1.1. Exercício sobre Dilatação Térmica (Parte 1)
— 1. Exercício sobre Calor e Temperatura —
— 1.1. Exercício sobre Dilatação Térmica —
Exercício 1 Um quadrado de área interna de Considerando que no final as hastes de alumínio continuam perpendiculares as hastes de aço, determine a área do plano limitado pelas hastes após o aquecimento. NÍVEL DE DIFICULDADE: Regular. |
Resolução 1 .
O problema em questão trata de dilatação térmica dos corpos (expansão dos corpos). É dada uma área Dado que a área limitada é a área de quadrado, então, de acordo a definição da área de um quadrado, temos que: Onde:
Por outro lado, para que as hastes de alumínio e de aço formem ou limitem a área de um quadrado deve-se cumprir a seguinte condição: Então, cada haste de alumínio e/ou de aço possui um comprimento Entretanto, depois de aquecidas as hastes de aço e alumínio, de modo que a variação de temperatura é a mesma em todas as hastes, até a temperatura de Dados: Depois do aquecimento até Então, a nova área limitada pelas hastes de alumínio e aço é dada como sendo o produto dos comprimento finais das hastes, Pela figura acima percebe-se que: Onde: Para determinarmos a área que as hastes de alumínio e aço vão limitar após o aquecimento, substituímos as equações 4 e 5 na equação 3. Obtemos: Determinamos Invertendo a igualdade: Substituindo os dados: Determinemos Para o alumínio: Substituindo os dados: Para o aço: Substituindo os dados: Portanto, a área limitada pelas hastes após o aquecimento é: |
Exercício 2 Uma ponte tem comprimento NÍVEL DE DIFICULDADE: Elementar. |
Resolução 2 . Trata-se do fenómeno de dilatação térmica que um corpo sofre quando é submetido a variações de temperatura. Dados A equação da dilatação térmica de um sólido é: Mas Isolando Substituindo os valores: |
Exercício 3 Na temperatura ambiente ( NÍVEL DE DIFICULDADE: Elementar. |
Resolução 3 .
Trata-se do fenómeno de dilatação térmica numa linha férrea. Para sabermos a temperatura máxima Dados A equação da dilatação linear é: Note que a variação de temperatura em Graus Celcius é igual a variação da temperatura em Kelvins. Para se saber a temperatura máxima considerada pelo projetista é suficiente que, Isolando Substituindo os valores de |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre sistema massa-mola (Parte 1)
— 1.2. Sistema massa-mola —
Exercício 16 .
Um corpo está pendurado em uma mola de Qual é a velocidade máxima desta oscilação e a massa do corpo, se o seu período for de NÍVEL DE DIFICULDADE: Elementar. |
Resolução 16 . Dados A velocidade máxima de um MHS é dada na forma: Por sua vez, sabemos que, para qualquer evento período: Logo, substituindo na equação anterior, obtemos: Para determinarmos a massa, podemos usar a relação de Ou: Então, isolando a massa, obtemos: Substituindo |
Exercício 17 . Um corpo de NÍVEL DE DIFICULDADE: Regular. |
Resolução 17 . Dados Em qualquer ponto do percurso em uma oscilação, a energia total do corpo é a soma da energia cinética com a energia potencial do corpo naquele ponto, ou seja: Pretende-se saber qual é a velocidade do corpo no ponto onde a energia cinética é o dobro da energia potencial,ou seja: Substituindo a equação 2 na equação 1, temos: Substituindo as energias cinéticas e total pelos seus equivalentes, obtemos: Isolando a velocidade, obtemos: |
Exercício 18 . Um corpo caindo de uma altura de NÍVEL DE DIFICULDADE: Complexo. |
Resolução 18 . Na figura ilustramos o sistema em 3 situações diferentes:
Vamos adoptar a posição da situação 3 como referencial de altura. De acordo com a ilustração do fenómeno é possível concluir que:
Usando a descrição acima, para a situação 1, a energia do sistema será: Para a situação 2, a energia do sistema será: Para a situação 3, a energia do sistema será: Sabemos que neste movimento apenas actuam as forças de gravida e elástica, que são ambas conservativas. Então, a energia mecânica deste sistema permanece constante: Obtemos a partir desta análise um sistema de 3 equações. Resolvendo-o, podemos obter todos os valores desconhecidos ( Substituindo os dados, obtemos: Em seguida, resolvemos a equação do segundo grau obtida pela fórmula resolvente ou por qualquer outro método conveniente. Obtemos os seguintes resultados: como sabemos, a amplitude não pode ser negativa, então o valor aceite para amplitude deste MHS é: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.