Início » 04 Ensino Superior » 02 Física » 02 Física Geral I
Category Archives: 02 Física Geral I
1. Introdução à Mecânica (Parte 1)
1. Introdução à Mecânica
1.1. Introdução Geral à Física
A Ciência e a Engenharia se baseiam em medições e comparações.
Assim, precisamos de regras para estabelecer de que forma as grandezas devem ser medidas e comparadas, e de experimentos para estabelecer as unidades para essas medições e comparações.
Um dos propósitos da física é elaborar, postar e relacionar modelos em um esforço para descrever, explicar ir para ver a realidade. Esse processo envolve hipóteses, experimentos reprodutíveis e as observações e novas hipóteses.
O resultado final é um conjunto de princípios fundamentais e leis que descrevem os fenómenos do mundo que nos cerca. Estas leis e princípios são aplicáveis tanto ao mundo macroscópico como buracos negros, matéria e energia escura, gravidade, etc como para o mundo microscópico partículas quânticas como leptoquarks e bósões. Quanto ao nosso dia-dia, são incontáveis as questões sobre o nosso mundo que podem ser respondidas com conhecimento básico de física.
Se a agua não tem cor, porque razão a uma distância do mar, a água parece azul?
Como é que os astronautas no espaço flutuam?
Como funciona um CD?
1.2. Medindo grandezas
Ao estudarmos conteúdos relacionados com a Física, muitas vezes, deparamo-nos com a palavra grandeza definindo termos científicos, como velocidade, aceleração, força, tempo etc.
Numa linguagem muito elementar, uma grandeza é tudo aquilo que pode ser medido e possibilita que tenhamos características baseadas em informações numéricas e/ou geométricas. A grandeza é toda a característica de um sistema ou corpo a que possamos associa uma quantidade. Medir uma grandeza física é compara-lá com uma outra da mesma espécie na natureza.
Medimos cada grandeza física em medidas apropriadas, por comparação com padrão. A unidade é um nome particular que atribuímos as medidas dessa grandeza.
Assim por exemplo, o metro (m) é uma unidade da grandeza comprimento. O padrão corresponde a exatamente 1,0 unidade da grandeza, como vamos ver o padrão de comprimento que corresponde exatamente 1,0 m é a distância percorrida pela Luz no vácuo durante uma certa fração de tempo .
Em princípio podemos definir uma unidade e o seu padrão da forma que quisermos, mas é importante que cientistas em diferentes partes do mundo concordem que nossas definições e que, ao mesmo tempo sejam razoáveis e práticas.
Depois de escolher um padrão (neste caso comprimento) precisamos estabelecer procedimentos através dos quais qualquer comprimento seja o raio do átomo de hidrogénio,
largura de uma aresta de um cubo ou
a distância entre duas estrelas, possa ser expresso em termos da unidade.
Usar uma régua de comprimento aproximadamente igual ao padrão pode ser uma forma de executar medidas de comprimento. Entretanto, muitas das comparações são necessariamente indiretas. Por exemplo, não dá para medir a distâncias entre planetas directamente.
É portanto, impossível usar uma régua, por exemplo, para medir o raio de um átomo ou a distância de uma estrela. Assim o que fazemos é escolher, através de um acordo internacional, um pequeno número de grandezas físicas como comprimento e tempo, e atribuir unidades a elas.
Em seguida, definimos as demais grandezas físicas em termos dessas grandezas fundamentais e de suas unidades (conhecidas, como unidades fundamentais). A velocidade, por exemplo é definida em termos das grandezas fundamentais comprimento e tempo e suas unidades fundamentais.
Portanto as unidades fundamentais de um sistema de unidades dado são as unidades de grandezas físicas de diferentes espécies, escolhidas arbitrariamente para constituição desse sistema. As grandezas físicas que correspondem às mesmas unidades têm o nome de grandezas fundamentais do sistema considerado.
Unidades derivadas são as unidades que se estabelecem sendo deduzidas a partir das outras unidades de um sistema dado, desde que se observem as leis e os princípios físicos a exprimirem as relações mútuas existentes entre as respetivas grandezas físicas.
1.3. O sistema Internacional de Unidade
Na 14ª conferência geral de pesos e medidas, foram selecionadas sete grandezas como fundamentais, as quais constituem a base do sistema internacional de unidade cuja abreviação é S.I. popularmente conhecido como sistema métrico.
A tabela a seguir mostra as unidades das grandezas fundamentais do S.I. que serão usadas nos principais capítulos desta página. Essas unidades foram definidos modo a serem da mesma ordem de grandeza que a escala humana.

Muitas unidades derivadas do SI são definidas em termos dessas unidades fundamentais. Assim, por exemplo, a unidade de trabalho no SI, chama Joule (J) é definido em termos das unidades fundamentais de massa, comprimento e tempo.
Além destas, há duas unidades complementares: o radiano e o esterradiano.

1.3.1 Tempo
Do latim tempus, a palavra tempo é a grandeza física que permite medir a duração ou a separação das coisas mutáveis/sujeitas a alterações (ou seja, o período decorrido entre o estado do sistema quando este apresentava um determinado estado e o momento em que esse dito estado regista uma variação perceptível para o observador).
Em física, tempo é a grandeza física diretamente associada ao correto sequenciamento, mediante ordem de ocorrência, dos eventos naturais, estabelecendo assim um passado, um presente e um futuro.
Na física clássica (que abordaremos nesta secção), o tempo transcorre sempre da mesma forma, esteja o móvel se movimentando ou parado em relação a um determinado referencial. Isso significa dizer que o tempo passa igualmente tanto para uma pessoa que se encontra na superfície da Terra, quanto para uma pessoa que se encontra viajando dentro de uma nave espacial. O que em grande rigor não é verdade.
Para a física moderna, o intervalo de tempo para um móvel que se move em altíssima velocidade (próxima à velocidade da luz no vácuo) passa mais lentamente. Podemos dizer que uma hora para uma pessoa que se encontra parada na superfície da Terra pode corresponder a alguns minutos ou segundos para um observador que se move em altíssima velocidade. Na física moderna, esse fato é conhecido como dilatação do tempo. Porém este não é o foco desta secção.
O tempo marcado pelo relógio não é universal, mas sim uma construção histórica. Medir o tempo significa em princípio registrar coincidências. Quando alguém marca um compromisso, digamos às horas do presente dia, está informando que ela estará no local combinado quando o ponteiro pequeno do relógio colocado naquele local coincidir com a marca
e enquanto o ponteiro grande esteja na inscrição
.
Portanto, podemos entender o tempo como uma medida da simultaniedade de eventos.
A unidade usada para o tempo é o segundo s, apesar de poder usar outras unidades como minutos, horas, dia, semana, mês, anos, décadas, séculos ou milénios (de acordo com o contexto)
Podemos definir o segundo de diversas maneiras. Há um conjunto de frequências e comprimentos de onda especifico para radiação de cada átomo associados a cada transição energética sofrida pelos electrões no mesmo, quando este é aquecido. O que se sabe é que essas frequências seguem constantes.
O segundo (s) pode ser definido em termos de uma frequência para característica associada ao átomo de césio. Todos os átomos, depois que absorver energia, emitem luz com frequências e comprimentos de onda característica do elemento específico.
O Segundo é então definido como duração de períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.
1.3.2 Comprimento
Em 20 de Maio de 1875 um tratado internacional conhecido como Convention du Mètre (Convenção do Metro), foi assinado por 17 Estados e estabeleceu a criação do Bureau Internacional de Pesos e Medidas (Bureau International des Poids et mesures – BIPM), um laboratório permanente e centro mundial da metrologia científica e da Conferência Geral de Pesos e Medidas (Conférence Générale des Poids et mesures – CGPM), que em 1889, em sua 1ª edição, definiu o protótipos internacional de metro. Sua base era o metro definido como à décima milionésima parte do quadrante de um meridiano terrestre.
Mais tarde, por razões práticas, essa padrão foi abandonado e o metro veio a ser definido como a distância entre duas linhas finas gravadas perto das extremidades de uma barra de Platina-Vítrio (a barra do metro-padrão), mantida no Bureau internacional de pesos e medidas nas vizinhanças de Osaris.
Réplicas preciosas dessa barra foram enviadas ao laboratórios de padronização em várias partes do mundo. Com o tempo a precisão deste padrão também se mostrou inadequado e outros padrões foram criados para o metro.
Actualmente O metro é determinado usando a rapidez da luz no vácuo que é definida como exatamente 299792458 m/s. O metro, então, é a distância que a luz percorre no vácuo em segundos. Estas definições fazem com que unidades do tempo e comprimento sejam acessíveis aos laboratórios de todo mundo.
1.3.3 Massa
A massa () é uma grandeza escalar positiva e invariável, a qual mede a inércia (propriedade dos corpos em permanecerem em movimento acelerado ou retardado) dos corpos, ou seja, a quantidade de matéria presente num corpo.
A unidade da massa no S.I é o quilograma (kg), é definido como a massa de um litro de água a com volume de
(que é igual ao volume de um cubo de
de lado).
Assim como os padrões de tempo comprimento, o padrão de quilograma mudou ao longo do tempo. O quilograma é agora definido como a massa de um determinado cilindro chamado de corpo-padrão mantido no Bureau Internacional de Pesos e Medidas em Sévres na França.
Assim comparando pesos de diferentes objetos ou tamanho comum com o peso do corpo-padrão,as massas dois objetos podem ser comparadas entre si.
1.4 Prefixos de Unidade
Às vezes torna-se necessário trabalhar com medidas que são muitos menores ou muito maiores do que as unidades padrão do S.I. Nessas situações podemos usar outras unidades, são relacionadas as unidades padrão do S.I por um múltiplo de dez(10).
Os prefixos são usados para designar as diferentes potências de 10, por exemplo, prefixo “quilo” significa ou
, enquanto o prefixo “micro” significa
ou
.
A tabela a seguir mostra o prefixo dos mais comuns múltiplos das unidades do S.I. Os prefixos podem ser aplicados a qualquer unidades S.I, por exemplo segundo é um milissegundo (
), e
são
(apesar de ainda não termos definido o Watt).
Alguns prefixos muito usados nas Unidades do S.I são mostrados a seguir:

Sendo assim:
OBS : alguns grandezas, para dimensões diferentes utiliza outras unidades, tais como a hora para o tempo ( equivale á
) e o Angstron para o comprimento (
equivale
).
1.5 Outros sistemas de unidades
Além do S.I, outros sistemas de unidades são as vezes utilizados. Um deles é o sistema CGS cujas unidades fundamentais são os centímetro para os comprimentos , o grama para massa e o segundo para o tempo.
Sistema CGS de unidades é um sistema de unidades de medidas físicas, ou sistema dimensional, de tipologia LMT (comprimento, massa tempo), cujas unidades-base são o centímetro para o comprimento, o grama para a massa e o segundo para o tempo. Foi adotado em 1881 no Congresso Internacional de Eletricidade.
CGS é, assim, um acrônimo maiúsculo para centímetro–grama–segundo. É o sistema de unidades físicas primordial que precedeu o Sistema Internacional de Unidades (SI), por este sendo substituído.
Outras unidades CGS incluem Dina (para força), Erg (para energia, trabalho, calor, etc.), Gal (para aceleração), Gauss (para campo magnético), Maxwell (para fluxo magnético), Öersted (para intensidade de campo), Phot (para intensidade luminosa), Poise (para viscosidade dinâmica em fluidos), Stilb (para luminância), Stokes (para viscosidade cinemática)e Dina por centímetro cúbico (para peso específico).
1.6 Conversão de Unidades
Como diferentes sistemas de unidades são utilizados, é importante saber como converter uma unidade para outra, em diversos contextos quando quantidades físicas são somadas, subtraídas, multiplicadas ou divididas em uma equação algébrica. A unidade pode ser tratada como qualquer outra quantidade algébrica.
Muitas vezes precisamos alterar as unidades nas quais uma grandeza física está expressa. Isto pode ser feito usando um método conhecido como conversão em cadeia. Nesse método multiplicarmos o valor original por um fator de conversão(uma razão entre unidades e igual à unidade). Assim como 1 min e 60 s correspondem a intervalos de tempo iguais, temos:
Assim, as razões e
podem ser usadas como fatores de conversão. Nota que isso não é o mesmo que escrever
ou
; cada número e a sua unidade devem ser tratadas conjuntamente.
Exemplo 1 Converter em segundos.
Neste exemplo, temos:
Exemplo 2 Converter em milhas.
Neste exemplo, temos:
Exemplo 3 Converter em metros por segundo.
Neste exemplo, temos:
Por vezes, podemos fazer a conversão de um modo mais rápido, substituindo cada unidade pela unidade de destino, com o respectivo factor de conversão.
Exemplo 4 Converter para o SI.
Sabemos que a unidade de velocidade no SI é , então, temos de converter
em
e
em
. Então temos:
Este método também é usado em conversões de unidades com prefixos (múltiplos e submúltiplos).
Exemplo 5 Converter para o SI.
Sabemos que a unidade de velocidade no SI é , então, temos de converter
em
(substituindo apenas o multiplo quilo) e
já está no S.I. Então temos:
Ainda há a clássica regra de “3 simples”, conhecida pela maioria.
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)
— 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —
Exercício 10 A massa de um átomo de Urânio é de NÍVEL DE DIFICULDADE: Regular. |
Resolução 10 .
É um problema cujo método de resolução é muito comum (3 simples). Vamos começar por converter todas as grandezas para as mesmas unidades. Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor( Em seguida, fazemos a relação de proporção. Chamamos de Fazendo a multiplicação cruzada, obtemos: Isolando o x, obtemos: Resolvendo, temos: Em |
Exercício 12 Determine a partir da representação dada, o vector NÍVEL DE DIFICULDADE: Elementar. |
Resolução 12 .
Podemos resolver este exercício utilizando a regra do paralelogramo. Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles. A resolução aqui é feita apenas graficamente. Desta feita, aplicando a regra do paralelogramo, teremos:
|
Exercício 13 Determine a distância entre os corpos A e B na figura:
|
Resolução 13
Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir. Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano. A Relação é: Neste caso, Então, substituindo os valores na relação anterior, teremos: Resolvendo, teremos: Logo, a distância entre os corpos A e B é igual a |
Exercício 14
Sendo . NÍVEL DE DIFICULDADE: Elementar. |
Resolução 14 Para determinarmos o módulo do vector Sendo este vector Substituindo as componentes, obtemos: Efectuando a operação, teremos: Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes. Então, podemos determinar o módulo do vector Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector Resolvendo: Logo, o vector Note: No calculo do módulo de |
Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?
NÍVEL DE DIFICULDADE: Regular. |
Resolução 15
Este exercício é um problema simples de Geometria Analítica. Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações. Consideramos que
Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura. Se Formando um sistema de equações com duas equações obtidas das condições, teremos: Isolando Desfazendo a diferença de quadrado e efectuando as operações, teremos: Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos: ,onde Substituindo os valores e resolvendo, teremos como resultado Substituindo os valores de Logo, temos como solução : s = Ambas as as soluções são aceitáveis e permutadas entre si. Desta feita, dois vectores são: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Generalidades do MHS (Parte 1)
— 1. Oscilações —
— 1.1. Generalidades do MHS —
Exercício 1 .
A equação de um MHS é dada por Determina o número de ciclos feitos em NÍVEL DE DIFICULDADE: Elementar. |
Resolução 1 .
A equação de um MHS é geralmente dada na forma Comparando, termo a termo, com a equação dada no enunciado, temos que: As unidades dos resultados estão no SI pois o enuanciado assim indica. Para conseguir calcular o número de ciclos feitos em Para o MHS, Logo: Substituindo o valor de Isolando Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por: substituindo valores, obtemos: Em |
.
Exercício 2 Uma partícula realiza um MHS, cuja equação horária é
NÍVEL DE DIFICULDADE: Elementar |
Resolução 2 .
Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.
A tabela será construida atribuindo diversos valores a Lançando os valores num sistema de coordenadas cartesianos Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de |
Exercício 3 .
Uma partícula descreve um MHS segundo a equação
NÍVEL DE DIFICULDADE: Elementar |
Resolução 3 .
Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.
|
Exercício 4 .
Considere o MHS dado no gráfico. Escreva sua equação. |
NÍVEL DE DIFICULDADE: Elementar
Resolução 4 .
O Problema ilustra o gráfico de A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida. A equação do movimento de um MHS é dada na forma Com base na análise, é possível concluir que: A amplitude No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação. Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que: Sabendo que Por fim, substituindo os dados na equação da oscilação ( |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 5)
Exercício 20 Uma chita pode acelerar de |
Resolução 20 .
A conversão de Para a Chita, temos:
Então, usando a fórmula de aceleração média, obtemos: Para o carro,temos:
Então, usando a fórmula de aceleração média, obtemos: . |
Exercício 21 Um móvel fazendo a trajectória rectilínea Determinar:
NÍVEL DE DIFICULDADE: Regular. |
Resolução 21 .
Diante de um problema gráfico (
|
Exercício 22 Uma pessoa caminha |
Resolução 22 .
Para o problema em questão, devemos entender a diferença entre deslocamento e distância percorrida. O deslocamento é o vector que une a posição inicial à posição final de um móvel, sem se importar pelo trajecto do mesmo. O seu modulo equivale a distancia entre a origem e o destino do móvel. A distancia percorrida é o somatório escalar de todo o caminho percorrido pelo móvel, levando em conta a sua trajectoria e eventuais mudanças de direcção. Na figura, observamos que o móvel sai da posição Neste caso o deslocamento será A distancia percorrida será:
.. Note que é a duração de todo o movimento, e como o tempo não recua, então sempre |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)
Exercício 13 .
A velocidade de um móvel é tal que ele percorre . NÍVEL DE DIFICULDADE: Elementar. |
Resolução 13 .
Dados .
Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel. Na forma escalar, temos: Substituindo A posição final |
Exercício 17 .
Um atleta de corrida percorre NÍVEL DE DIFICULDADE: Elementar. |
Resolução 17 .
Dados
Por definição, no MRU, a velocidade é dada por: Isolando o espaço percorrido: Substituindo os dados na fórmula anterior, obtemos: Transformando Fazendo a multiplicação cruzada, obtemos: Logo, o atleta leva |
Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante NÍVEL DE DIFICULDADE: Elementar. |
Resolução 19 .
Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal. A velocidade média será: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 3)
Exercício 8 Se uma grandeza fictícia Qual é o valor de NÍVEL DE DIFICULDADE: Elementar. |
Resolução 8 .
O objectivo do exercício é converter a unidade de Vamos converter para o SI, substituindo o valor de . |
Exercício 9 Duas forças Qual deverá ser o modulo e a direcção da 3ª força ( NÍVEL DE DIFICULDADE: Elementar. |
Resolução 9 .
Teremos que inicialmente que a resultante entre as forças Neste caso: Para calcular a força Então: Logo: Em modulo: A direcção é definida pelos ângulos: Calculando: Como o vector pertence ao 3º quadrante (as componentes são ambas negativas), a direcção e sentido são definidas por: |
Exercício 10 Um móvel percorre um troço de |
Resolução 10 .
Dados O exercício trate de um movimento genérico. Quando queremos analisar o movimento como um todo, usamos a velocidade e aceleração média. Então, a análise do movimento assemelha-se a um M.R.U, onde que a velocidade média é: Antes de calcular a Multiplicado de forma cruzada, obtemos: Agora podemos calcular a Também poderíamos apresentar o valor da |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 2)
Exercício 5 Converter para o SI s seguintes unidades:
NÍVEL DE DIFICULDADE: Elementar. |
Resolução 5 .
Para converter-mos no SI, vamos utilizar o sistema de “3 simples”.
|
Exercício 6 Numa partícula actuam 3 forças conforme indica a figura abaixo:
Determine a força resultante sabendo que NÍVEL DE DIFICULDADE: Regular. |
Resolução 6 .
Para sabermos a força resultante, devemos encontrar as componentes das forças aplicadas nos eixos Ox e Oy. Como as Forças primeiramente devemos traçar as correspondestes das Calculamos as componentes usando as razões trigonométricas: Vamos agora Fazemos então a soma vectorial das componentes Ox e Oy: O módulo força resultante é dada pelo teorema de Pitágoras: |
Exercício 7 Se as componentes da velocidade de um móvel são Determine: o modulo deste vector velocidade. NÍVEL DE DIFICULDADE: Elementar. |
Resolução 7 .
Dados Para determinar o modulo do valor velocidade, primeiramente devemos determinar o valor da coordenada da velocidade em z ( Neste caso, a velocidade será obtida de modo seguinte: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 3)
Exercício 12 .
O gráfico da velocidade em função do tempo de um MRUV é dado abaixo. Determine o deslocamento no intervalo de 0 a 4 Segundos. NÍVEL DE DIFICULDADE: Regular. |
Resolução 12 .
Para este caso, podemos determinar o deslocamento através de dois métodos.
|
Exercício 13 .
Um movimento descrito pelo gráfico abaixo. Descreva o tipo de movimento dos traços AB, BC, CD e DE. . NÍVEL DE DIFICULDADE: Elementar. |
Resolução 13 .
Este gráfico apresenta a variação da velocidade em função do tempo. Neste gráfico, o tipo de movimento é definido pela forma da linha do gráfico. Se a linha do gráfico for uma recta oblíqua, então trata-se de um caso de MRUV. Será um MRUV acelerado se for inclinada com declive positivo e velocidade positiva ou com declive negativo e velocidade negativa. Será um MRUV retardado se for inclinada com declive positivo e velocidade negativa ou com declive negativo e velocidade positiva. Se a linha for horizontal, a velocidade é constante (MRU). Este MRU pode ser progressivo (se a velocidade for positiva) ou retrógrado (se a velocidade for negativa).
. |
Exercício 14 .
Dois móveis têm as seguintes equações do movimento.
Determine a velocidade do móvel (2) no ponto de encontro. NÍVEL DE DIFICULDADE: Regular. |
Resolução 14 .
A equação do móvel(1) é uma equação do 1º grau, portanto o móvel em MRU. A equação do móvel (2) é uma equação do 2º grau, portanto o móvel (2) move-se em MRUV. . O objectivo é determinar a velocidade final do móvel (2) Então, temos de determinar o instante de tempo em que os móveis estão na posição de encontro, para substituir este tempo na equação da velocidade. Na posição de encontro: Agrupando os termos semelhantes: Factorizando o factor 4 na equação: Então, pela lei do anulamento do produto: Resolvendo a equação anterior com a fórmula de Bhaskara (ou fórmula resolvente) temos os seguintes dados: Substituindo os dados na fórmula: Separando as partes: Descartamos o . Tendo o tempo, podemos calcular a velocidade do móvel 2 neste instante. Por definição a velocidade: Para o móvel (2),temos: . Substituindo a equação do movimento do móvel (2) , obtemos: Portanto, durante este MRUV, a velocidade do móvel (2) é dada como: Para encontramos o valor numérico da velocidade no momento de encontro, devemos substituir o tempo pelo instante de encontro. Substituindo Portanto, a velocidade do móvel (2) na posição de encontro (A) é de : |
Exercício 15 .
A velocidade inicial de um móvel é de Determine a aceleração e a distância percorrida. . NÍVEL DE DIFICULDADE: Regular. |
Resolução 15 .
Dados ,
Antes de a resolver, vamos converter as velocidades Então: Para a velocidade final, fazemos o mesmo procedimento. Obtemos: Com as unidades já convertidas, podemos determinar a aceleração. Para o MRUV, a aceleração é dada por: Substituindo os dados, obtemos: A distância percorrida pode ser determinada pela equação de movimento do MRUV ou pela equação de Torricelli. Usando a Equação de Torricelli: Isolando Substituindo os dados: Portanto a distância percorrida é: A aceleração do móvel é: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 2)
Exercício 8 .
O gráfico ilustra um MRU. Determine a velocidade média deste movimento? NÍVEL DE DIFICULDADE: Regular. |
Resolução 8 .
Para o caso de MRU a velocidade média é dada, por definição como sendo: Do gráfico temos os seguintes dados: Substituindo estes valores em (1): |
Exercício 9 .
A equação de um MRU é: Determine o deslocamento no intervalo de NÍVEL DE DIFICULDADE: Elementar. |
Resolução 9 .
Nos casos de MRU sem mudança de direcção, o deslocamento, em módulo é igual a distância percorrida no intervalo No intervalo A posição inicial é obtida da seguinte forma: Obtemos: A posição final é obtida da seguinte forma: O deslocamento é : |
Exercício 10 .
Um atleta de corrida percorre |
Resolução 10 .
Dados
Por definição, no MRU, a velocidade é dada por: Isolando o espaço percorrido: Substituindo os dados na formula anterior, obtemos: Transformando Fazendo a multiplicação cruzada, obtemos: Logo, o atleta leva |
Exercício 11 .
A equação horária de um móvel é NÍVEL DE DIFICULDADE: Elementar. |
Resolução 11 .
Dados
A equação horária, na forma escalar é dada como: A equação horária do móvel é: Ao comparar-mos ambas equações, obtemos os seguintes dados: Para escrever-mos a equação horária,com a posição dada em Km e o tempo dado em h, devemos transformar Então temos: Fazendo a multiplicação cruzada, obtemos: E: Logo: Então: Substituindo estes valores em na equação horária do MRU, obtemos: Portanto, para a posição dada em km e tempo em h, temos a equação horária: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais
— 1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —
Exercício 5 .
Considere o sistema representado abaixo.Considerando a origem do referencial sua base direita do prédio, o Eixo ox horizontal dirigido a esquerda e o Eixo oy vertical e dirigido para cima. Determine a posição dos pontos A, B e C. NÍVEL DE DIFICULDADE: Elementar |
Resolução 5 .
O referencial(bidimensional) do sistema é necessário ser traçado para a determinação da posição dos pontos A, B e C. Logo temos as seguintes características do referencial: * Eixo Ox: eixo horizontal dirigido da direita para a esquerda; * Eixo Oy: eixo vertical dirigido para cima; * Origem do referencial: base direita do prédio.\ . Aposição do ponto A tem coordenada onde A posição do ponto B tem coordenada Onde: A posição do ponto C tem coordenada |
Exercício 6 .
A velocidade de um móvel é tal que ele percorre NÍVEL DE DIFICULDADE: Elementar. |
Resolução 6 .
Dados .
Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel. Na forma escalar, temos: Substituindo A posição final |
Resolução 7 .
Calcule a velocidade média do móvel da figura abaixo, se . |
Resolution 7 . Dados
.
Em módulos: . Portanto, para determinar a velocidade média precisamos determinar o deslocamento Note que o vector deslocamento é o vector que une a posição inicial à posição final, ou seja, no nosso caso Então temos: A equação 4 é a fórmula para o cálculo de distancia em um sistema bidimensional.Considerando o ponto de partida A e o de chegada C, : A(10,20) e B(20) considerando a abcissa y e a ordenada x. Portanto, temos: . O tempo Dos dados temos temos Então Sendo assim: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.