Luso Academia

Início » 04 Ensino Superior » 02 Física » 02 Física Geral I

Category Archives: 02 Física Geral I

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)

 — 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —

 

Exercício 10 A massa de um átomo de Urânio é de {4,0\cdot10^{-26} \ kg}. Quantos átomos de urânio existem em {8 \ g} de Urânio puro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

É um problema cujo método de resolução é muito comum (3 simples).

Vamos começar por converter todas as grandezas para as mesmas unidades.

Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor({k = 10^3}):

\displaystyle 4,0\cdot10^{-26} \ kg = 4,0 \cdot 10^{-26}\cdot 10^{3} \ g = \ 4,0\cdot10^{-23} \ g

Em seguida, fazemos a relação de proporção.

Chamamos de {x} ao número de átomos que pretendemos calcular. Neste caso:

\displaystyle 1 \ atomo \longrightarrow 4,0\cdot10^{-23} \ g

\displaystyle x \longrightarrow 8,0 \ g

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 4,0 \cdot10^{-23} \ g = 1 \ atomos(u) \cdot 8,0 \ g

Isolando o x, obtemos:

\displaystyle x = \frac{1 \ atomo(u)\cdot 8,0 \ g}{4,0\cdot10^{-23} \ g}

Resolvendo, temos:

\displaystyle x = 2,0\cdot 10^{23} \ atomos

Em {8 \ g} de urânio puro, existem {2,0\cdot 10^{23}} átomos de Urânio.

 

 

Exercício 12 Determine a partir da representação dada, o vector {\vec{c} \ = 3 \ \vec{a} \ + 2 \ \vec{b}} .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

Podemos resolver este exercício utilizando a regra do paralelogramo.

Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles.

A resolução aqui é feita apenas graficamente.

Desta feita, aplicando a regra do paralelogramo, teremos:

  • Em primeiro lugar, vamos traçar os vectores {3 \ \vec{a} } e { 2 \ \vec{b}}. Para tal, vamos na extremidade de {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Na extremidade deste segundo {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Neste caso, teremos o vector {3 \ \vec{a} }. Para o caso do vector { 2 \ \vec{b}}, o procedimento é análogo. Vamos na extremidade de {\vec{b}}, traçar outro vector idênticos à {\vec{b}}.Neste caso, teremos o vector {2 \ \vec{b} }. Veja a figura a seguir.

  • Em seguida, na extremidade do vector {3\vec{a}} traçamos uma imagem do vector {2\vec{b}} e na extremidade do vector {2\vec{b}} traçamos uma imagem do vector {3\vec{a}}.Veja a figura a seguir.

  • Em seguida, traçamos o vector resultante que terá como origem o ponto onde ambas origem dos dois vectores ({3 \vec{a}} e {2 \vec{b}}) se encontravam, e terá como extremidade o ponto de intercessão das extremidades das imagens ({3 \vec{a'}} e {2 \vec{b'}}).

    Então, na figura anterior, obtemos o vector {\vec{c}}.

 

 

Exercício 13 Determine a distância entre os corpos A e B na figura:

Resolução 13

Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir.

Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano.

A Relação é:

\displaystyle d(A;B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Neste caso, {x_A=5; \ y_A=15; \ x_B= 25; \ y_B=5}.

Então, substituindo os valores na relação anterior, teremos:

\displaystyle d(A;B)=\sqrt{(25-5)^2+(5-15)^2}

Resolvendo, teremos:

\displaystyle d(A;B) = \sqrt{(20)^{2} \ + \ (-10)^{2}}

\displaystyle d(A;B) = \ 22,36 \ m

Logo, a distância entre os corpos A e B é igual a {22,36 \ m}.

 

 

Exercício 14

Sendo {\vec{v_{1}} \ = \ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ + \ 4 \vec{e_{z}}} e {\vec{v_{2}} \ = \ 5 \vec{e_{y}} \ - \ 2 \vec{e_{z}}} Determine o módulo de {\vec{v} \ = \ \vec{v_{1}} \ + \ \vec{v_{2}}}

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 14 Para determinarmos o módulo do vector {\vec{v}}, é necessário que se conheça ou que se determine o vector {\vec{v}}

Sendo este vector{(\vec{v})} a soma entre os vectores {\vec{v_{1}}} e {\vec{v_{2}}}, teremos:

\displaystyle \vec{v} \ = \vec{v_{1}} \ + \ \vec{v_{2}}

Substituindo as componentes, obtemos:

\displaystyle \vec{v} \ = (\ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ +?\ 4 \vec{e_{z}}) \ + \ (5 \vec{e_{y}} \ - \ 2 \vec{e_{z}})

Efectuando a operação, teremos:

\displaystyle \vec{v} \ = \ 3 \vec{e_{x}} \ + \ 7 \vec{e_{y}} + \ 2 \vec{e_{z}}

Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes.

Então, podemos determinar o módulo do vector {\vec{v}} a partir da seguinte relação:

\displaystyle |\vec{v}| \ = \ \sqrt{x^{2} \ + \ y^{2} \ + \ z^{2}}

Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector {\vec{v}} , teremos:

\displaystyle |\vec{v}| \ = \ \sqrt{(3)^{2} \ + \ (7)^{2} \ + (2)^{2}}

Resolvendo:

\displaystyle |\vec{v}| \ = \ 7,87

Logo, o vector {\vec{v}} tem o módulo igual a {7,87} unidades.

Note: No calculo do módulo de {\vec{v}} não usamos os vectores {e_{x}, \ e_{y}, \ e \ e_{z}}. Estes vectores são unitários. Só servem para indicar as direcções.

 

Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?

NÍVEL DE DIFICULDADE: Regular.

Resolução 15

Este exercício é um problema simples de Geometria Analítica.

Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações.

Consideramos que {x \ } é o módulo de um dos vectores e {\ y}O módulo de outro vector, então:

  • {x \ + \ y \ = \ 7} De acordo com a primeira condição dada no problema.

Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura.

Se { | \vec{v_{1}}|= \ x}, {|\vec{v_{2}} | = \ y} e o {|\vec{v}|=5}, então, pelo Teorema de Pitágoras, teremos :

{x^{2} \ + \ y^{2} \ = \ (5)^{2}}

Formando um sistema de equações com duas equações obtidas das condições, teremos:

\displaystyle \left\{\begin{array}{cccccc} x & + y & = & 7\\ x^{2} & + & y^{2} & = & 25\\ \end{array}\right.

Isolando {y} na equação 1 substituindo na equação 2, teremos:

\displaystyle \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & y^{2} & = & 25 \end{array}\right. \Rightarrow \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & (7 \ - \ x)^{2} & \ = \ & 25 \end{array}\right.

