Luso Academia

Início » 00 Geral

Category Archives: 00 Geral

Anúncios
Anúncios

Aula 1: Estatística

 

Elementos de Estatística Matemática

Nesta Unidade, serão abordados temas relacionados ao método estatístico. Oferecer exemplos de tabelas e gráficos que podem representar de forma sintética, as informações obtidas através de processos de pesquisa, são objectivos específicos desta unidade que têm o propósito de: Demonstrar a importância da Estatística na vida diária; Mostrar como podemos utilizar de forma correcta;

Introdução à Estatística

A palavra Estatística lembra, a maioria das pessoas, recenseamento; Os censos existem a milhares de anos e constitui um esforço imenso e caro feito pelos governos, com objectivo de conhecer seus habitante, sua condição sócio económica, sua cultura, religião, etc.

Portanto, associar à estatística a censo é perfeitamente correto do ponto de vista histórico, sendo interessante salientar que as palavras ESTATÍSTICA e ESTADO têm a mesma origem latina; “STATUS”.

É possível distinguir duas concepções para a palavra Estatística ; No Plural (Estatísticas) indica qualquer coleção de dados numéricos, reunidos com a finalidade de fornecer informações acerca de uma actividade qualquer.

Assim, por exemplo, as estatísticas demográficas referem-se aos dados numéricos sobre nascimento, falecimento, matrimónio, desquites, etc.

As estatísticas económicas consistem em dados numéricos relacionados com emprego, produção, e com outras actividades ligadas aos vários sectores de vida económica.

No singular (Estatística) indica a actividade humana, especializada, ou um corpo de técnicos ou ainda uma metodológica desenvolvida para a colecta, classificação, a apresentação, a análise e a interpretação de dados quantitativos e a utilização desses dados para tomada de decisões.

Importância da Estatística O mundo esta repleto de problemas. Para resolvermos a maioria deles, necessitamos de informações. Mas que tipo de informação {?} Que quantidade de informação {?} Após obtê-las, que fazer com elas {?}

A Estatística trabalha com essas informações, associando os dados ao trabalho, descobrindo como é, o que colectar, assim capacitando o pesquisador, a obter conclusões a partir dessas informações de tal forma que possam ser entendidas por outras pessoas.

vejamos alguns exemplos:

Exemplo 1 Os Estatísticos do governo conduzem censos de população, morada, produtos, industriais, agricultura, e outros. São feitas compilações sobre vendas, produção, inventário, folha de pagamento e outros dados das industriais e empresas. Essas Estatísticas informam ao administrador como a sua empresa está crescendo, seu incremento em relação a outras empresas e fornece-lhe condições de planear ações futuras. A análise dos dados é muito importante para se fazer um planeamento adequado.
Exemplo 2 Na era da energia nuclear, os estudos estatísticos têm avançado rapidamente e, com seus processos e técnicas, têm contribuído para organização de empresas e utilização dos recursos do mundo moderno.

Em, geral, as pessoas quando se referem ao termo estatística, desconhecem que o aspecto essencial, é o de proporcionar métodos inferenciais, que permitam conclusões que transcendam os dados obtidos inicialmente.

Próximo Capítulo: Grandes áreas da Estatística….

Anúncios

Topologia – Introdução

Topologia

— 1. Espaços Métricos —

A topologia, literalmente, a ciência da forma, é uma área da Matemática, muito ligada à Geometria e Análise, que têm como objectivo fundamental a análise do conceito de continuidade entre espaços.

Existem duas maneiras de se introduzir uma estrutura topológica em um espaço, a primeira através da noção de distância entre elementos de um conjunto, que passará a ser um espaço métrico, a outra, numa abordagem mais conjuntista e abstracta, utilizando a noção primitiva de conjunto aberto. Nas primeiras aulas abordaremos principalmente a primeira maneira, por ser talvez a mais intuitiva e também por cumprir com os objectivos que preconizamos.

Definição 1 Seja {X} um conjunto não vazio. A aplicação {d:X\times X\longrightarrow\mathbb{R}} define uma distância ou métrica em {X} se as condições abaixo são cumpridas {\forall x,y,z\in X}:

  1. {d(x,y)\geq 0}, com igualdade se e só se {x=y}
  2. {d(x,y)=d(y,x)}
  3. {d(,y)\leq d(x,z)+d(z,y)}.
Comentário 1 Ao par {(X,d)} chamamos de espaço métrico mas, muitas vezes omitiremos a notação anterior à favor de uma mais simples, i.e., denotaremos um espaço métrico apenas pela letra {X}.

Do axioma 3 obtemos por indução a desigualdade triangular generalizada:

\displaystyle  d(x_{1},x_{n})\leq d(x_{1},x_{2})+d(x_{2},x_{3})+\cdots+d(x_{n-1},x_{n}) \ \ \ \ \ (1)

Um subespaço {(Y,\rho)} de um espaço métrico {(X,d)} é obtido se tomarmos o subconjunto {Y\subset X} e restringirmos {d} a {Y\times Y}, assim a métrica em {Y} é a restrição

\displaystyle \rho=d\mid _{Y\times Y}

A definição acima nos mostra claramente que em um mesmo conjunto podemos definir várias métricas, ou seja, várias maneiras de se medir distâncias. Um dos conjuntos mais famosos que possui várias distâncias nele definidas é o conjunto dos números reais {\mathbb{R}}.

Exemplo 1 1. O conjunto dos Números Reais {\mathbb{R}}. Munido com a distância:

\displaystyle d(x,y)=\mid x-y\mid

Esta é com certeza a distância mais famosa em matemática, pois quase toda a análise elementar é feita usando esta métrica e é também bastante intuitiva, vamos provar que os números reais com essa distância é de facto um espaço métrico. Demonstração: (i) Vamos verificar o primeiro axioma, {d(x,y)\geq 0} e {x=y \Longleftrightarrow d(x,y)=0}. Então temos,

\displaystyle d(x,y)\geq 0 \Longleftrightarrow d(x,y)=\mid x-y\mid \geq 0

o que é evidente pela definição de módulo. Resta demonstrar a segunda parte do axioma 1, temos então

\displaystyle d(x,y)= 0 \Longleftrightarrow \mid x-y \mid =0

\displaystyle \Longleftrightarrow x-y=0

\displaystyle \Longleftrightarrow x=y

a reciproca é evidentemente verdadeira, se tomarmos {x=y} então {d(x,x)=0}. (ii)O segundo axioma também é simples de demonstrar,

\displaystyle d(x,y)=\mid x-y\mid =\mid (-1).(y-x)\mid = \mid (-1)\mid \mid y-x\mid 		=\mid y-x\mid = d(y,x)

(iii)Para demonstrarmos a desigualdade triangular vamos precisar da desigualdade triangular nos reais, i.e.,

\displaystyle \mid x-y\mid \leq \mid x\mid + \mid y\mid

Fazendo uso de um pequeno artifício temos,

\displaystyle (x-y)=(x-z)+(z-y)

Então,

\displaystyle \mid x-y\mid \leq \mid (x-z)+(z-y)\mid \leq \mid x-z\mid +\mid z-y\mid

assim demonstramos que o par {(\mathbb{R},d)} é um espaço métrico. \Box

Exemplo 2 Ao tomarmos qualquer conjunto {X\neq \emptyset} podemos definir nele a seguinte métrica,

\displaystyle  \rho(x,y) = \left \{ \begin{array}{cl} 1 & \mbox{, } x\neq y\\ 0 & \mbox{, } x= y \end{array}\right.

O exemplo a seguir foi tirado do livro an epsilon of room, escrito por Terence Tao, e é muito interessante porque mostra como a partir de duas métricas podemos formar outras métricas, chamadas de métricas produto.

Exemplo 3 Dado dois espaços métricos {X=(X,d_{X})} e {Y=(Y,d_{Y})}, podemos definir o produto {X\times Y=(X\times Y,d_{X}\times d_{Y})} como sendo o produto cartesiano {X \times Y} com a métrica produto

\displaystyle  d_{X}\times d_{Y}((x,y),(x',y')):=\max \{d_{X}(x,x'),d_{Y}(y,y')\}

ou ainda

\displaystyle  d_{X}\times d_{Y}((x,y),(x',y')):= d_{X}(x,x')+d_{Y}(y,y')

Importância da astronomia.

Neste vídeo eu (Cláudio Naval) falo um pouco sobre a importância da astronomia para as outras ciências, tecnologia e porque é tão importante sabermos mais sobre o universo que nos rodeia. Espero que gostem e que se inscrevam no canal para mais conteúdo audiovisual sobre ciência.

Cometas

Cometa é um corpo menor do sistema solar que quando se aproxima do Sol passa a exibir uma atmosfera difusa, denominada coma, e em alguns casos apresenta também uma cauda, ambas causadas pelos efeitos da radiação solar e dos ventos solares sobre o núcleo cometário. Os núcleos cometários são compostos de gelo, poeira e pequenos fragmentos rochosos, variando em tamanho de algumas centenas de metros até dezenas de quilômetros.

(Imagem do site http://www.cdcc.usp.br)

Nomenclatura dos cometas :

Periódicos: são cometas que possuem órbita elíptica bem alongada e geralmente voltam à vizinhança solar em períodos inferiores a 200 anos. Os nomes destes cometas começam com P ou de um número seguido de P.

Não periódicos: são cometas que foram vistos apenas uma vez e geralmente possuem órbitas quase parabólicas retornando à vizinhança solar em períodos de milhares de anos, caso retornem. Os nomes dos cometas não periódicos começam com C.

Extintos: são cometas que já desapareceram por terem impactado com outro astro ou se desintegrado em suas passagens muito próximas e frequentes do Sol. Seus nomes costumam ser alterados para começarem com a letra D.

Exemplo de alguns cometas

Cometa Halley

Oficialmente designado 1P/Halley, é um cometa periódico, descoberto em 1696 por Edmond Halley, visível na Terra a cada 74-79 anos. A sua última aparição foi em 1986, e o seu retorno está marcado para 2061.

Cometa Encke

O Cometa Encke oficialmente denominado de 2P/Encke, tem seu afélio próximo a órbita de Júpiter. O periélio esta dentro da órbita de Mercúrio. Foi descoberto em 1786 por Pierre Méchain , após o cometa Halley. Tem um núcleo estimado de 4,8 km.

Cometa West

O Cometa West foi um cometa que alguns especialistas consideraram na categoria de ” grande cometa “. Foi descoberto no ano de 1975 no dia 10 de agosto, foi descoberto fotograficamente por Richard M. West, no Observatório Europeu do Sul, e alcançou seu brilho máximo em março de 1976 , com uma magnitude de -3 para no seu periélio.

Qual é a sua origem, e o seu destino?

A vida média dos cometas não ultrapassa 10 milhões de anos. Acredita-se que os núcleos dos cometas estão vagando pelo espaço fora do sistema solar. Devido ao movimento do Sol ao redor do núcleo galático esses objetos são capturados pelo campo gravitacional do Sol e se transformam em cometas. Foi susposto na década de 50 por Jan Hendrik Oort (1900) existência de uma nuvem de cometas (Nuvem de Oort), próxima do Sol (em relação às distâncias galáticas), a cerca de 100.000 ua. Essa nuvem está distribuida de forma esférica ao redor do Sol. Sua origem pode ser os próprios restos do sistema solar, que se solidificou nessa região. Algumas anomalias gravitacionais provocadas pelas estrelas próximas, podem tirar alguns corpos de suas posições e esses serem atraídos pelo Sol. Ao entrarem em direção ao sistema solar, esses corpos poderão adquirir três tipos de órbita:

Parabólica e Hiperbólica – que se aproximam uma única vez do Sol e retornam ao espaço inter-estelar. São os cometas não periódicos.

Elíptica – são os cometas periódicos. Esse tipo de órbita é geralmente é provocada pela influência gravitacional dos planetas, pricipalmente Júpiter e Saturno, que têm a tendência de prenderem os cometas ao sistema solar.

Um cometa pode entrar em atividade centenas de vezes até morrer ou ficar inativo o que acontece quando a acumulação de pedras e cascalho cobre o gelo não permitindo o seu aquecimento e consequente evaporação.

Espero que tenham gostado de conhecer mais um pouco sobre um dos corpos menores do sistema solar. Gostou do artigo?! Comente, a sua avaliação é muito importante para nós.

Fontes: Origem dos cometas: http://www.cienciamao.usp.br/tudo/exibir.php?midia=esc&cod=_qualaorigemdoscometas

http://ensina.rtp.pt/artigo/cometas/

Conceito de cometas e a nomenclatura : https://pt.m.wikipedia.org/wiki/Cometa

Créditos de imagem: http://www.eso.org/public/images/c-west-1976-ps/

https://thoth3126.com.br/cometa-sem-cauda-de-antigo-passado-do

Astronomia bear X Luso academia

Astronomia bear é uma página voltada para conteúdos científicos mas mais especificamente Astronomia. Em uma parceria com a Luso academia, eu Cláudio Naval(dono da página astronomia bear) irei postar conteúdos sobre astronomia neste blog , para que o leitor aprenda mais um pouco sobre o nosso universo.

Espero que gostem dos temas e que deixem sempre a vossa opinião acerca do artigo.

Cláudio Naval

Link para as paginas:

Instagram: https://www.instagram.com/astronomia_bear/

Facebook: https://m.facebook.com/ASTRONOMIABEAR/

YouTube: https://m.youtube.com/channel/UCqvNXhj_83HONlUkrmt8S5A

Curso de Astronomia – Primeira Sessão

Tal como já havíamos anunciado neste artigo do nosso blog: Curso de Astronomia – 1º Programa – Luso Academia a Luso Academia em conjunto com o Acelera Angola está a realizar um curso de Astronomia para poder divulgar esta ciência para o público em geral.

Hoje decorreu a primeira sessão do nosso curso e tivemos a comparência de várias pessoas interessadas que ao longo da sessão fizeram perguntas e comentários muito pertinentes.

Partilhamos com os os nossos leitores algumas fotografias e um vídeo da sessão e esperamos poder contar convosco para a segunda sessão que será já no próximo sábado.

 

 

 

Resolução de Exercícios – Movimento Circular Uniforme

— 1. Introdução —

A pedido de uma participante de um grupo de facebook do qual a Luso Academia é um membro propomos as seguintes resoluções para os exercícios apresentados.

— 2. Exercícios —

Exercício 1 Um corpo executa um movimento harmónico simples, e as suas posições são observadas numa régua graduada em centímetros posicionada atrás do corpo. Inicialmente, em {t=0\,\mathrm{s}}, a posição ocupada pelo corpo na régua de {8,0\,\mathrm{cm} } corresponde à máxima elongação. em {t=0,1 \pi\,\mathrm{s}} o corpo passa pela primeira vez na posição {2,0\,\mathrm{cm}} com velocidade nula.

Determine o módulo da aceleração máxima do corpo nesse movimento.

Como sabemos as equações de movimento para o movimento harmónico simples podem ser escritas do seguinte modo:

  • {x(t)=A\cos(\omega t)}
  • {v(t)=-A\omega\sin(\omega t)}
  • {v(t)=-A\omega ^2\cos(\omega t)}

Assim sendo o módulo da aceleração máxima deste movimento é dada por {A\omega ^2} sendo que nos resta determinar os valores para {A} e {\omega}.

Pelo enunciado sabemos que para {t=0} é válido o seguinte

\displaystyle  x(0)=A\cos(\omega 0)=8 \Rightarrow A\cos (0)=8 \Rightarrow A=8

Também pelo enunciado sabemos que para a equação de velocidade é válido o seguinte:

\displaystyle  v(0,1\pi)=-8\omega\sin(0,1\pi \omega)=0

o que implica que o argumento da função seno tem que ser igual a {\pi}, pois a velocidade é nula.

Assim é

{\begin{aligned} \omega &= \frac{\pi}{0,1\pi} \\ &=\frac{1}{0,1} \\ &= 10 \end{aligned}}

Após calcularmos o valor de {A} e de {\omega} podemos então calcular o valor do módulo da aceleração máxima.

{\begin{aligned} |a_{max}| &= A\omega ^2 \\ &=8\times 100^2 \\ &= 800\,\mathrm{m/s^2} \end{aligned}}

Exercício 2 Um movimento circular uniforme de raio {R=40\,\mathrm{cm}} possui velocidade tangencial {2,0\,\mathrm{m/s}} e um ângulo inicial de {30 ^\circ } em relação ao eixo {x} girando no sentido anti-horário.

Considerando o MHS descrito pela projecção desse movimento no eixo {x}, determine a função velocidade do MHS (nas unidades do Sistema Internacional.

Uma vez que neste exercício faz sentido considerar uma fase inicial vamos escrever as equações de movimento na forma:

  • {x(t)=R\cos(\omega t -\varphi)}
  • {v(t)=-R\omega\sin(\omega t-\varphi)}
  • {v(t)=-R\omega ^2\cos(\omega t-\varphi)}

Pelo enunciado sabemos que para {v(0)} é válido o seguinte

{\begin{aligned} 2 &= -40\omega\sin(-\pi /6) \\ 2 &= 40\omega\sin(\pi /6) \\ 2 &= 40\omega\frac{1}{2} \\ 2 &=20\omega \end{aligned}}

Assim sendo temos que a velocidade angular é dada por

\displaystyle  \omega = 0,1 \mathrm{rad} /s

Assim a expressão para a velocidade fica

\displaystyle  v(t)=-4\sin\left(0,1t-\dfrac{\pi}{6}\right)

%d bloggers like this: