— 1.2. Interacção de corpos carregados. Força Eléctrica. Lei de Coulomb —
Os corpos carregados interagem, ou seja, exercem forças um no outro.
A força eléctrica é uma grandeza vectorial com intensidade, direcção e sentido. A direcção coincide com a recta que une as duas cargas, e o sentido é estabelecido pelo sinal das cargas em presença.
As intersecções podem ser atração ou repulsão. As cargas eléctricas de sinais contrários atraem-se (puxam-se simultaneamente, uma em direcção a outra), e cargas eléctricas de um mesmo sinal repelem-se (empurra-se simultaneamente, uma em direcção oposta a outra). Este princípio é denominado Princípio impírico de Du Fay.
As forças eléctricas provocadas por objetos carregados foram medidas quantitativamente por Charles Coulomb a partir de uma balança de torção, da qual ele mesmo inventou.
A força de interacção electrostática entre dois corpos carregados e fixos, é diretamente proporcional ao produto de suas cargas e inversamente proporcional ao quadrado da distância que as separa.
O módulo da força electrostática entre as cargas é igual e é dada por:
Onde: Permissividade eléctrica do meio;
Permissividade relativa do meio;
módulo de distância entre as cargas;
Carga eléctrica;
Vectorialmente:
Ou
Onde: é o unitário do vector
.
— 1.3. Princípio de Sobreposição das forças eléctricas —
A superposição ou sobreposição de efeitos é o efeito de obtido quando um conjunto de elementos causadores do efeito se sobrepõem. É um princípio muito usado na Física, nas mais diversas áreas.
O princípio de sobreposição postula que o efeito criado por um conjunto de causas aplicado num corpo é igual á soma ou superposição dos efeitos que cada das causas iria gerar quando aplicada separadamente sobre esse mesmo corpo.
De acordo com o princípio da supersposição, a força resultante na carga será:
A forma de calcular a resultante, vai depender do número de vectores que se sobreposurem.
Exemplo 2
Consideremos o sistema de três cargas. Determinemos a expressão para a força resultante na carga Para tal, devemos representar as forças de interacção entre as cargas, sendo de atracção ou de repulsão, dependendo de as cargas terem mesmos sinais ou sinais opostos. As forças entre Neste caso, actuarão em Em módulo, sendo uma soma entre dois vectores, podemos usar a fórmula do triângulo (lei dos co-senos). Mas para tal, deveremos antes determinar os ângulos Neste caso, o cálculo da resultante pode fazer-se em uma única expressão porque apresenta a soma de apenas dois vectores. |
Para um caso em que se sobreponham mais de dois vectores, a resultante deverá ser calculada pelo método de componentes.
Exemplo 3 Consideremos o sistema de quatro cargas abaixo. Determinemos a expressão para a força resultante na carga
Para tal, devemos representar as forças de interacção entre as outras cargas com a carga Neste caso, actuarão em Devemos agora notar que pretendemos somar mais de dois vectores ( três no caso), e todos de direcção diferente. Para tal, como Neste caso, teremos: Neste caso, calcularemos as componentes do vector resultante em cada eixo: Em seguida, se poderá calcular o vector resultante: |
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.