\displaystyle \Rightarrow x^{2} \ + \ (7 \ - \ x)^{2} \ = \ 25

Desfazendo a diferença de quadrado e efectuando as operações, teremos:

\displaystyle x^{2} \ - \ 7 \ x \ + \ 12 \ = \ 0

Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos:

\displaystyle x_{1,2} \ = \dfrac{-b \pm \ \sqrt{b^{2} \ - \ 4 \ a \ c}}{2 \ a}

,onde {a \ = \ 1} , {b \ = \ - \ 7} e {c \ = \ 12}.

Substituindo os valores e resolvendo, teremos como resultado {x_{1} \ = \ 3} e {x_{2} \ = \ 4}

Substituindo os valores de {x_{1}} e de {x_{2}} na primeira equação do sistema, e calculando os valores correspondentes de {y}, teremos as seguintes valores para {y } : {y_1 \ = \ 4 \ e \ y_2 \ = \ 3}

Logo, temos como solução : s = { \left\{\begin{array}{cccccc} (x = 4, &y = 3)\\ (x = 3, &y = 4) \end{array}\right. }

Ambas as as soluções são aceitáveis e permutadas entre si.

Desta feita, dois vectores são: {4 \ m \ e \ 3 \ m}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Generalidades do MHS (Parte 1)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 1 .

A equação de um MHS é dada por { x=0,5 \sin 10 \pi t (SI)}.

Determina o número de ciclos feitos em { 10 \ s } de oscilação.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

A equação de um MHS é geralmente dada na forma { x= A \cdot \sin (\omega \cdot t+\varphi_0 }. .

Comparando, termo a termo, com a equação dada no enunciado, temos que:

\displaystyle A=0,5 \ m

\displaystyle w=10 \ \pi \ rad/s

\displaystyle \varphi_0=0 \ rad

As unidades dos resultados estão no SI pois o enuanciado assim indica.

Para conseguir calcular o número de ciclos feitos em { 10 \ s} precisasse saber quantas oscilações são feitas em {1 \ s} (a frequência da oscilação).

Para o MHS, {\omega} é dado por:

\displaystyle \omega=2 \pi \cdot f

Logo:

\displaystyle \omega=2 \cdot \pi \cdot f

Substituindo o valor de {\omega} dos dados, obtemos:

\displaystyle 10 \pi = 2 \cdot \pi \cdot f

Isolando {f}:

\displaystyle f= \frac{10 \pi}{2 \pi}=5 \ Hz

Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por:

\displaystyle f= \frac{N}{t}

\displaystyle \Rightarrow N= f \cdot t

substituindo valores, obtemos:

\displaystyle N=5 \cdot 10

Em { 10 \ s} de oscilações são realizados 50 ciclos.

.

Exercício 2 Uma partícula realiza um MHS, cuja equação horária é { x=5 \cos (\dfrac{\pi}{4} t } SI.

  1. Determine o período do MHS.
  2. Esboce o gráfico da velocidade em função do tempo.

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.

  1. A equação horária de um MHS pode ser dada na forma { x=A \cos(\omega t+\varphi_0)}.Comparando, termo a termo, com a equação dada no enunciado ({x=5 \cos (\dfrac{\pi}{4} t }), obtemos:

    \displaystyle \omega=\frac{\pi}{4} \ rad/s

    Sabendo que { \omega=\frac{2\pi}{T} },logo:

    \displaystyle T=\frac{2\pi}{\omega}

    Substituindo os dados:

    \displaystyle t= \frac{2\pi}{\pi /4}

    \displaystyle T=8 \ s

  2. Para se esboçar o gráfico da velocidade em função do tempo precisamos construir uma tabela que relaciona as duas grandezas({v} e {t}).Para isso, precisamos escrever a equação da velocidade em função do tempo.
    Sabe-se que a velocidade é dada pela derivada da posição em função do tempo, temos:

    \displaystyle v=\frac{dx}{dt}

    \displaystyle \Rightarrow v=\frac{d}{dt} [5 \cos(\frac{\pi}{4}t)]

    \displaystyle \Rightarrow v= -5 \cdot \frac{\pi}{4} \sin ( \frac{\pi}{4}t)

    \displaystyle v= -1,25\pi \sin (\frac{\pi}t)

A tabela será construida atribuindo diversos valores a {t} e calculando os valores correspondentes de {v}. Escolhemos os valores de {t} de 0, 2, 4, 6, 8 e 10 s.

Lançando os valores num sistema de coordenadas cartesianos {(t;v)} e interpolando os pontos, obtemos um gráfico similar ao da figura abaixo:

Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de {v} em relação a {t} é .

Exercício 3 .

Uma partícula descreve um MHS segundo a equação {x=0,5 \cos( \pi / 3+2 \pi t) }, no SI.Obtenha.

  1. A correspondente equação da velocidade.
  2. O módulo da máxima velocidade atingida por essa partícula.

NÍVEL DE DIFICULDADE: Elementar

Resolução 3 .

Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.

  1. A equação da velocidade de uma partícula em MHS é dada pela derivada da equação da posição em função do tempo, ou seja:

    \displaystyle v(t)=\frac{d}{dt}x

    \displaystyle \Rightarrow v(t)=\frac{d}{dt}[0,5 \cos(\frac{\pi}{3} +2 \pi t)]

    Derivando, obtemos:

    \displaystyle v{t}=-0,5 \cdot 2 \pi \sin( \frac{\pi}{3} +2 \pi t)

    \displaystyle \Rightarrow v_{t}=-\pi \sin(\frac{\pi}{3} +2 \pi t)

  2. A velocidade num MHS é máxima quando { \sin( \varphi_0+ \omega)=1}. Logo:

    \displaystyle v_{max}=\pi \ m/s

Exercício 4 .

Considere o MHS dado no gráfico. Escreva sua equação.

NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

O Problema ilustra o gráfico de {x(t)} de um MHS. Para escrevermos a equação deste MHS, devemos determinar em primeiro lugar os seus parâmetros ({A}, {\omega} e {\varphi_0}). Estes parâmetros são determinados no gráfico.

A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de {t} (valor de equilíbrio é 0), então a amplitude é o maior valor de x a se registar na curva.

O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida.

A equação do movimento de um MHS é dada na forma { x = A \sin (\omega t + \varphi_0)}.

Com base na análise, é possível concluir que:

A amplitude { A=3 \ cm} ou { A=0,03 \ m} .

No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é {90^o=\pi / 2 \ Rad}. Neste caso, para obter a fase inicial, teremos:

\displaystyle \omega t + \varphi_0= \pi/2

\displaystyle \Rightarrow \omega \cdot 0 + \varphi_0= \pi/2

\displaystyle \Rightarrow \ \varphi_0= \pi/2

O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação.

Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que:

\displaystyle T/2= 4 s

\displaystyle \Rightarrow \ T= 4\cdot 2

\displaystyle \Rightarrow \ T= \ 8 \ s

Sabendo que { \Rightarrow=2 \pi /T}, logo:

\displaystyle \omega =2 \pi /8

\displaystyle \Rightarrow \omega = \frac{1}{4} \pi \ rad/s

Por fim, substituindo os dados na equação da oscilação ({ x = A \sin (\omega t + \varphi_0)}), obtemos:

\displaystyle x = 0,03 \sin (\frac{1}{4} \pi t + \dfrac{\pi }{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 5)

Exercício 20 Uma chita pode acelerar de {0} a {96 \ km} em {2 \ s}, enquanto um carro, em média atinge a mesma velocidade final em {4,5 \ s}. Calcular as acelerações média dos dois. NÍVEL DE DIFICULDADE: Elemntar.
Resolução 20 .

A conversão de {96 \ km} para {m/s}, é feita pela regra de 3 simples conforme os exercícios anteriores.

Para a Chita, temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 2 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{2}=13,4 \ m/s^2

Para o carro,temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 4,5 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{4,5} = 5,9 \ m/s^2

.

Exercício 21 Um móvel fazendo a trajectória rectilínea {A-B-C}, tem a velocidade dada no gráfico ao lado.

Determinar:

  1. A velocidade média deste movimento.
  2. A aceleração média do mesmo.

NÍVEL DE DIFICULDADE: Regular.

Resolução 21 .

Diante de um problema gráfico ({v\cdot t}), é válido lembrar que área de baixo da curva determina o espaço total percorrido pelo móvel. No gráfico {v\cdot t}, a inclinação da recta, determina à aceleração.

  1. Para determinar a velocidade média, precisamos conhecer o deslocamento total e o tempo total. O tempo pode ser obtido directamente no gráfico. Para o deslocamento, ele deve ser calculado. Podemos usar dois raciocínios: o calculo da área ou a determinação dos parâmetros cinemáticos deste movimento. Para efeitos de familiarização, dado que temos dois tempos de movimentos ( Um MRUV acelerado de A para B e um MRUV retardado de B para C), vamos usar os dois métodos. Vamos usar a determinação de parâmetros para o movimento de A para B e vamos usar o cálculo de área de B para C. Em qualquer dos casos, os dois métodos são válidos. Cabe a quem resolve escolher.
    1. Determinando a aceleração de {A\longrightarrow B} (Determinação dos parâmetros):

      \displaystyle \left.\begin{array}{cccccccc} t_o = 0 \ s, v_o = 20 \ m/s\\ t= 40 \ s, v = 60 \ m/s\\ \end{array}\right\} \Rightarrow a = \frac{\Delta v}{\Delta t} = \frac{60 - 20}{40 - 0} = 0,5 \ m/s^2

    2. Determinando do correspondente deslocamento {A\longrightarrow B}:

      \displaystyle s = s_o + v_o\cdot t + \frac{1}{2}a\cdot t^2

      \displaystyle s = (20)(40) + \frac{1}{2}(0,5)(40)^2

      \displaystyle s = 1200 \ m

    3. Determinando o espaço percorrido {B\longrightarrow C} (cálculo de área):

      \displaystyle s_{\Delta} = Area = \frac{20\cdot 40}{2} = 600 \ m

    4. Neste caso, o deslocamento total é:

      \displaystyle \Delta s = 1200 + 600 = 1800 \ m

    5. Logo, a velocidade média será:

      \displaystyle v_{med} = \frac{\Delta s}{\Delta t} = \frac{1800}{60} = 30 \ m/s

  2. Aceleração média.

    \displaystyle a_{med} = \frac{v_{final}-v_{0}}{\Delta t} = \frac{0-20}{60} \approx -0,33 \ m/s^2

Exercício 22 Uma pessoa caminha {100 \ m} em {12 \ s} numa certa direcção e depois caminha na direção oposta passando {50 \ m} durante {30 \ s}. Calcule (a) a velocidade média definida pelo caminho percorrido e (b) a velocidade média definida pelo deslocamento. NÍVEL DE DIFICULDADE: Regular.
Resolução 22 .

Para o problema em questão, devemos entender a diferença entre deslocamento e distância percorrida. O deslocamento é o vector que une a posição inicial à posição final de um móvel, sem se importar pelo trajecto do mesmo. O seu modulo equivale a distancia entre a origem e o destino do móvel. A distancia percorrida é o somatório escalar de todo o caminho percorrido pelo móvel, levando em conta a sua trajectoria e eventuais mudanças de direcção.

Na figura, observamos que o móvel sai da posição {x_1}, vai para a posição {x_2} e depois vai (em sentido oposto) para a posição {x_3}. Se tomarmos {x_1=0}, então {x_2=100 \ m} e {x_3=50 m} (recuando 50 m a partir de {x_2}).

Neste caso o deslocamento será {\Delta x= x_3 - x_1 = \ 50 - 0= \ 50m}.

A distancia percorrida será: {d= \ d_1+d_2= \ 100+50= \ 150 \ m}.

  • A velocidade média definida pelo caminho percorrido será:

    \displaystyle v_{med} = \dfrac{d}{\Delta t} = \dfrac{150}{30 + 12}

    \displaystyle v_{med} = 3,75 \ m/s

  • A velocidade média definida pelo deslocamento será:

    \displaystyle v_{med} = \dfrac{\Delta x}{\Delta t} = \dfrac{50}{30+12}

    \displaystyle v_{med} \approx 1,19 \ m/s

.. Note que é a duração de todo o movimento, e como o tempo não recua, então sempre {\Delta t = \ 30+12= \ 42 \ s}. Estes tempos refere-se a intervalos de tempo, por isso somamos. Se fossem instantes de tempo, deveríamos subtrair.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)

Exercício 13 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Dados .

{ v= \dfrac {5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \cdot t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \cdot t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \cdot t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s} é:

\displaystyle x= 5 + 2,5 \cdot 25= 67,5 \ m

\displaystyle x=67,5 \ m

Exercício 17 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 17 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \dfrac {\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \dfrac {\Delta s}{v}

Substituindo os dados na fórmula anterior, obtemos:

\displaystyle \Delta t = \dfrac {10,000 \ m}{1,5 \ m/s} = 6,66 \cdot 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \cdot 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h \rightarrow 3600 \ s \\ x \rightarrow 6,66 \cdot 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 3600 \ s= 1 \ h \cdot 6,66 \cdot 10^3 \ s

\displaystyle \Rightarrow x = \dfrac {1 \ h \cdot 6,66 \cdot 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante {t_1} está {x_1 = 3,0\cdot 10^{12} \ m}, em relação ao sol. Um ano depois, está em {x_2 = 2,1\cdot 10^{12} \ m}. Achar o seu deslocamento e a sua velocidade média.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 19 .

Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal.

\displaystyle Deslocamento

\displaystyle \Delta x = x_1 - x_2

\displaystyle \Delta x = 3,0\cdot 10^{12} - 2,1\cdot 10^{12}

\displaystyle \Delta x = 0,9\cdot 10^{12} \ m

\displaystyle \Delta x = 9,0\cdot 10^{8} \ km

\displaystyle Intervalo \ de \ tempo

\displaystyle \Delta t = 1 \ ano = 365 \ dia

\displaystyle \Delta t = 8760 \ h

A velocidade média será:

\displaystyle v_{med} = \frac{\Delta x}{\Delta t} = \frac{9,0\cdot 10^8 \ km}{8760 \ h}

\displaystyle v_{med} = 1,02\cdot 10^5 \ km/h

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  • Deixe a sua interacção nos comentários deste Post;
  • Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  • Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 3)

Exercício 8 Se uma grandeza fictícia {K} tem unidade {\dfrac{ab^2}{c}} num certo sistema de unidade: Se as correspondências no SI são:

{1 \ a = 95 \ x}

{1 \ b = 57 \ y}

{1 \ c = 0,5 \ z}

Qual é o valor de {K = 18 \dfrac{ab^2}{c}} no SI ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 8 .

O objectivo do exercício é converter a unidade de {K} para o SI.

Vamos converter para o SI, substituindo o valor de {a}, {b}, {c} na expressão de {K = 18\dfrac{ab^2}{c}}.

.

\displaystyle K = 18\dfrac{ 95x \cdot (57y)^2}{0,5z}

\displaystyle \Rightarrow K = \dfrac{18 \cdot 95 \cdot (57)^2}{0,5} \cdot \dfrac{x \cdot y^2}{z}

\displaystyle K = 11111580\dfrac{x \cdot y^2}{z}

Exercício 9 Duas forças {\vec{F_1}} e {\vec{F_2}} de {10 \ N} e {20 \ N} respectivamente actuam sobre um corpo.

Qual deverá ser o modulo e a direcção da 3ª força ({\vec{F_3}}) para que a resultante seja nula?.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Teremos que inicialmente que a resultante entre as forças {\vec{F_1}}, {\vec{F_2}} e {\vec{F_3}} deve ser nula. Quer dizer que as três forças fazem parte do mesmo sistema bidimensional. A nível de análise gráfica, poderíamos determinar a resultante (parcial) das forças {F_{1}} e {F_{2}}. Chamamos ela de {F_{1/2}}. A força três, neste caso, terá sentido contrário ao vector força {F_{1/2}}, para que equilibre este resultante.

Neste caso:

\displaystyle \vec{F_3} = -\vec{F_{2/1}} \ ; \ F_3 = F_{1/2}

Para calcular a força {F_{1/2}}, vamos aplicaras componentes:

\displaystyle F_{1/2x} = F_{1x} + F_{2x}= F_{1} + 0 = F_{1} = 10 N

\displaystyle F_{1/2y} = F_{1y} + F_{2y}= 0 + F_{2} = F_{2} = 20 N

Então:

\displaystyle \vec{F_{1/2}} = F_{1/2x} \vec{i} + F_{1/2y} \vec{j} = 10 \vec{i} + 20 \vec{j} [N]

Logo:

\displaystyle \vec{F_3} = -\vec{F_{2/1}}= - 10 \vec{i} - 20 \vec{j} [N]

Em modulo:

\displaystyle F_3 = \sqrt{(-10)^2 + (-20)^2} = \sqrt{500} [N]

\displaystyle F_3 = 22,36 \ N

A direcção é definida pelos ângulos:

\displaystyle \alpha_1 = \arctan \frac{F_{3y}}{F_{3x}}

\displaystyle \alpha_2 = 180^o + \arctan \frac{F_{3y}}{F_{3x}}

Calculando:

\displaystyle \alpha_1 = \arctan{(\frac{-20}{-10})}=63 ^o

\displaystyle \alpha_2 = 180^o + \arctan{(\frac{-20}{-10})}= 243^o

Como o vector pertence ao 3º quadrante (as componentes são ambas negativas), a direcção e sentido são definidas por:

\displaystyle \alpha_2 = 243^o

Exercício 10 Um móvel percorre um troço de {400 \ km} em {2 \ dias}. Qual é a velocidade média desta viagem ? NÍVEL DE DIFICULDADE: Elementar.
Resolução 10 .

Dados

{v_m = \ ?}

{\Delta s = 400 \ km}

{\Delta t = 2 \ dias}

O exercício trate de um movimento genérico. Quando queremos analisar o movimento como um todo, usamos a velocidade e aceleração média. Então, a análise do movimento assemelha-se a um M.R.U, onde que a velocidade média é:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t}

Antes de calcular a {v_m}, vamos converter os {2 \ dias} para {h}, para usarmos unidades habituais em movimentos desta natureza. Vamos utilizar o sistema de “3 simples”:

\displaystyle 1 \ dia \longrightarrow 24 \ h

\displaystyle 2 \ dias \longrightarrow t

Multiplicado de forma cruzada, obtemos:

\displaystyle t \cdot 1 \ dia = 2 \ dias \cdot 24 \ h

\displaystyle t = 48 \ h

Agora podemos calcular a {v_m}:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t} = \dfrac{400 \ km}{48 \ h}

\displaystyle v_m = 8,33 \ km/h

Também poderíamos apresentar o valor da {v_m} em {m/s}, basta para isso dividir o valor em {km/h} por 3,6 e teremos em {m/s}.

\displaystyle v_m = \dfrac{8,33}{3,6} \ m/s

\displaystyle v_m = 2, 31 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 2)

Exercício 5 Converter para o SI s seguintes unidades:

  1. { 10 \ km/s }.
  2. { 20 \ polegadas }.
  3. { 25 \ km/h^2 }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 5 .

Para converter-mos no SI, vamos utilizar o sistema de “3 simples”.

  1. –    { \dfrac { 10 \ km}{s}\rightarrow \dfrac {m}{s} }Neste Caso, temos de converter apenas o numerador, de {km} para {m}.

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 10 \ km \longrightarrow x

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 10 \ km

    \displaystyle x = 10000 \ m

    Quer dizer que {10 \ km = 10000 \ m} logo, {10 \ km/s } no Sistema Internacional equivale a {10000 \ m/s }.

    .

  2. –      { 20 \ polegadas \rightarrow m }Sabemos que: { 1 \ polegada \approx 0,025 \ m } Então, usando o sistema de “3 simples”

    \displaystyle 1 \ polegada \longrightarrow 0,025 \ m

    \displaystyle 20 \ polegadas \longrightarrow x

    fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ polegada = 0,025 \ mc \cdot 20 \ polegadas

    \displaystyle x = 0,5 \ m

    Quer dizer que {20 \ polegadas} no Sistema Internacional equivale a {0,5 \ m }.

    .

  3. –    { \dfrac {25 \ km}{h^2} \rightarrow \dfrac {m}{s^2}}.Vamos começar por converter {km} em {m} e depois {h} em {s}, então: {2}

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 25 \ km \longrightarrow x

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 25 \ km

    \displaystyle x = 25000 \ m

    \displaystyle 1 \ h \longrightarrow 60 \ min

    \displaystyle 1 \ min \longrightarrow 60 \ s

    \displaystyle 1 \ h = 60 \times 60 \ s = 3600 \ s

    \displaystyle (1 \ h)^2 = (3600 \ s)^2 = 12960000 \ s^2

    \displaystyle 1 \ h^2 = 12960000 \ s^2

    Vamos substituir as equações {25 \ km = 25000 \ m} e {1 \ h^2 = 12960000 \ s^2} na expressão inicial:

    \displaystyle 25 \ km/h^2 =\dfrac {25 \ km}{h^2} = \dfrac {25000 \ m}{ 12960000 \ s^2}

    \displaystyle = \dfrac{25000 \ m}{12960000 \ s^2} =0,0019 \ m/s^2

    Quer dizer que, no SI { \dfrac {25 \ km}{h^2} = 0,0019 \ m/s^2}.

Exercício 6 Numa partícula actuam 3 forças conforme indica a figura abaixo:

Determine a força resultante sabendo que {F_1 = 3 \ N, F_2 = 5 \ N, F_3 = 8 \ N  \ e  \  \alpha = 10^o}

NÍVEL DE DIFICULDADE: Regular.

Resolução 6 .

Para sabermos a força resultante, devemos encontrar as componentes das forças aplicadas nos eixos Ox e Oy. Como as Forças primeiramente devemos traçar as correspondestes das {F_1} e {F_3} são paralelas aos eixos Ox e Oy, respectivamente, elas só têm uma componente não nula, que corresponde ao eixo a que são paralelas. A componente no outro eixo é nula. Para da força {F_2}, devemos projecta-la nos eixos e calcular as componentes para cada eixo (Ox e Oy).

Calculamos as componentes usando as razões trigonométricas:

\displaystyle F_{2x} = F_2 \sin \alpha \ ; \ F_{2y} = F_2 \cos \alpha

\displaystyle F_{2x} = 0,86 \ N \ ; \ F_{2y} = 4,92 \ N

Vamos agora Fazemos então a soma vectorial das componentes Ox e Oy:

\displaystyle \vec{F_{Rx}} = \vec{F_1} + \vec{F_{2x}} \ ; \ F_{Rx} = F_1 - F_{2x} = 3 - 0,86 = 2,14 \ N

\displaystyle \vec{F_{Ry}} = \vec{F_{2y}} - \vec{F_3} \ ; \ F_{Ry} = F_{2y} - F_3 = 4,92 - 8 = -3,08 \ N

O módulo força resultante é dada pelo teorema de Pitágoras:

\displaystyle F_R = \sqrt{F_{Rx}^2 + F_{Ry}^2}

\displaystyle F_R = \sqrt{(2,14)^2 + (-3,08)^2} = \sqrt{14,066}

\displaystyle F_R = 3,75 \ N \approx 4 \ N

Exercício 7 Se as componentes da velocidade de um móvel são {v_x = 10 \ m/s}, {v_y = 5 \ m/s} e {v_z = 2v_x + 3v_y}.

Determine: o modulo deste vector velocidade.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 7 .

Dados

{v_x = 10 \ m/s}

{v_y = 5 \ m/s}

{v_z = 2v_x + 3v_y}

{v_z\rightarrow \ ? }

{|v| \rightarrow \ ? }

Para determinar o modulo do valor velocidade, primeiramente devemos determinar o valor da coordenada da velocidade em z ({v_z}), substituindo o valor das velocidades de {v_x} e {v_y} em {v_z}.

\displaystyle v_z = 2v_x + 3v_y \Rightarrow v_z = 2 \cdot 10 + 3 \cdot 5

\displaystyle v_z = 35 \ m/s

Neste caso, a velocidade será obtida de modo seguinte:

\displaystyle |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{10^2 + 5^2 + 35^2}

\displaystyle |\vec{v}| = \sqrt{100 + 25 + 1225} = \sqrt{1350}

\displaystyle |\vec{v}| = 36,74 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 3)

Exercício 12 .

O gráfico da velocidade em função do tempo de um MRUV é dado abaixo. Determine o deslocamento no intervalo de 0 a 4 Segundos.

NÍVEL DE DIFICULDADE: Regular.

Resolução 12 .

Para este caso, podemos determinar o deslocamento através de dois métodos.

  1. Usando a equação de Torricelli, através dos dados no gráfico acima:

    \displaystyle 2a \cdot \Delta s= v^2-v^2_0 \Rightarrow \Delta s =\frac{v^2-v^2_0}{2a} \ \ \ \ \ (10)

    Do gráfico temos os seguintes dados:{ v_0= 20 \ m/s } e {v= 40 \ m/s }.No MRUV a aceleração média é igual a aceleração instantânea. Então, a aceleração é dada por:{ a=\frac{\Delta v}{\Delta t}=\frac{v-v_0}{t-t_0} }

    No intervalo de {0} `a { 4 \ s } : { a= \frac{40-20}{4-2} \cdot \frac{m/s}{s}=\frac{20}{4} \cdot m/s^2 }

    \displaystyle a=5 \ m/s^2

    Substituindo os dados na equação 10, obtemos:

    \displaystyle \Delta s=\frac{v^2-v^2_0}{2a}=\frac{(40)^2 - (20)^2}{2 \cdot 5}=120 \ m \Rightarrow \Delta s = 120 \ m

  2. O outro método é usando o calculo de área. Sabemos que a área debaixo da curva da velocidade em função do tempo é numericamente igual ao deslocamento (ver definição velocidade e interpretação geométrica da derivada). Para o nosso caso, a área debaixo da curva é a área de um trapézio, cujas bases maior e menor tem valores no eixo da velocidade (vertical) e a altura tem valor no eixo do tempo. Sendo assim:

    \displaystyle \Delta s = A_{Trapezio} = \frac{(B+b)}{2} \cdot h = \frac{(40+20)}{2} \cdot 4=120 m

    Logo, temos:{ \Delta s = 120 \ m }

Exercício 13 .

Um movimento descrito pelo gráfico abaixo.

Descreva o tipo de movimento dos traços AB, BC, CD e DE.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Este gráfico apresenta a variação da velocidade em função do tempo. Neste gráfico, o tipo de movimento é definido pela forma da linha do gráfico.

Se a linha do gráfico for uma recta oblíqua, então trata-se de um caso de MRUV. Será um MRUV acelerado se for inclinada com declive positivo e velocidade positiva ou com declive negativo e velocidade negativa. Será um MRUV retardado se for inclinada com declive positivo e velocidade negativa ou com declive negativo e velocidade positiva.

Se a linha for horizontal, a velocidade é constante (MRU). Este MRU pode ser progressivo (se a velocidade for positiva) ou retrógrado (se a velocidade for negativa).

  1. No traço AB (recta oblíqua): A velocidade é positiva e aumenta de { 10 \ m/s} à { 30 \ m/s } . Neste caso, a aceleração é constante e positiva neste mesmo intervalo, portanto, de A para B o movimento é um MRUV acelerado progressivo.
  2. No traço BC (Recta oblíqua): A velocidade é positiva e diminui de { 30 \ m/s} à { 0 }, a aceleração é negativa e constante no mesmo intervalo,portanto, de B para C o movimento é um MRUV retardado progressivo.
  3. No traço CD: A velocidade é negativa mas aumenta em módulo de { 0 } à { \approx -15 \ m/s} e a aceleração é constante e negativa no mesmo intervalo, portanto, de C para D o movimento é um MRUV acelerado retrógrado.
  4. No traço DE: A velocidade é negativa e constante ({\approx -15 \ m/s } , e a aceleração é nula no mesmo intervalo,portanto, o movimento é um MRU retrógrado.

.

Exercício 14 .

Dois móveis têm as seguintes equações do movimento.

  1. Móvel 1: { x_1=100+20 \ t }
  2. Móvel 2: { x_2=500-4 \ t^2 }

Determine a velocidade do móvel (2) no ponto de encontro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .

A equação do móvel(1) é uma equação do 1º grau, portanto o móvel em MRU. A equação do móvel (2) é uma equação do 2º grau, portanto o móvel (2) move-se em MRUV.

.

O objectivo é determinar a velocidade final do móvel (2) { v_2 } na posição de encontro (A).Entretanto, na posição de encontro (A) ambos os móveis ocupam a mesma posição final, isto é, { x_1=x_2 }.

Então, temos de determinar o instante de tempo em que os móveis estão na posição de encontro, para substituir este tempo na equação da velocidade.

Na posição de encontro:

\displaystyle x_1=x_2 \Rightarrow 100+20 \ t=500-4 \ t^2

Agrupando os termos semelhantes:

\displaystyle 4 \ t^2 +20 \ t +100-500=0

\displaystyle 4 \ t^2 +20 \ t -400=0

Factorizando o factor 4 na equação:

\displaystyle 4(t^2 + 5 \ t-100)=0

Então, pela lei do anulamento do produto:

\displaystyle t^2 + 5 \ t - 100= 4

Resolvendo a equação anterior com a fórmula de Bhaskara (ou fórmula resolvente) temos os seguintes dados:{ a=1 ; b=5 ; c=100 }.

\displaystyle t_{1,2}= \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}

Substituindo os dados na fórmula:

\displaystyle t_{1,2}= \frac{-5 \pm \sqrt{(5)^2 - 4 \cdot (1) \cdot (-100)}}{2 \cdot 1}

\displaystyle t_{1,2}= \frac{-5 \pm \sqrt{25 + 400}}{2}= \frac{-5 \pm \sqrt{425}}{2} = \frac{-5 \pm 20,615}{2}

Separando as partes:

\displaystyle t_1= \frac{-5+20,615}{2}= 7,807 \ s

\displaystyle t_2= \frac{-5 - 20,615}{2} = -12,807 \ s

Descartamos o { t_2 } pois ele é negativo. Neste caso, { t_{Enc}= \ 7,807 \ s }.

.

Tendo o tempo, podemos calcular a velocidade do móvel 2 neste instante. Por definição a velocidade:

\displaystyle v= \frac{dx}{dt}

Para o móvel (2),temos: { v_2= \frac{dx_2}{dt} } .

.

Substituindo a equação do movimento do móvel (2) , obtemos:

\displaystyle v_2= \frac{d(500-4 \ t^2)}{dt} = 0-8 \cdot t= -8 \ t

Portanto, durante este MRUV, a velocidade do móvel (2) é dada como: { v_2= -8 \ t } .

Para encontramos o valor numérico da velocidade no momento de encontro, devemos substituir o tempo pelo instante de encontro.

Substituindo {t} por { t_{Enc}}, obtemos: { v_2=-8 \ (t)= -8 \cdot 7,807=-62,456 \ m/s }

Portanto, a velocidade do móvel (2) na posição de encontro (A) é de : { v_2= -62,456 \ m/s }

Exercício 15 .

A velocidade inicial de um móvel é de { 10 \ km/h}. Após acelerado uniformemente, durante {10 \ s }, ganha uma velocidade de { 20 \ km /h}.

Determine a aceleração e a distância percorrida.

.

NÍVEL DE DIFICULDADE: Regular.

Resolução 15 .

Dados

,

{ v_0= 10 \ km/h } .

{ t_0=0 \ s } .

{ t=20 \ km/h } .

{ a \rightarrow ? } .

{ \Delta s \rightarrow ? }

Antes de a resolver, vamos converter as velocidades { v_0 } e v para as unidades do sistema internacional usando três simples.
Para: { v_0=10 \ km/h }

\displaystyle 36 \ km/h \rightarrow 10 \ m/s

\displaystyle 10 \ km/h \rightarrow v_0

Então:

\displaystyle v_0 \cdot 36 \ km/h= 10 \ km/h \cdot 10 \ m/s

\displaystyle \Rightarrow v_0= \frac{10 \ km/h \cdot 10 \ m/s}{36 \ km/h} =2,77 \ m/s

Para a velocidade final, fazemos o mesmo procedimento. Obtemos:

\displaystyle v=5,55 \ m/s

Com as unidades já convertidas, podemos determinar a aceleração.

Para o MRUV, a aceleração é dada por:

\displaystyle a= \frac{\Delta v}{\Delta t} = \frac{v-v_0}{t-t_0}

Substituindo os dados, obtemos:

\displaystyle a= \frac{5,55-2,77}{10-0}=0,278 \ m/s^2

A distância percorrida pode ser determinada pela equação de movimento do MRUV ou pela equação de Torricelli.

Usando a Equação de Torricelli:

\displaystyle v^2=v^2_0+2a \cdot \Delta s

Isolando { \Delta s } teremos:

\displaystyle v^2-v^2_0=2 \cdot a \cdot \Delta s \Rightarrow \Delta s= \frac{v^2-v^2_0}{2 \cdot a}

Substituindo os dados:

\displaystyle \Delta s=\frac{(5,55)^2-(2,77)^2}{2 \cdot 0,278}=41,6 \ m

Portanto a distância percorrida é:

\displaystyle \Delta s=41,6 \ m

A aceleração do móvel é:

\displaystyle a=0,278 \ m/s^2

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 2)

Exercício 8 .

O gráfico ilustra um MRU. Determine a velocidade média deste movimento?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8 .

Para o caso de MRU a velocidade média é dada, por definição como sendo:

\displaystyle v_m = \frac{\Delta x}{\Delta t} = \frac{x-x_0}{t-t_0} \ \ \ \ \ (6)

Do gráfico temos os seguintes dados:

\displaystyle \left\{\begin{array}{ccccccccc} t_0 = 0 \ s : x_0 = 10 \ m \\ t = 5 \ s : x = 40 \ m \\ \end{array}\right.

Substituindo estes valores em (1):

\displaystyle v_m =\frac{40 \ m-10 \ m}{5 \ s- 0 \ s}=\frac{30}{5}\times\frac{m}{s}

\displaystyle v_m= 6 \ m/s

Exercício 9 .

A equação de um MRU é:

\displaystyle x=10+20 \ t \ (SI)

Determine o deslocamento no intervalo de { 4 \ s \leq t \leq 7 \ s }

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Nos casos de MRU sem mudança de direcção, o deslocamento, em módulo é igual a distância percorrida no intervalo {\Delta t } definido.
Para determinarmos o deslocamento, precisamos da posição inicial e final.

No intervalo

\displaystyle 4 \ s \leq t \leq 7 \

A posição inicial é obtida da seguinte forma:

\displaystyle t= 4 \ s \Rightarrow x_0= 10+20 \times t_0=10+20 \times 40

Obtemos:

\displaystyle x_0=90 \ m

A posição final é obtida da seguinte forma:

\displaystyle t= 7 \ s \Rightarrow x=10+20 \times t=10+20 \times 7

\displaystyle x=150 \ m

O deslocamento é :

\displaystyle \vert \overrightarrow{\Delta s} \vert= \Delta x=x - x_0 =150 \ m -90 \ m

\displaystyle \Delta x = 60 \ m

Exercício 10 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .
NÍVEL DE DIFICULDADE: Elementar.

Resolução 10 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \frac{\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \frac{\Delta s}{v}

Substituindo os dados na formula anterior, obtemos:

\displaystyle \Delta t = \frac{10,000 \ m}{1,5 \ m/s} = 6,66 \times 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \times 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h\rightarrow \rightarrow 3600 \ s \\ x \rightarrow \rightarrow 6,66 \times 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \times 3600 \ s= 1 \ h \times6,66 \times 10^3 \ s

\displaystyle \Rightarrow x = \frac{1 \ h \times 6,66 \times 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 11 .

A equação horária de um móvel é { x = 100+50 \times t } . Qual séria a sua equação horária se a posição fosse dada em Km e o tempo em h?..

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Dados

{ x = 100+50 \times t } .

A equação horária, na forma escalar é dada como:

\displaystyle x= x_0+ v \times t \ \ \ \ \ (8)

A equação horária do móvel é:

\displaystyle x= 100+50 \times t \ \ \ \ \ (9)

Ao comparar-mos ambas equações, obtemos os seguintes dados:

\displaystyle \begin{array}{ccccccccc} x_0=100 \ m \\ v=50 \ m/s \\ \end{array}

Para escrever-mos a equação horária,com a posição dada em Km e o tempo dado em h, devemos transformar { x_0 = 100 \ m} e {v =50 \ m/s } nas unidades respectivas, usando o sistema (regra) de três simples.

Então temos:

\displaystyle \begin{array}{ccccccccc} 1 \ km \rightarrow  1000 \ m \\ x_0 \rightarrow  100 \ m \\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x_0 \times 1000 \ m =1 \ km \times 100 \ m

\displaystyle \Rightarrow x_0=\frac{1 \ km \times 100 \ m}{1000 \ m} x_0=0.1 \ km

E:

\displaystyle 36\ km/h \rightarrow 10 \ m/s

\displaystyle v \rightarrow 50 \ m/s

Logo:{x_0=0,1 \ km } e { v=180 \ km/h }.

Então:

Substituindo estes valores em na equação horária do MRU, obtemos:{ x=0.1+180 \times t }.

Portanto, para a posição dada em km e tempo em h, temos a equação horária:

\displaystyle x=0.1+180 \times t

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais

— 1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —

Exercício 5 .

Considere o sistema representado abaixo.Considerando a origem do referencial sua base direita do prédio, o Eixo ox horizontal dirigido a esquerda e o Eixo oy vertical e dirigido para cima.

Determine a posição dos pontos A, B e C.

NÍVEL DE DIFICULDADE: Elementar

Resolução 5 .

O referencial(bidimensional) do sistema é necessário ser traçado para a determinação da posição dos pontos A, B e C. Logo temos as seguintes características do referencial:

* Eixo Ox: eixo horizontal dirigido da direita para a esquerda;

* Eixo Oy: eixo vertical dirigido para cima;

* Origem do referencial: base direita do prédio.\

.

Aposição do ponto A tem coordenada { 50 \ m} na horizontal e { 100 \ m } na vertical, então :

\displaystyle B(50,100)\ m

onde

\displaystyle x_A=50 \ m

\displaystyle y_A=100 \ m

A posição do ponto B tem coordenada { -40 \ m } na horizontal e 0 na vertical, então:

\displaystyle B(-40,0) \ m

Onde:

\displaystyle x_B=-40 \ m

\displaystyle y_B=0

A posição do ponto C tem coordenada {-35 \ m } na horizontal e { 20 \ m} na vertical então:

\displaystyle C(-35,20) \ m

\displaystyle x_C= -35 \ m

\displaystyle x_C= 20 \ m

Exercício 6 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Dados .

{ v= \frac{5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \times t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \times t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \times t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s}:

\displaystyle x= 5 + 2,5 \times 25= 67,5 \ m

\displaystyle x=67,5 \ m

Resolução 7 .

Calcule a velocidade média do móvel da figura abaixo, se { t_1=10 \ s } e é { t_2= 20 \ s }, no movimento { A\rightarrow B \rightarrow C }.

.

Resolution 7 . Dados

{ t_1=t_{A\rightarrow B} = 10 \ s } .

{ t_2=t_{B\rightarrow C} = 20 \ s }. Por definição a velocidade média de um móvel é dada por:

\displaystyle \overrightarrow{v_m}=\frac{\overrightarrow{\Delta s}}{\Delta t}

.

{ \overrightarrow{\Delta s} } – Vector deslocamento.

{ \Delta t } – Intervalo de tempo total durante o movimento.

Em módulos:

\displaystyle v_m=\frac{\Delta s}{\Delta t}

.

Portanto, para determinar a velocidade média precisamos determinar o deslocamento { A\rightarrow B \rightarrow C } e o tempo total para o móvel sair de A para C.

Note que o vector deslocamento é o vector que une a posição inicial à posição final, ou seja, no nosso caso {\overrightarrow{\Delta s}=\overrightarrow{AC}}

Então temos:

\displaystyle \Delta s= \sqrt{(x_C-x_A)^2+(y_C-y_A)^2} \ \ \ \ \ (4)

A equação 4 é a fórmula para o cálculo de distancia em um sistema bidimensional.Considerando o ponto de partida A e o de chegada C, :

A(10,20) e B(20) considerando a abcissa y e a ordenada x.

Portanto, temos:

\displaystyle (x_C - x_A)= (40-10)=30 \\ (y_C - y_A)= (30-20)=10 \ \ \ \ \ (5)

.

Substituindo 7 em 4, obtemos:

\displaystyle \Delta s_{A-C}= \sqrt{(30)^2+(10)^2}=31,6 \ m

O tempo { \Delta t } do movimento de { A \rightarrow B \rightarrow C } é a soma dos tempos de { A \rightarrow B } e de { B \rightarrow C }.

Dos dados temos temos

\displaystyle t_{A-B} = 10 \ s e t_{B-C}= 20 \ s

Então

\displaystyle \Delta t = t_{A-B} + t_{B-C} =10+20=30 \ s \Delta t = 30 \ s

Sendo assim:

\displaystyle v_m = \frac{\Delta s}{\Delta t} = \frac{31,6 \ m}{30 \ s} = 1,05 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

Exercício 1 .

Dois vectores têm módulos 3 e 5 unidades.

  1. Qual deverá ser o ângulo entre eles para que o vector resultante tenha módulo de 4 unidades?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

  1. Consideremos que os vectores de módulo 3 e 5 unidades são os vectores {\overrightarrow{u} e \overrightarrow{v}}, respetivamente, e o vector resultante de módulos 4 unidades é o vector {\overrightarrow{w}}.Consideremos também que { \theta} é o ângulo que os vectores {\overrightarrow{u} e \overrightarrow{v}} formam entre si. Daqui, temos os ângulos dados:Dados{\vert \overrightarrow{u} \vert=3 } .{ \vert \overrightarrow{v} \vert=5} .

    { \vert \overrightarrow{w} \vert=4} .

    { \theta \rightarrow ? }

    A adição de vectores, dada pela regra do paralelogramo, relacionas aos seus módulos através da lei dos cossenos.

    \displaystyle \textbf{Lei do Cosseno}:\vert \overrightarrow{w}\vert^2=\vert\overrightarrow{u}\vert^2+\vert\overrightarrow{v}\vert^2+2\times\vert\overrightarrow{u}\vert\times\vert\overrightarrow{v\vert}\times \cos\theta

    * Substituindo os dados:

    \displaystyle (4)^2=(3)^2+(5)^2+2\times(3)\times(5)\times \cos\theta

    \displaystyle 16=9+25+30\times \cos\theta

     Isolando {\cos\theta:}

    \displaystyle \cos \theta =\frac{16-(9+25)}{30}=\frac{16-34}{30}=\frac{18}{30}=-0.6

    O valor de { \theta: \theta=\arccos(-0.6)=126,869^o }

    \displaystyle \theta\cong 126,9^o

.

Exercício 2 .

Um Arco tem ângulo de 1,5 radiano.
Qual é o valor deste ângulo em graus?

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Para determinar o ângulo do arco em graus, vamos usar a regra de três simples, sabendo que { \pi } radiando equivale a { 180^o }. Com isto,temos as seguintes rotações:

\displaystyle \pi \ rad \rightarrow\rightarrow180^o

\displaystyle 1,5 \ rad \rightarrow\rightarrow \theta

Onde 1.5 é o ângulo do arco em radiano e {\theta} o ângulo do arco em graus que se pretende determinar.

Desta forma, temos:

\displaystyle \theta \times \pi=1,5 \ rad \times 180^o

Isolando {\theta}:

\displaystyle \theta=\frac{1,5 \ rad \times 180^o}{\pi \ rad}=\frac{270^o}{\pi}=85,94^o

Portanto:

\displaystyle \theta=85,9^o

.

Exercício 3 .

Um disco circular tem raio de { 5 \ m}. Qual é o cumprimento deste disco?
NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Dados

{ r= 5 \ m }

O cumprimento de um arco é:

\displaystyle l= \alpha \times r

onde {\alpha} é o ângulo do arco em radianos.

Para o nosso caso, o cumprimento de um disco circular é:

\displaystyle l=2 \pi \times r

Substituindo:

\displaystyle r=5 \ m \ em (1): l= 2 \pi \times 5 \ m= 31,415 \ m

Portanto, o cumprimento do disco é de:

\displaystyle 31,415 \ m.

Exercício  4 .

Dois vectores {\overrightarrow{a}} e { \overrightarrow{b}} tem módulo iguais a { 3 \ m} e {5 \ m },respetivamente.

Qual é o módulo de vector { \overrightarrow{c} }, se {\overrightarrow{c}=3\overrightarrow{a}-\overrightarrow{2b}} e o ângulo entre { \overrightarrow{a} } e { \overrightarrow{b} } for de { 30^o }?
NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

Dados .

{ \vert \overrightarrow{a} \vert =3 \ m } .

{ \vert \overrightarrow{b} \vert =5 \ m } .

{ \overrightarrow{c}=3\overrightarrow{a} - 2\overrightarrow{b}} .

{ \theta \rightarrow 30^o} .

{ \vert \overrightarrow{c} \vert=? }

Consideremos os vectores {\overrightarrow{a} e \overrightarrow{b}}.

Os vectores {\overrightarrow{a}} e {\overrightarrow{b}} formando {30^o} entre si {(\theta=30^o)}

Entretanto, o vector {\overrightarrow{c}} é dado como {\overrightarrow{c}=3\overrightarrow{a}-2\overrightarrow{b}}. Sendo assim, consideremos os vectores {3\overrightarrow{a} } e { 2\overrightarrow{b}} , isto é,os vectores {\overrightarrow{a}} e {\overrightarrow{b}} com dimensões triplicando e dobrada, respetivamente.

Por outro lado o vector {\overrightarrow{c}} representa a diferença entre {3\overrightarrow{a}} e {2\overrightarrow{b}} neste caso a resultante é:

Calculando {\beta}:

\displaystyle \beta+\theta=180^o \ \Rightarrow \beta=180^o-\theta

Como { \theta=30^o },temos: { \beta=180^o-30^o=150^o \ \Rightarrow \beta=150^o }\

O módulo de vector { \overrightarrow{c} } , é dada pela lei dos cossenos.\

Lei dos Cossenos:

\displaystyle \vert\overrightarrow{c}\vert^2=\vert3\overrightarrow{a}\vert^2+\vert2\overrightarrow{b}\vert^2+2\times\vert3\overrightarrow{a}\vert \times \vert2\overrightarrow{b} \vert\times \cos\beta

\displaystyle \vert\overrightarrow{c}\vert^2=9^2+10^2+180\times\cos150^o=181-155,88=25,12

\displaystyle \vert \overrightarrow{c} \vert ^2=25,12 \ \Rightarrow \vert\overrightarrow{c}\vert=\sqrt{25,12}=5,01

\displaystyle \rightarrow \vert\overrightarrow{c}\vert=5,01

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

Deixe a sua interacção nos comentários deste Post;
Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
Partilhe este Post nas tuas redes sociais.

%d bloggers like this: