Luso Academia

Início » 04 Ensino Superior » 02 Física » 02 Física Geral I

Category Archives: 02 Física Geral I

1. Introdução à Mecânica (Parte 1)

1. Introdução à Mecânica

1.1. Introdução Geral à Física


A Ciência e a Engenharia se baseiam em medições e comparações.


Assim, precisamos de regras para estabelecer de que forma as grandezas devem ser medidas e comparadas, e de experimentos para estabelecer as unidades para essas medições e comparações.


Um dos propósitos da física é elaborar, postar e relacionar modelos em um esforço para descrever, explicar ir para ver a realidade. Esse processo envolve hipóteses, experimentos reprodutíveis e as observações e novas hipóteses.


O resultado final é um conjunto de princípios fundamentais e leis que descrevem os fenómenos do mundo que nos cerca. Estas leis e princípios são aplicáveis tanto ao mundo macroscópico como buracos negros, matéria e energia escura, gravidade, etc como para o mundo microscópico partículas quânticas como leptoquarks e bósões. Quanto ao nosso dia-dia, são incontáveis as questões sobre o nosso mundo que podem ser respondidas com conhecimento básico de física.


Se a agua não tem cor, porque razão a uma distância do mar, a água parece azul?


Como é que os astronautas no espaço flutuam?


Como funciona um CD?

1.2. Medindo grandezas

Ao estudarmos conteúdos relacionados com a Física, muitas vezes, deparamo-nos com a palavra grandeza definindo termos científicos, como velocidade, aceleração, força, tempo etc.


Numa linguagem muito elementar, uma grandeza é tudo aquilo que pode ser medido e possibilita que tenhamos características baseadas em informações numéricas e/ou geométricas. A grandeza é toda a característica de um sistema ou corpo a que possamos associa uma quantidade. Medir uma grandeza física é compara-lá com uma outra da mesma espécie na natureza.


Medimos cada grandeza física em medidas apropriadas, por comparação com padrão. A unidade é um nome particular que atribuímos as medidas dessa grandeza.


Assim por exemplo, o metro (m) é uma unidade da grandeza comprimento. O padrão corresponde a exatamente 1,0 unidade da grandeza, como vamos ver o padrão de comprimento que corresponde exatamente 1,0 m é a distância percorrida pela Luz no vácuo durante uma certa fração de tempo .


Em princípio podemos definir uma unidade e o seu padrão da forma que quisermos, mas é importante que cientistas em diferentes partes do mundo concordem que nossas definições e que, ao mesmo tempo sejam razoáveis e práticas.


Depois de escolher um padrão (neste caso comprimento) precisamos estabelecer procedimentos através dos quais qualquer comprimento seja {r} o raio do átomo de hidrogénio, {a} largura de uma aresta de um cubo ou {d} a distância entre duas estrelas, possa ser expresso em termos da unidade.


Usar uma régua de comprimento aproximadamente igual ao padrão pode ser uma forma de executar medidas de comprimento. Entretanto, muitas das comparações são necessariamente indiretas. Por exemplo, não dá para medir a distâncias entre planetas directamente.


É portanto, impossível usar uma régua, por exemplo, para medir o raio de um átomo ou a distância de uma estrela. Assim o que fazemos é escolher, através de um acordo internacional, um pequeno número de grandezas físicas como comprimento e tempo, e atribuir unidades a elas.


Em seguida, definimos as demais grandezas físicas em termos dessas grandezas fundamentais e de suas unidades (conhecidas, como unidades fundamentais). A velocidade, por exemplo é definida em termos das grandezas fundamentais comprimento e tempo e suas unidades fundamentais.


Portanto as unidades fundamentais de um sistema de unidades dado são as unidades de grandezas físicas de diferentes espécies, escolhidas arbitrariamente para constituição desse sistema. As grandezas físicas que correspondem às mesmas unidades têm o nome de grandezas fundamentais do sistema considerado.


Unidades derivadas são as unidades que se estabelecem sendo deduzidas a partir das outras unidades de um sistema dado, desde que se observem as leis e os princípios físicos a exprimirem as relações mútuas existentes entre as respetivas grandezas físicas.

1.3. O sistema Internacional de Unidade


Na 14ª conferência geral de pesos e medidas, foram selecionadas sete grandezas como fundamentais, as quais constituem a base do sistema internacional de unidade cuja abreviação é S.I. popularmente conhecido como sistema métrico.

A tabela a seguir mostra as unidades das grandezas fundamentais do S.I. que serão usadas nos principais capítulos desta página. Essas unidades foram definidos modo a serem da mesma ordem de grandeza que a escala humana.


Muitas unidades derivadas do SI são definidas em termos dessas unidades fundamentais. Assim, por exemplo, a unidade de trabalho no SI, chama Joule (J) é definido em termos das unidades fundamentais de massa, comprimento e tempo.

\displaystyle 1 \ Joule= \ 1 \ J= \ 1k \cdot \frac{m^2}{s^2}


Além destas, há duas unidades complementares: o radiano e o esterradiano.


1.3.1 Tempo


Do latim tempus, a palavra tempo é a grandeza física que permite medir a duração ou a separação das coisas mutáveis/sujeitas a alterações (ou seja, o período decorrido entre o estado do sistema quando este apresentava um determinado estado e o momento em que esse dito estado regista uma variação perceptível para o observador).


Em física, tempo é a grandeza física diretamente associada ao correto sequenciamento, mediante ordem de ocorrência, dos eventos naturais, estabelecendo assim um passado, um presente e um futuro.


Na física clássica (que abordaremos nesta secção), o tempo transcorre sempre da mesma forma, esteja o móvel se movimentando ou parado em relação a um determinado referencial. Isso significa dizer que o tempo passa igualmente tanto para uma pessoa que se encontra na superfície da Terra, quanto para uma pessoa que se encontra viajando dentro de uma nave espacial. O que em grande rigor não é verdade.


Para a física moderna, o intervalo de tempo para um móvel que se move em altíssima velocidade (próxima à velocidade da luz no vácuo) passa mais lentamente. Podemos dizer que uma hora para uma pessoa que se encontra parada na superfície da Terra pode corresponder a alguns minutos ou segundos para um observador que se move em altíssima velocidade. Na física moderna, esse fato é conhecido como dilatação do tempo. Porém este não é o foco desta secção.


O tempo marcado pelo relógio não é universal, mas sim uma construção histórica. Medir o tempo significa em princípio registrar coincidências. Quando alguém marca um compromisso, digamos às {13:00} horas do presente dia, está informando que ela estará no local combinado quando o ponteiro pequeno do relógio colocado naquele local coincidir com a marca {1} e enquanto o ponteiro grande esteja na inscrição {12}.


Portanto, podemos entender o tempo como uma medida da simultaniedade de eventos.


A unidade usada para o tempo é o segundo s, apesar de poder usar outras unidades como minutos, horas, dia, semana, mês, anos, décadas, séculos ou milénios (de acordo com o contexto)


Podemos definir o segundo de diversas maneiras. Há um conjunto de frequências e comprimentos de onda especifico para radiação de cada átomo associados a cada transição energética sofrida pelos electrões no mesmo, quando este é aquecido. O que se sabe é que essas frequências seguem constantes.


O segundo (s) pode ser definido em termos de uma frequência para característica associada ao átomo de césio. Todos os átomos, depois que absorver energia, emitem luz com frequências e comprimentos de onda característica do elemento específico.


O Segundo é então definido como duração de {9192631770} períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.


1.3.2 Comprimento


Em 20 de Maio de 1875 um tratado internacional conhecido como Convention du Mètre (Convenção do Metro), foi assinado por 17 Estados e estabeleceu a criação do Bureau Internacional de Pesos e Medidas (Bureau International des Poids et mesures – BIPM), um laboratório permanente e centro mundial da metrologia científica e da Conferência Geral de Pesos e Medidas (Conférence Générale des Poids et mesures – CGPM), que em 1889, em sua 1ª edição, definiu o protótipos internacional de metro. Sua base era o metro definido como à décima milionésima parte do quadrante de um meridiano terrestre.

Mais tarde, por razões práticas, essa padrão foi abandonado e o metro veio a ser definido como a distância entre duas linhas finas gravadas perto das extremidades de uma barra de Platina-Vítrio (a barra do metro-padrão), mantida no Bureau internacional de pesos e medidas nas vizinhanças de Osaris.


Réplicas preciosas dessa barra foram enviadas ao laboratórios de padronização em várias partes do mundo. Com o tempo a precisão deste padrão também se mostrou inadequado e outros padrões foram criados para o metro.


Actualmente O metro é determinado usando a rapidez da luz no vácuo que é definida como exatamente 299792458 m/s. O metro, então, é a distância que a luz percorre no vácuo em {1/(299792 458)} segundos. Estas definições fazem com que unidades do tempo e comprimento sejam acessíveis aos laboratórios de todo mundo.


1.3.3 Massa


A massa ({m}) é uma grandeza escalar positiva e invariável, a qual mede a inércia (propriedade dos corpos em permanecerem em movimento acelerado ou retardado) dos corpos, ou seja, a quantidade de matéria presente num corpo.


A unidade da massa no S.I é o quilograma (kg), é definido como a massa de um litro de água a {4 \ ^oC} com volume de {1 \ } (que é igual ao volume de um cubo de {10 \ cm} de lado).


Assim como os padrões de tempo comprimento, o padrão de quilograma mudou ao longo do tempo. O quilograma é agora definido como a massa de um determinado cilindro chamado de corpo-padrão mantido no Bureau Internacional de Pesos e Medidas em Sévres na França.


Assim comparando pesos de diferentes objetos ou tamanho comum com o peso do corpo-padrão,as massas dois objetos podem ser comparadas entre si.


1.4 Prefixos de Unidade

Às vezes torna-se necessário trabalhar com medidas que são muitos menores ou muito maiores do que as unidades padrão do S.I. Nessas situações podemos usar outras unidades, são relacionadas as unidades padrão do S.I por um múltiplo de dez(10).


Os prefixos são usados para designar as diferentes potências de 10, por exemplo, prefixo “quilo” significa {1000} ou { 10^3 }, enquanto o prefixo “micro” significa {0,000001} ou { 10^{-6} }.


A tabela a seguir mostra o prefixo dos mais comuns múltiplos das unidades do S.I. Os prefixos podem ser aplicados a qualquer unidades S.I, por exemplo {0,001} segundo é um milissegundo ( {1 \ ms}), e {1000000 \ Watts} são {1 \ MW} (apesar de ainda não termos definido o Watt).


Alguns prefixos muito usados nas Unidades do S.I são mostrados a seguir:


Sendo assim:

\displaystyle 1,27\cdot 10^9 \ W= \ 1,27 \ GW

\displaystyle 2,35 \cdot 10^{-6} \ s= 2,35 \ \mu s


OBS : alguns grandezas, para dimensões diferentes utiliza outras unidades, tais como a hora para o tempo ({1 \ h} equivale á {3600 \ s}) e o Angstron para o comprimento ({1  \  \r{A}} equivale {10^{-10} \ m}).


1.5 Outros sistemas de unidades


Além do S.I, outros sistemas de unidades são as vezes utilizados. Um deles é o sistema CGS cujas unidades fundamentais são os centímetro para os comprimentos , o grama para massa e o segundo para o tempo.


Sistema CGS de unidades é um sistema de unidades de medidas físicas, ou sistema dimensional, de tipologia LMT (comprimento, massa tempo), cujas unidades-base são o centímetro para o comprimento, o grama para a massa e o segundo para o tempo. Foi adotado em 1881 no Congresso Internacional de Eletricidade.


CGS é, assim, um acrônimo maiúsculo para centímetro–grama–segundo. É o sistema de unidades físicas primordial que precedeu o Sistema Internacional de Unidades (SI), por este sendo substituído.


Outras unidades CGS incluem Dina (para força), Erg (para energia, trabalho, calor, etc.), Gal (para aceleração), Gauss (para campo magnético), Maxwell (para fluxo magnético), Öersted (para intensidade de campo), Phot (para intensidade luminosa), Poise (para viscosidade dinâmica em fluidos), Stilb (para luminância), Stokes (para viscosidade cinemática)e Dina por centímetro cúbico (para peso específico).


1.6 Conversão de Unidades


Como diferentes sistemas de unidades são utilizados, é importante saber como converter uma unidade para outra, em diversos contextos quando quantidades físicas são somadas, subtraídas, multiplicadas ou divididas em uma equação algébrica. A unidade pode ser tratada como qualquer outra quantidade algébrica.


Muitas vezes precisamos alterar as unidades nas quais uma grandeza física está expressa. Isto pode ser feito usando um método conhecido como conversão em cadeia. Nesse método multiplicarmos o valor original por um fator de conversão(uma razão entre unidades e igual à unidade). Assim como 1 min e 60 s correspondem a intervalos de tempo iguais, temos:

\displaystyle \frac{1 \ min}{60 \ s}=1 \Rightarrow \frac{60 \ s}{1 \ min}= 1


Assim, as razões {(1 \ min)/(60 \ s)} e {(60 \ s)/(1 \ min)} podem ser usadas como fatores de conversão. Nota que isso não é o mesmo que escrever {\frac{1}{60}=1} ou {60=1}; cada número e a sua unidade devem ser tratadas conjuntamente.

Exemplo 1 Converter {3 \ min} em segundos.

Neste exemplo, temos:

\displaystyle 3 \ min= \ (3 \ min)\cdot 1= \ 3min \cdot \frac{60 \ s}{1 \ min}= \ 180 \ s \displaystyle 3 \ min= \ 180 \ s

Exemplo 2 Converter {240 \ km} em milhas.

Neste exemplo, temos:

\displaystyle 240 \ km= \ (240 \ km)\cdot 1= \ 240 \ km \cdot \frac{1 \ milhas}{1,6091 \ km}= \ 149 \ milhas

Exemplo 3 Converter {90 \ km/h} em metros por segundo.
Neste exemplo, temos:

\displaystyle 90 \ km/h= \ (90 \ \frac{km}{h})\cdot 1 = \ 90 \ \frac{km}{h} \cdot \frac{1 \ h}{3600 \ s} \cdot \frac{1000 \ km}{1 \ km} \displaystyle = \ 25 \ m/s


Por vezes, podemos fazer a conversão de um modo mais rápido, substituindo cada unidade pela unidade de destino, com o respectivo factor de conversão.

Exemplo 4 Converter {90 \ km/h} para o SI.

Sabemos que a unidade de velocidade no SI é {m/s}, então, temos de converter {km} em {m} e {h} em {s}. Então temos:

\displaystyle 90 \ \frac{km}{h}= \frac{90 \cdot 1000 \ m}{3600 \ s}=25 m/s


Este método também é usado em conversões de unidades com prefixos (múltiplos e submúltiplos).

Exemplo 5 Converter {100 \ kJ/s} para o SI.

Sabemos que a unidade de velocidade no SI é {m/s}, então, temos de converter {kJ} em {J} (substituindo apenas o multiplo quilo) e {s} já está no S.I. Então temos:

\displaystyle 100 \ \frac{kJ}{s}= \ 100 \ \frac{ \cdot {10^{3}} \ J}{s} =100000 \ J/s = \ 100000 \ W


Ainda há a clássica regra de “3 simples”, conhecida pela maioria.

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)

 — 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —

 

Exercício 10 A massa de um átomo de Urânio é de {4,0\cdot10^{-26} \ kg}. Quantos átomos de urânio existem em {8 \ g} de Urânio puro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

É um problema cujo método de resolução é muito comum (3 simples).

Vamos começar por converter todas as grandezas para as mesmas unidades.

Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor({k = 10^3}):

\displaystyle 4,0\cdot10^{-26} \ kg = 4,0 \cdot 10^{-26}\cdot 10^{3} \ g = \ 4,0\cdot10^{-23} \ g

Em seguida, fazemos a relação de proporção.

Chamamos de {x} ao número de átomos que pretendemos calcular. Neste caso:

\displaystyle 1 \ atomo \longrightarrow 4,0\cdot10^{-23} \ g

\displaystyle x \longrightarrow 8,0 \ g

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 4,0 \cdot10^{-23} \ g = 1 \ atomos(u) \cdot 8,0 \ g

Isolando o x, obtemos:

\displaystyle x = \frac{1 \ atomo(u)\cdot 8,0 \ g}{4,0\cdot10^{-23} \ g}

Resolvendo, temos:

\displaystyle x = 2,0\cdot 10^{23} \ atomos

Em {8 \ g} de urânio puro, existem {2,0\cdot 10^{23}} átomos de Urânio.

 

 

Exercício 12 Determine a partir da representação dada, o vector {\vec{c} \ = 3 \ \vec{a} \ + 2 \ \vec{b}} .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

Podemos resolver este exercício utilizando a regra do paralelogramo.

Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles.

A resolução aqui é feita apenas graficamente.

Desta feita, aplicando a regra do paralelogramo, teremos:

  • Em primeiro lugar, vamos traçar os vectores {3 \ \vec{a} } e { 2 \ \vec{b}}. Para tal, vamos na extremidade de {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Na extremidade deste segundo {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Neste caso, teremos o vector {3 \ \vec{a} }. Para o caso do vector { 2 \ \vec{b}}, o procedimento é análogo. Vamos na extremidade de {\vec{b}}, traçar outro vector idênticos à {\vec{b}}.Neste caso, teremos o vector {2 \ \vec{b} }. Veja a figura a seguir.

  • Em seguida, na extremidade do vector {3\vec{a}} traçamos uma imagem do vector {2\vec{b}} e na extremidade do vector {2\vec{b}} traçamos uma imagem do vector {3\vec{a}}.Veja a figura a seguir.

  • Em seguida, traçamos o vector resultante que terá como origem o ponto onde ambas origem dos dois vectores ({3 \vec{a}} e {2 \vec{b}}) se encontravam, e terá como extremidade o ponto de intercessão das extremidades das imagens ({3 \vec{a'}} e {2 \vec{b'}}).

    Então, na figura anterior, obtemos o vector {\vec{c}}.

 

 

Exercício 13 Determine a distância entre os corpos A e B na figura:

Resolução 13

Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir.

Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano.

A Relação é:

\displaystyle d(A;B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Neste caso, {x_A=5; \ y_A=15; \ x_B= 25; \ y_B=5}.

Então, substituindo os valores na relação anterior, teremos:

\displaystyle d(A;B)=\sqrt{(25-5)^2+(5-15)^2}

Resolvendo, teremos:

\displaystyle d(A;B) = \sqrt{(20)^{2} \ + \ (-10)^{2}}

\displaystyle d(A;B) = \ 22,36 \ m

Logo, a distância entre os corpos A e B é igual a {22,36 \ m}.

 

 

Exercício 14

Sendo {\vec{v_{1}} \ = \ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ + \ 4 \vec{e_{z}}} e {\vec{v_{2}} \ = \ 5 \vec{e_{y}} \ - \ 2 \vec{e_{z}}} Determine o módulo de {\vec{v} \ = \ \vec{v_{1}} \ + \ \vec{v_{2}}}

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 14 Para determinarmos o módulo do vector {\vec{v}}, é necessário que se conheça ou que se determine o vector {\vec{v}}

Sendo este vector{(\vec{v})} a soma entre os vectores {\vec{v_{1}}} e {\vec{v_{2}}}, teremos:

\displaystyle \vec{v} \ = \vec{v_{1}} \ + \ \vec{v_{2}}

Substituindo as componentes, obtemos:

\displaystyle \vec{v} \ = (\ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ +?\ 4 \vec{e_{z}}) \ + \ (5 \vec{e_{y}} \ - \ 2 \vec{e_{z}})

Efectuando a operação, teremos:

\displaystyle \vec{v} \ = \ 3 \vec{e_{x}} \ + \ 7 \vec{e_{y}} + \ 2 \vec{e_{z}}

Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes.

Então, podemos determinar o módulo do vector {\vec{v}} a partir da seguinte relação:

\displaystyle |\vec{v}| \ = \ \sqrt{x^{2} \ + \ y^{2} \ + \ z^{2}}

Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector {\vec{v}} , teremos:

\displaystyle |\vec{v}| \ = \ \sqrt{(3)^{2} \ + \ (7)^{2} \ + (2)^{2}}

Resolvendo:

\displaystyle |\vec{v}| \ = \ 7,87

Logo, o vector {\vec{v}} tem o módulo igual a {7,87} unidades.

Note: No calculo do módulo de {\vec{v}} não usamos os vectores {e_{x}, \ e_{y}, \ e \ e_{z}}. Estes vectores são unitários. Só servem para indicar as direcções.

 

Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?

NÍVEL DE DIFICULDADE: Regular.

Resolução 15

Este exercício é um problema simples de Geometria Analítica.

Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações.

Consideramos que {x \ } é o módulo de um dos vectores e {\ y}O módulo de outro vector, então:

  • {x \ + \ y \ = \ 7} De acordo com a primeira condição dada no problema.

Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura.

Se { | \vec{v_{1}}|= \ x}, {|\vec{v_{2}} | = \ y} e o {|\vec{v}|=5}, então, pelo Teorema de Pitágoras, teremos :

{x^{2} \ + \ y^{2} \ = \ (5)^{2}}

Formando um sistema de equações com duas equações obtidas das condições, teremos:

\displaystyle \left\{\begin{array}{cccccc} x & + y & = & 7\\ x^{2} & + & y^{2} & = & 25\\ \end{array}\right.

Isolando {y} na equação 1 substituindo na equação 2, teremos:

\displaystyle \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & y^{2} & = & 25 \end{array}\right. \Rightarrow \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & (7 \ - \ x)^{2} & \ = \ & 25 \end{array}\right.

\displaystyle \Rightarrow x^{2} \ + \ (7 \ - \ x)^{2} \ = \ 25

Desfazendo a diferença de quadrado e efectuando as operações, teremos:

\displaystyle x^{2} \ - \ 7 \ x \ + \ 12 \ = \ 0

Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos:

\displaystyle x_{1,2} \ = \dfrac{-b \pm \ \sqrt{b^{2} \ - \ 4 \ a \ c}}{2 \ a}

,onde {a \ = \ 1} , {b \ = \ - \ 7} e {c \ = \ 12}.

Substituindo os valores e resolvendo, teremos como resultado {x_{1} \ = \ 3} e {x_{2} \ = \ 4}

Substituindo os valores de {x_{1}} e de {x_{2}} na primeira equação do sistema, e calculando os valores correspondentes de {y}, teremos as seguintes valores para {y } : {y_1 \ = \ 4 \ e \ y_2 \ = \ 3}

Logo, temos como solução : s = { \left\{\begin{array}{cccccc} (x = 4, &y = 3)\\ (x = 3, &y = 4) \end{array}\right. }

Ambas as as soluções são aceitáveis e permutadas entre si.

Desta feita, dois vectores são: {4 \ m \ e \ 3 \ m}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Generalidades do MHS (Parte 1)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 1 .

A equação de um MHS é dada por { x=0,5 \sin 10 \pi t (SI)}.

Determina o número de ciclos feitos em { 10 \ s } de oscilação.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

A equação de um MHS é geralmente dada na forma { x= A \cdot \sin (\omega \cdot t+\varphi_0 }. .

Comparando, termo a termo, com a equação dada no enunciado, temos que:

\displaystyle A=0,5 \ m

\displaystyle w=10 \ \pi \ rad/s

\displaystyle \varphi_0=0 \ rad

As unidades dos resultados estão no SI pois o enuanciado assim indica.

Para conseguir calcular o número de ciclos feitos em { 10 \ s} precisasse saber quantas oscilações são feitas em {1 \ s} (a frequência da oscilação).

Para o MHS, {\omega} é dado por:

\displaystyle \omega=2 \pi \cdot f

Logo:

\displaystyle \omega=2 \cdot \pi \cdot f

Substituindo o valor de {\omega} dos dados, obtemos:

\displaystyle 10 \pi = 2 \cdot \pi \cdot f

Isolando {f}:

\displaystyle f= \frac{10 \pi}{2 \pi}=5 \ Hz

Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por:

\displaystyle f= \frac{N}{t}

\displaystyle \Rightarrow N= f \cdot t

substituindo valores, obtemos:

\displaystyle N=5 \cdot 10

Em { 10 \ s} de oscilações são realizados 50 ciclos.

.

Exercício 2 Uma partícula realiza um MHS, cuja equação horária é { x=5 \cos (\dfrac{\pi}{4} t } SI.

  1. Determine o período do MHS.
  2. Esboce o gráfico da velocidade em função do tempo.

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.

  1. A equação horária de um MHS pode ser dada na forma { x=A \cos(\omega t+\varphi_0)}.Comparando, termo a termo, com a equação dada no enunciado ({x=5 \cos (\dfrac{\pi}{4} t }), obtemos:

    \displaystyle \omega=\frac{\pi}{4} \ rad/s

    Sabendo que { \omega=\frac{2\pi}{T} },logo:

    \displaystyle T=\frac{2\pi}{\omega}

    Substituindo os dados:

    \displaystyle t= \frac{2\pi}{\pi /4}

    \displaystyle T=8 \ s

  2. Para se esboçar o gráfico da velocidade em função do tempo precisamos construir uma tabela que relaciona as duas grandezas({v} e {t}).Para isso, precisamos escrever a equação da velocidade em função do tempo.
    Sabe-se que a velocidade é dada pela derivada da posição em função do tempo, temos:

    \displaystyle v=\frac{dx}{dt}

    \displaystyle \Rightarrow v=\frac{d}{dt} [5 \cos(\frac{\pi}{4}t)]

    \displaystyle \Rightarrow v= -5 \cdot \frac{\pi}{4} \sin ( \frac{\pi}{4}t)

    \displaystyle v= -1,25\pi \sin (\frac{\pi}t)

A tabela será construida atribuindo diversos valores a {t} e calculando os valores correspondentes de {v}. Escolhemos os valores de {t} de 0, 2, 4, 6, 8 e 10 s.

Lançando os valores num sistema de coordenadas cartesianos {(t;v)} e interpolando os pontos, obtemos um gráfico similar ao da figura abaixo:

Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de {v} em relação a {t} é .

Exercício 3 .

Uma partícula descreve um MHS segundo a equação {x=0,5 \cos( \pi / 3+2 \pi t) }, no SI.Obtenha.

  1. A correspondente equação da velocidade.
  2. O módulo da máxima velocidade atingida por essa partícula.

NÍVEL DE DIFICULDADE: Elementar

Resolução 3 .

Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.

  1. A equação da velocidade de uma partícula em MHS é dada pela derivada da equação da posição em função do tempo, ou seja:

    \displaystyle v(t)=\frac{d}{dt}x

    \displaystyle \Rightarrow v(t)=\frac{d}{dt}[0,5 \cos(\frac{\pi}{3} +2 \pi t)]

    Derivando, obtemos:

    \displaystyle v{t}=-0,5 \cdot 2 \pi \sin( \frac{\pi}{3} +2 \pi t)

    \displaystyle \Rightarrow v_{t}=-\pi \sin(\frac{\pi}{3} +2 \pi t)

  2. A velocidade num MHS é máxima quando { \sin( \varphi_0+ \omega)=1}. Logo:

    \displaystyle v_{max}=\pi \ m/s

Exercício 4 .

Considere o MHS dado no gráfico. Escreva sua equação.

NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

O Problema ilustra o gráfico de {x(t)} de um MHS. Para escrevermos a equação deste MHS, devemos determinar em primeiro lugar os seus parâmetros ({A}, {\omega} e {\varphi_0}). Estes parâmetros são determinados no gráfico.

A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de {t} (valor de equilíbrio é 0), então a amplitude é o maior valor de x a se registar na curva.

O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida.

A equação do movimento de um MHS é dada na forma { x = A \sin (\omega t + \varphi_0)}.

Com base na análise, é possível concluir que:

A amplitude { A=3 \ cm} ou { A=0,03 \ m} .

No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é {90^o=\pi / 2 \ Rad}. Neste caso, para obter a fase inicial, teremos:

\displaystyle \omega t + \varphi_0= \pi/2

\displaystyle \Rightarrow \omega \cdot 0 + \varphi_0= \pi/2

\displaystyle \Rightarrow \ \varphi_0= \pi/2

O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação.

Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que:

\displaystyle T/2= 4 s

\displaystyle \Rightarrow \ T= 4\cdot 2

\displaystyle \Rightarrow \ T= \ 8 \ s

Sabendo que { \Rightarrow=2 \pi /T}, logo:

\displaystyle \omega =2 \pi /8

\displaystyle \Rightarrow \omega = \frac{1}{4} \pi \ rad/s

Por fim, substituindo os dados na equação da oscilação ({ x = A \sin (\omega t + \varphi_0)}), obtemos:

\displaystyle x = 0,03 \sin (\frac{1}{4} \pi t + \dfrac{\pi }{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 5)

Exercício 20 Uma chita pode acelerar de {0} a {96 \ km} em {2 \ s}, enquanto um carro, em média atinge a mesma velocidade final em {4,5 \ s}. Calcular as acelerações média dos dois. NÍVEL DE DIFICULDADE: Elemntar.
Resolução 20 .

A conversão de {96 \ km} para {m/s}, é feita pela regra de 3 simples conforme os exercícios anteriores.

Para a Chita, temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 2 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{2}=13,4 \ m/s^2

Para o carro,temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 4,5 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{4,5} = 5,9 \ m/s^2

.

Exercício 21 Um móvel fazendo a trajectória rectilínea {A-B-C}, tem a velocidade dada no gráfico ao lado.

Determinar:

  1. A velocidade média deste movimento.
  2. A aceleração média do mesmo.

NÍVEL DE DIFICULDADE: Regular.

Resolução 21 .

Diante de um problema gráfico ({v\cdot t}), é válido lembrar que área de baixo da curva determina o espaço total percorrido pelo móvel. No gráfico {v\cdot t}, a inclinação da recta, determina à aceleração.

  1. Para determinar a velocidade média, precisamos conhecer o deslocamento total e o tempo total. O tempo pode ser obtido directamente no gráfico. Para o deslocamento, ele deve ser calculado. Podemos usar dois raciocínios: o calculo da área ou a determinação dos parâmetros cinemáticos deste movimento. Para efeitos de familiarização, dado que temos dois tempos de movimentos ( Um MRUV acelerado de A para B e um MRUV retardado de B para C), vamos usar os dois métodos. Vamos usar a determinação de parâmetros para o movimento de A para B e vamos usar o cálculo de área de B para C. Em qualquer dos casos, os dois métodos são válidos. Cabe a quem resolve escolher.
    1. Determinando a aceleração de {A\longrightarrow B} (Determinação dos parâmetros):

      \displaystyle \left.\begin{array}{cccccccc} t_o = 0 \ s, v_o = 20 \ m/s\\ t= 40 \ s, v = 60 \ m/s\\ \end{array}\right\} \Rightarrow a = \frac{\Delta v}{\Delta t} = \frac{60 - 20}{40 - 0} = 0,5 \ m/s^2

    2. Determinando do correspondente deslocamento {A\longrightarrow B}:

      \displaystyle s = s_o + v_o\cdot t + \frac{1}{2}a\cdot t^2

      \displaystyle s = (20)(40) + \frac{1}{2}(0,5)(40)^2

      \displaystyle s = 1200 \ m

    3. Determinando o espaço percorrido {B\longrightarrow C} (cálculo de área):

      \displaystyle s_{\Delta} = Area = \frac{20\cdot 40}{2} = 600 \ m

    4. Neste caso, o deslocamento total é:

      \displaystyle \Delta s = 1200 + 600 = 1800 \ m

    5. Logo, a velocidade média será:

      \displaystyle v_{med} = \frac{\Delta s}{\Delta t} = \frac{1800}{60} = 30 \ m/s

  2. Aceleração média.

    \displaystyle a_{med} = \frac{v_{final}-v_{0}}{\Delta t} = \frac{0-20}{60} \approx -0,33 \ m/s^2

Exercício 22 Uma pessoa caminha {100 \ m} em {12 \ s} numa certa direcção e depois caminha na direção oposta passando {50 \ m} durante {30 \ s}. Calcule (a) a velocidade média definida pelo caminho percorrido e (b) a velocidade média definida pelo deslocamento. NÍVEL DE DIFICULDADE: Regular.
Resolução 22 .

Para o problema em questão, devemos entender a diferença entre deslocamento e distância percorrida. O deslocamento é o vector que une a posição inicial à posição final de um móvel, sem se importar pelo trajecto do mesmo. O seu modulo equivale a distancia entre a origem e o destino do móvel. A distancia percorrida é o somatório escalar de todo o caminho percorrido pelo móvel, levando em conta a sua trajectoria e eventuais mudanças de direcção.

Na figura, observamos que o móvel sai da posição {x_1}, vai para a posição {x_2} e depois vai (em sentido oposto) para a posição {x_3}. Se tomarmos {x_1=0}, então {x_2=100 \ m} e {x_3=50 m} (recuando 50 m a partir de {x_2}).

Neste caso o deslocamento será {\Delta x= x_3 - x_1 = \ 50 - 0= \ 50m}.

A distancia percorrida será: {d= \ d_1+d_2= \ 100+50= \ 150 \ m}.

  • A velocidade média definida pelo caminho percorrido será:

    \displaystyle v_{med} = \dfrac{d}{\Delta t} = \dfrac{150}{30 + 12}

    \displaystyle v_{med} = 3,75 \ m/s

  • A velocidade média definida pelo deslocamento será:

    \displaystyle v_{med} = \dfrac{\Delta x}{\Delta t} = \dfrac{50}{30+12}

    \displaystyle v_{med} \approx 1,19 \ m/s

.. Note que é a duração de todo o movimento, e como o tempo não recua, então sempre {\Delta t = \ 30+12= \ 42 \ s}. Estes tempos refere-se a intervalos de tempo, por isso somamos. Se fossem instantes de tempo, deveríamos subtrair.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)

Exercício 13 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Dados .

{ v= \dfrac {5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \cdot t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \cdot t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \cdot t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s} é:

\displaystyle x= 5 + 2,5 \cdot 25= 67,5 \ m

\displaystyle x=67,5 \ m

Exercício 17 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 17 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \dfrac {\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \dfrac {\Delta s}{v}

Substituindo os dados na fórmula anterior, obtemos:

\displaystyle \Delta t = \dfrac {10,000 \ m}{1,5 \ m/s} = 6,66 \cdot 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \cdot 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h \rightarrow 3600 \ s \\ x \rightarrow 6,66 \cdot 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 3600 \ s= 1 \ h \cdot 6,66 \cdot 10^3 \ s

\displaystyle \Rightarrow x = \dfrac {1 \ h \cdot 6,66 \cdot 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante {t_1} está {x_1 = 3,0\cdot 10^{12} \ m}, em relação ao sol. Um ano depois, está em {x_2 = 2,1\cdot 10^{12} \ m}. Achar o seu deslocamento e a sua velocidade média.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 19 .

Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal.

\displaystyle Deslocamento

\displaystyle \Delta x = x_1 - x_2

\displaystyle \Delta x = 3,0\cdot 10^{12} - 2,1\cdot 10^{12}

\displaystyle \Delta x = 0,9\cdot 10^{12} \ m

\displaystyle \Delta x = 9,0\cdot 10^{8} \ km

\displaystyle Intervalo \ de \ tempo

\displaystyle \Delta t = 1 \ ano = 365 \ dia

\displaystyle \Delta t = 8760 \ h

A velocidade média será:

\displaystyle v_{med} = \frac{\Delta x}{\Delta t} = \frac{9,0\cdot 10^8 \ km}{8760 \ h}

\displaystyle v_{med} = 1,02\cdot 10^5 \ km/h

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  • Deixe a sua interacção nos comentários deste Post;
  • Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  • Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 3)

Exercício 8 Se uma grandeza fictícia {K} tem unidade {\dfrac{ab^2}{c}} num certo sistema de unidade: Se as correspondências no SI são:

{1 \ a = 95 \ x}

{1 \ b = 57 \ y}

{1 \ c = 0,5 \ z}

Qual é o valor de {K = 18 \dfrac{ab^2}{c}} no SI ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 8 .

O objectivo do exercício é converter a unidade de {K} para o SI.

Vamos converter para o SI, substituindo o valor de {a}, {b}, {c} na expressão de {K = 18\dfrac{ab^2}{c}}.

.

\displaystyle K = 18\dfrac{ 95x \cdot (57y)^2}{0,5z}

\displaystyle \Rightarrow K = \dfrac{18 \cdot 95 \cdot (57)^2}{0,5} \cdot \dfrac{x \cdot y^2}{z}

\displaystyle K = 11111580\dfrac{x \cdot y^2}{z}

Exercício 9 Duas forças {\vec{F_1}} e {\vec{F_2}} de {10 \ N} e {20 \ N} respectivamente actuam sobre um corpo.

Qual deverá ser o modulo e a direcção da 3ª força ({\vec{F_3}}) para que a resultante seja nula?.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Teremos que inicialmente que a resultante entre as forças {\vec{F_1}}, {\vec{F_2}} e {\vec{F_3}} deve ser nula. Quer dizer que as três forças fazem parte do mesmo sistema bidimensional. A nível de análise gráfica, poderíamos determinar a resultante (parcial) das forças {F_{1}} e {F_{2}}. Chamamos ela de {F_{1/2}}. A força três, neste caso, terá sentido contrário ao vector força {F_{1/2}}, para que equilibre este resultante.

Neste caso:

\displaystyle \vec{F_3} = -\vec{F_{2/1}} \ ; \ F_3 = F_{1/2}

Para calcular a força {F_{1/2}}, vamos aplicaras componentes:

\displaystyle F_{1/2x} = F_{1x} + F_{2x}= F_{1} + 0 = F_{1} = 10 N

\displaystyle F_{1/2y} = F_{1y} + F_{2y}= 0 + F_{2} = F_{2} = 20 N

Então:

\displaystyle \vec{F_{1/2}} = F_{1/2x} \vec{i} + F_{1/2y} \vec{j} = 10 \vec{i} + 20 \vec{j} [N]

Logo:

\displaystyle \vec{F_3} = -\vec{F_{2/1}}= - 10 \vec{i} - 20 \vec{j} [N]

Em modulo:

\displaystyle F_3 = \sqrt{(-10)^2 + (-20)^2} = \sqrt{500} [N]

\displaystyle F_3 = 22,36 \ N

A direcção é definida pelos ângulos:

\displaystyle \alpha_1 = \arctan \frac{F_{3y}}{F_{3x}}

\displaystyle \alpha_2 = 180^o + \arctan \frac{F_{3y}}{F_{3x}}

Calculando:

\displaystyle \alpha_1 = \arctan{(\frac{-20}{-10})}=63 ^o

\displaystyle \alpha_2 = 180^o + \arctan{(\frac{-20}{-10})}= 243^o

Como o vector pertence ao 3º quadrante (as componentes são ambas negativas), a direcção e sentido são definidas por:

\displaystyle \alpha_2 = 243^o

Exercício 10 Um móvel percorre um troço de {400 \ km} em {2 \ dias}. Qual é a velocidade média desta viagem ? NÍVEL DE DIFICULDADE: Elementar.
Resolução 10 .

Dados

{v_m = \ ?}

{\Delta s = 400 \ km}

{\Delta t = 2 \ dias}

O exercício trate de um movimento genérico. Quando queremos analisar o movimento como um todo, usamos a velocidade e aceleração média. Então, a análise do movimento assemelha-se a um M.R.U, onde que a velocidade média é:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t}

Antes de calcular a {v_m}, vamos converter os {2 \ dias} para {h}, para usarmos unidades habituais em movimentos desta natureza. Vamos utilizar o sistema de “3 simples”:

\displaystyle 1 \ dia \longrightarrow 24 \ h

\displaystyle 2 \ dias \longrightarrow t

Multiplicado de forma cruzada, obtemos:

\displaystyle t \cdot 1 \ dia = 2 \ dias \cdot 24 \ h

\displaystyle t = 48 \ h

Agora podemos calcular a {v_m}:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t} = \dfrac{400 \ km}{48 \ h}

\displaystyle v_m = 8,33 \ km/h

Também poderíamos apresentar o valor da {v_m} em {m/s}, basta para isso dividir o valor em {km/h} por 3,6 e teremos em {m/s}.

\displaystyle v_m = \dfrac{8,33}{3,6} \ m/s

\displaystyle v_m = 2, 31 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 2)

Exercício 5 Converter para o SI s seguintes unidades:

  1. { 10 \ km/s }.
  2. { 20 \ polegadas }.
  3. { 25 \ km/h^2 }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 5 .

Para converter-mos no SI, vamos utilizar o sistema de “3 simples”.

  1. –    { \dfrac { 10 \ km}{s}\rightarrow \dfrac {m}{s} }Neste Caso, temos de converter apenas o numerador, de {km} para {m}.

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 10 \ km \longrightarrow x

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 10 \ km

    \displaystyle x = 10000 \ m

    Quer dizer que {10 \ km = 10000 \ m} logo, {10 \ km/s } no Sistema Internacional equivale a {10000 \ m/s }.

    .

  2. –      { 20 \ polegadas \rightarrow m }Sabemos que: { 1 \ polegada \approx 0,025 \ m } Então, usando o sistema de “3 simples”

    \displaystyle 1 \ polegada \longrightarrow 0,025 \ m

    \displaystyle 20 \ polegadas \longrightarrow x

    fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ polegada = 0,025 \ mc \cdot 20 \ polegadas

    \displaystyle x = 0,5 \ m

    Quer dizer que {20 \ polegadas} no Sistema Internacional equivale a {0,5 \ m }.

    .

  3. –    { \dfrac {25 \ km}{h^2} \rightarrow \dfrac {m}{s^2}}.Vamos começar por converter {km} em {m} e depois {h} em {s}, então: {2}

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 25 \ km \longrightarrow x

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 25 \ km

    \displaystyle x = 25000 \ m

    \displaystyle 1 \ h \longrightarrow 60 \ min

    \displaystyle 1 \ min \longrightarrow 60 \ s

    \displaystyle 1 \ h = 60 \times 60 \ s = 3600 \ s

    \displaystyle (1 \ h)^2 = (3600 \ s)^2 = 12960000 \ s^2

    \displaystyle 1 \ h^2 = 12960000 \ s^2

    Vamos substituir as equações {25 \ km = 25000 \ m} e {1 \ h^2 = 12960000 \ s^2} na expressão inicial:

    \displaystyle 25 \ km/h^2 =\dfrac {25 \ km}{h^2} = \dfrac {25000 \ m}{ 12960000 \ s^2}

    \displaystyle = \dfrac{25000 \ m}{12960000 \ s^2} =0,0019 \ m/s^2

    Quer dizer que, no SI { \dfrac {25 \ km}{h^2} = 0,0019 \ m/s^2}.

Exercício 6 Numa partícula actuam 3 forças conforme indica a figura abaixo:

Determine a força resultante sabendo que {F_1 = 3 \ N, F_2 = 5 \ N, F_3 = 8 \ N  \ e  \  \alpha = 10^o}

NÍVEL DE DIFICULDADE: Regular.

Resolução 6 .

Para sabermos a força resultante, devemos encontrar as componentes das forças aplicadas nos eixos Ox e Oy. Como as Forças primeiramente devemos traçar as correspondestes das {F_1} e {F_3} são paralelas aos eixos Ox e Oy, respectivamente, elas só têm uma componente não nula, que corresponde ao eixo a que são paralelas. A componente no outro eixo é nula. Para da força {F_2}, devemos projecta-la nos eixos e calcular as componentes para cada eixo (Ox e Oy).

Calculamos as componentes usando as razões trigonométricas:

\displaystyle F_{2x} = F_2 \sin \alpha \ ; \ F_{2y} = F_2 \cos \alpha

\displaystyle F_{2x} = 0,86 \ N \ ; \ F_{2y} = 4,92 \ N

Vamos agora Fazemos então a soma vectorial das componentes Ox e Oy:

\displaystyle \vec{F_{Rx}} = \vec{F_1} + \vec{F_{2x}} \ ; \ F_{Rx} = F_1 - F_{2x} = 3 - 0,86 = 2,14 \ N

\displaystyle \vec{F_{Ry}} = \vec{F_{2y}} - \vec{F_3} \ ; \ F_{Ry} = F_{2y} - F_3 = 4,92 - 8 = -3,08 \ N

O módulo força resultante é dada pelo teorema de Pitágoras:

\displaystyle F_R = \sqrt{F_{Rx}^2 + F_{Ry}^2}

\displaystyle F_R = \sqrt{(2,14)^2 + (-3,08)^2} = \sqrt{14,066}

\displaystyle F_R = 3,75 \ N \approx 4 \ N

Exercício 7 Se as componentes da velocidade de um móvel são {v_x = 10 \ m/s}, {v_y = 5 \ m/s} e {v_z = 2v_x + 3v_y}.

Determine: o modulo deste vector velocidade.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 7 .

Dados

{v_x = 10 \ m/s}

{v_y = 5 \ m/s}

{v_z = 2v_x + 3v_y}

{v_z\rightarrow \ ? }

{|v| \rightarrow \ ? }

Para determinar o modulo do valor velocidade, primeiramente devemos determinar o valor da coordenada da velocidade em z ({v_z}), substituindo o valor das velocidades de {v_x} e {v_y} em {v_z}.

\displaystyle v_z = 2v_x + 3v_y \Rightarrow v_z = 2 \cdot 10 + 3 \cdot 5

\displaystyle v_z = 35 \ m/s

Neste caso, a velocidade será obtida de modo seguinte:

\displaystyle |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{10^2 + 5^2 + 35^2}

\displaystyle |\vec{v}| = \sqrt{100 + 25 + 1225} = \sqrt{1350}

\displaystyle |\vec{v}| = 36,74 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 3)

Exercício 12 .

O gráfico da velocidade em função do tempo de um MRUV é dado abaixo. Determine o deslocamento no intervalo de 0 a 4 Segundos.

NÍVEL DE DIFICULDADE: Regular.

Resolução 12 .

Para este caso, podemos determinar o deslocamento através de dois métodos.

  1. Usando a equação de Torricelli, através dos dados no gráfico acima:

    \displaystyle 2a \cdot \Delta s= v^2-v^2_0 \Rightarrow \Delta s =\frac{v^2-v^2_0}{2a} \ \ \ \ \ (10)

    Do gráfico temos os seguintes dados:{ v_0= 20 \ m/s } e {v= 40 \ m/s }.No MRUV a aceleração média é igual a aceleração instantânea. Então, a aceleração é dada por:{ a=\frac{\Delta v}{\Delta t}=\frac{v-v_0}{t-t_0} }

    No intervalo de {0} `a { 4 \ s } : { a= \frac{40-20}{4-2} \cdot \frac{m/s}{s}=\frac{20}{4} \cdot m/s^2 }

    \displaystyle a=5 \ m/s^2

    Substituindo os dados na equação 10, obtemos:

    \displaystyle \Delta s=\frac{v^2-v^2_0}{2a}=\frac{(40)^2 - (20)^2}{2 \cdot 5}=120 \ m \Rightarrow \Delta s = 120 \ m

  2. O outro método é usando o calculo de área. Sabemos que a área debaixo da curva da velocidade em função do tempo é numericamente igual ao deslocamento (ver definição velocidade e interpretação geométrica da derivada). Para o nosso caso, a área debaixo da curva é a área de um trapézio, cujas bases maior e menor tem valores no eixo da velocidade (vertical) e a altura tem valor no eixo do tempo. Sendo assim:

    \displaystyle \Delta s = A_{Trapezio} = \frac{(B+b)}{2} \cdot h = \frac{(40+20)}{2} \cdot 4=120 m

    Logo, temos:{ \Delta s = 120 \ m }

Exercício 13 .

Um movimento descrito pelo gráfico abaixo.

Descreva o tipo de movimento dos traços AB, BC, CD e DE.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Este gráfico apresenta a variação da velocidade em função do tempo. Neste gráfico, o tipo de movimento é definido pela forma da linha do gráfico.

Se a linha do gráfico for uma recta oblíqua, então trata-se de um caso de MRUV. Será um MRUV acelerado se for inclinada com declive positivo e velocidade positiva ou com declive negativo e velocidade negativa. Será um MRUV retardado se for inclinada com declive positivo e velocidade negativa ou com declive negativo e velocidade positiva.

Se a linha for horizontal, a velocidade é constante (MRU). Este MRU pode ser progressivo (se a velocidade for positiva) ou retrógrado (se a velocidade for negativa).

  1. No traço AB (recta oblíqua): A velocidade é positiva e aumenta de { 10 \ m/s} à { 30 \ m/s } . Neste caso, a aceleração é constante e positiva neste mesmo intervalo, portanto, de A para B o movimento é um MRUV acelerado progressivo.
  2. No traço BC (Recta oblíqua): A velocidade é positiva e diminui de { 30 \ m/s} à { 0 }, a aceleração é negativa e constante no mesmo intervalo,portanto, de B para C o movimento é um MRUV retardado progressivo.
  3. No traço CD: A velocidade é negativa mas aumenta em módulo de { 0 } à { \approx -15 \ m/s} e a aceleração é constante e negativa no mesmo intervalo, portanto, de C para D o movimento é um MRUV acelerado retrógrado.
  4. No traço DE: A velocidade é negativa e constante ({\approx -15 \ m/s } , e a aceleração é nula no mesmo intervalo,portanto, o movimento é um MRU retrógrado.

.

Exercício 14 .

Dois móveis têm as seguintes equações do movimento.

  1. Móvel 1: { x_1=100+20 \ t }
  2. Móvel 2: { x_2=500-4 \ t^2 }

Determine a velocidade do móvel (2) no ponto de encontro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .

A equação do móvel(1) é uma equação do 1º grau, portanto o móvel em MRU. A equação do móvel (2) é uma equação do 2º grau, portanto o móvel (2) move-se em MRUV.

.

O objectivo é determinar a velocidade final do móvel (2) { v_2 } na posição de encontro (A).Entretanto, na posição de encontro (A) ambos os móveis ocupam a mesma posição final, isto é, { x_1=x_2 }.

Então, temos de determinar o instante de tempo em que os móveis estão na posição de encontro, para substituir este tempo na equação da velocidade.

Na posição de encontro:

\displaystyle x_1=x_2 \Rightarrow 100+20 \ t=500-4 \ t^2

Agrupando os termos semelhantes:

\displaystyle 4 \ t^2 +20 \ t +100-500=0

\displaystyle 4 \ t^2 +20 \ t -400=0

Factorizando o factor 4 na equação:

\displaystyle 4(t^2 + 5 \ t-100)=0

Então, pela lei do anulamento do produto:

\displaystyle t^2 + 5 \ t - 100= 4

Resolvendo a equação anterior com a fórmula de Bhaskara (ou fórmula resolvente) temos os seguintes dados:{ a=1 ; b=5 ; c=100 }.

\displaystyle t_{1,2}= \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}

Substituindo os dados na fórmula:

\displaystyle t_{1,2}= \frac{-5 \pm \sqrt{(5)^2 - 4 \cdot (1) \cdot (-100)}}{2 \cdot 1}

\displaystyle t_{1,2}= \frac{-5 \pm \sqrt{25 + 400}}{2}= \frac{-5 \pm \sqrt{425}}{2} = \frac{-5 \pm 20,615}{2}

Separando as partes:

\displaystyle t_1= \frac{-5+20,615}{2}= 7,807 \ s

\displaystyle t_2= \frac{-5 - 20,615}{2} = -12,807 \ s

Descartamos o { t_2 } pois ele é negativo. Neste caso, { t_{Enc}= \ 7,807 \ s }.

.

Tendo o tempo, podemos calcular a velocidade do móvel 2 neste instante. Por definição a velocidade:

\displaystyle v= \frac{dx}{dt}

Para o móvel (2),temos: { v_2= \frac{dx_2}{dt} } .

.

Substituindo a equação do movimento do móvel (2) , obtemos:

\displaystyle v_2= \frac{d(500-4 \ t^2)}{dt} = 0-8 \cdot t= -8 \ t

Portanto, durante este MRUV, a velocidade do móvel (2) é dada como: { v_2= -8 \ t } .

Para encontramos o valor numérico da velocidade no momento de encontro, devemos substituir o tempo pelo instante de encontro.

Substituindo {t} por { t_{Enc}}, obtemos: { v_2=-8 \ (t)= -8 \cdot 7,807=-62,456 \ m/s }

Portanto, a velocidade do móvel (2) na posição de encontro (A) é de : { v_2= -62,456 \ m/s }

Exercício 15 .

A velocidade inicial de um móvel é de { 10 \ km/h}. Após acelerado uniformemente, durante {10 \ s }, ganha uma velocidade de { 20 \ km /h}.

Determine a aceleração e a distância percorrida.

.

NÍVEL DE DIFICULDADE: Regular.

Resolução 15 .

Dados

,

{ v_0= 10 \ km/h } .

{ t_0=0 \ s } .

{ t=20 \ km/h } .

{ a \rightarrow ? } .

{ \Delta s \rightarrow ? }

Antes de a resolver, vamos converter as velocidades { v_0 } e v para as unidades do sistema internacional usando três simples.
Para: { v_0=10 \ km/h }

\displaystyle 36 \ km/h \rightarrow 10 \ m/s

\displaystyle 10 \ km/h \rightarrow v_0

Então:

\displaystyle v_0 \cdot 36 \ km/h= 10 \ km/h \cdot 10 \ m/s

\displaystyle \Rightarrow v_0= \frac{10 \ km/h \cdot 10 \ m/s}{36 \ km/h} =2,77 \ m/s

Para a velocidade final, fazemos o mesmo procedimento. Obtemos:

\displaystyle v=5,55 \ m/s

Com as unidades já convertidas, podemos determinar a aceleração.

Para o MRUV, a aceleração é dada por:

\displaystyle a= \frac{\Delta v}{\Delta t} = \frac{v-v_0}{t-t_0}

Substituindo os dados, obtemos:

\displaystyle a= \frac{5,55-2,77}{10-0}=0,278 \ m/s^2

A distância percorrida pode ser determinada pela equação de movimento do MRUV ou pela equação de Torricelli.

Usando a Equação de Torricelli:

\displaystyle v^2=v^2_0+2a \cdot \Delta s

Isolando { \Delta s } teremos:

\displaystyle v^2-v^2_0=2 \cdot a \cdot \Delta s \Rightarrow \Delta s= \frac{v^2-v^2_0}{2 \cdot a}

Substituindo os dados:

\displaystyle \Delta s=\frac{(5,55)^2-(2,77)^2}{2 \cdot 0,278}=41,6 \ m

Portanto a distância percorrida é:

\displaystyle \Delta s=41,6 \ m

A aceleração do móvel é:

\displaystyle a=0,278 \ m/s^2

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 2)

Exercício 8 .

O gráfico ilustra um MRU. Determine a velocidade média deste movimento?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8 .

Para o caso de MRU a velocidade média é dada, por definição como sendo:

\displaystyle v_m = \frac{\Delta x}{\Delta t} = \frac{x-x_0}{t-t_0} \ \ \ \ \ (6)

Do gráfico temos os seguintes dados:

\displaystyle \left\{\begin{array}{ccccccccc} t_0 = 0 \ s : x_0 = 10 \ m \\ t = 5 \ s : x = 40 \ m \\ \end{array}\right.

Substituindo estes valores em (1):

\displaystyle v_m =\frac{40 \ m-10 \ m}{5 \ s- 0 \ s}=\frac{30}{5}\times\frac{m}{s}

\displaystyle v_m= 6 \ m/s

Exercício 9 .

A equação de um MRU é:

\displaystyle x=10+20 \ t \ (SI)

Determine o deslocamento no intervalo de { 4 \ s \leq t \leq 7 \ s }

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Nos casos de MRU sem mudança de direcção, o deslocamento, em módulo é igual a distância percorrida no intervalo {\Delta t } definido.
Para determinarmos o deslocamento, precisamos da posição inicial e final.

No intervalo

\displaystyle 4 \ s \leq t \leq 7 \

A posição inicial é obtida da seguinte forma:

\displaystyle t= 4 \ s \Rightarrow x_0= 10+20 \times t_0=10+20 \times 40

Obtemos:

\displaystyle x_0=90 \ m

A posição final é obtida da seguinte forma:

\displaystyle t= 7 \ s \Rightarrow x=10+20 \times t=10+20 \times 7

\displaystyle x=150 \ m

O deslocamento é :

\displaystyle \vert \overrightarrow{\Delta s} \vert= \Delta x=x - x_0 =150 \ m -90 \ m

\displaystyle \Delta x = 60 \ m

Exercício 10 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .
NÍVEL DE DIFICULDADE: Elementar.

Resolução 10 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \frac{\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \frac{\Delta s}{v}

Substituindo os dados na formula anterior, obtemos:

\displaystyle \Delta t = \frac{10,000 \ m}{1,5 \ m/s} = 6,66 \times 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \times 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h\rightarrow \rightarrow 3600 \ s \\ x \rightarrow \rightarrow 6,66 \times 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \times 3600 \ s= 1 \ h \times6,66 \times 10^3 \ s

\displaystyle \Rightarrow x = \frac{1 \ h \times 6,66 \times 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 11 .

A equação horária de um móvel é { x = 100+50 \times t } . Qual séria a sua equação horária se a posição fosse dada em Km e o tempo em h?..

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Dados

{ x = 100+50 \times t } .

A equação horária, na forma escalar é dada como:

\displaystyle x= x_0+ v \times t \ \ \ \ \ (8)

A equação horária do móvel é:

\displaystyle x= 100+50 \times t \ \ \ \ \ (9)

Ao comparar-mos ambas equações, obtemos os seguintes dados:

\displaystyle \begin{array}{ccccccccc} x_0=100 \ m \\ v=50 \ m/s \\ \end{array}

Para escrever-mos a equação horária,com a posição dada em Km e o tempo dado em h, devemos transformar { x_0 = 100 \ m} e {v =50 \ m/s } nas unidades respectivas, usando o sistema (regra) de três simples.

Então temos:

\displaystyle \begin{array}{ccccccccc} 1 \ km \rightarrow  1000 \ m \\ x_0 \rightarrow  100 \ m \\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x_0 \times 1000 \ m =1 \ km \times 100 \ m

\displaystyle \Rightarrow x_0=\frac{1 \ km \times 100 \ m}{1000 \ m} x_0=0.1 \ km

E:

\displaystyle 36\ km/h \rightarrow 10 \ m/s

\displaystyle v \rightarrow 50 \ m/s

Logo:{x_0=0,1 \ km } e { v=180 \ km/h }.

Então:

Substituindo estes valores em na equação horária do MRU, obtemos:{ x=0.1+180 \times t }.

Portanto, para a posição dada em km e tempo em h, temos a equação horária:

\displaystyle x=0.1+180 \times t

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais

— 1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —

Exercício 5 .

Considere o sistema representado abaixo.Considerando a origem do referencial sua base direita do prédio, o Eixo ox horizontal dirigido a esquerda e o Eixo oy vertical e dirigido para cima.

Determine a posição dos pontos A, B e C.

NÍVEL DE DIFICULDADE: Elementar

Resolução 5 .

O referencial(bidimensional) do sistema é necessário ser traçado para a determinação da posição dos pontos A, B e C. Logo temos as seguintes características do referencial:

* Eixo Ox: eixo horizontal dirigido da direita para a esquerda;

* Eixo Oy: eixo vertical dirigido para cima;

* Origem do referencial: base direita do prédio.\

.

Aposição do ponto A tem coordenada { 50 \ m} na horizontal e { 100 \ m } na vertical, então :

\displaystyle B(50,100)\ m

onde

\displaystyle x_A=50 \ m

\displaystyle y_A=100 \ m

A posição do ponto B tem coordenada { -40 \ m } na horizontal e 0 na vertical, então:

\displaystyle B(-40,0) \ m

Onde:

\displaystyle x_B=-40 \ m

\displaystyle y_B=0

A posição do ponto C tem coordenada {-35 \ m } na horizontal e { 20 \ m} na vertical então:

\displaystyle C(-35,20) \ m

\displaystyle x_C= -35 \ m

\displaystyle x_C= 20 \ m

Exercício 6 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Dados .

{ v= \frac{5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \times t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \times t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \times t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s}:

\displaystyle x= 5 + 2,5 \times 25= 67,5 \ m

\displaystyle x=67,5 \ m

Resolução 7 .

Calcule a velocidade média do móvel da figura abaixo, se { t_1=10 \ s } e é { t_2= 20 \ s }, no movimento { A\rightarrow B \rightarrow C }.

.

Resolution 7 . Dados

{ t_1=t_{A\rightarrow B} = 10 \ s } .

{ t_2=t_{B\rightarrow C} = 20 \ s }. Por definição a velocidade média de um móvel é dada por:

\displaystyle \overrightarrow{v_m}=\frac{\overrightarrow{\Delta s}}{\Delta t}

.

{ \overrightarrow{\Delta s} } – Vector deslocamento.

{ \Delta t } – Intervalo de tempo total durante o movimento.

Em módulos:

\displaystyle v_m=\frac{\Delta s}{\Delta t}

.

Portanto, para determinar a velocidade média precisamos determinar o deslocamento { A\rightarrow B \rightarrow C } e o tempo total para o móvel sair de A para C.

Note que o vector deslocamento é o vector que une a posição inicial à posição final, ou seja, no nosso caso {\overrightarrow{\Delta s}=\overrightarrow{AC}}

Então temos:

\displaystyle \Delta s= \sqrt{(x_C-x_A)^2+(y_C-y_A)^2} \ \ \ \ \ (4)

A equação 4 é a fórmula para o cálculo de distancia em um sistema bidimensional.Considerando o ponto de partida A e o de chegada C, :

A(10,20) e B(20) considerando a abcissa y e a ordenada x.

Portanto, temos:

\displaystyle (x_C - x_A)= (40-10)=30 \\ (y_C - y_A)= (30-20)=10 \ \ \ \ \ (5)

.

Substituindo 7 em 4, obtemos:

\displaystyle \Delta s_{A-C}= \sqrt{(30)^2+(10)^2}=31,6 \ m

O tempo { \Delta t } do movimento de { A \rightarrow B \rightarrow C } é a soma dos tempos de { A \rightarrow B } e de { B \rightarrow C }.

Dos dados temos temos

\displaystyle t_{A-B} = 10 \ s e t_{B-C}= 20 \ s

Então

\displaystyle \Delta t = t_{A-B} + t_{B-C} =10+20=30 \ s \Delta t = 30 \ s

Sendo assim:

\displaystyle v_m = \frac{\Delta s}{\Delta t} = \frac{31,6 \ m}{30 \ s} = 1,05 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers like this: