolas ou esferas em {\mathbb{R}^{3}}. Por exemplo, nos espaços métricos que surgem a partir da métrica discreta, espaços discretos, uma esfera pode ser vazia, i.e., {S(x,r)=\{y\in X:d(x,y)=r\}=\emptyset }, para isso, basta tomarmos {r\neq1}.

— 1.1.1. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 1 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 2 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

— 1.1.2. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 3 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 4 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

— 1.1.3. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 5 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 6 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

Proposição 7 Sejam {B(x,r_{1})} e {B(y,r_{2})}, tais que {B(x,r_{1})\cap B(y,r_{2})\neq \emptyset}. Se {a\in B(x,r_{1})\cap B(y,r_{2})}, então existe uma bola aberta de centro {a} contida na intersecção {B(x,r_{1})\cap B(y,r_{2})}.

Demonstração: Deixada ao leitor. \Box

Proposição 8 Sejam {B(x_{1},r_{1})} e {B(x_{2},r_{2})} duas bolas abertas. Se {r_{1}+r_{2}\leq d(x_{1},x_{2})}, então

\displaystyle B(x_{1},r_{1})\cap B(x_{2},r_{2})=\emptyset.

Demonstração: deixada ao leitor. \Box

%d bloggers like this: