Luso Academia

Início » Posts tagged 'Dilatação Térmica'

Tag Archives: Dilatação Térmica

1.1. Exercício sobre Dilatação Térmica (Parte 2)

Exercício 4 Considere o micro-sistema abaixo formado por duas pequenas peças metálicas, I e II, presas em duas paredes laterais. Observamos que na temperatura de {16 \ ^oC}, a peça I, tem tamanho igual {2 \ cm}, enquanto que a peça II possui apenas {1 \ cm} de comprimento. Ainda nesta temperatura as peças estavam afastadas por uma pequena distância {d} igual à {6 \cdot 10^{-3}\ cm}. Sabendo que o coeficiente de dilatação linear da peça I é igual a {4 \cdot 10^{-5}(^oC)^{-1}} e que o coeficiente de dilatação linear dada peça II é igual à {5 \cdot 10^{-5}(^oC)^{-1}}, qual deverá ser a temperatura do sistema, em graus Celsius, para que as duas peças estejam afastadas a uma distância igual ao dobro de {d}?

 

NÍVEL DE DIFICULDADE: Regular.

Resolução 4 .
Trata-se de um exercício sobre dilatação linear, quando um corpo o sistema é submetido a variações de temperaturas.A figura do enunciado, na situação 1 apresenta o fenómeno quando o sistema estava em uma temperatura {t_o} e as peças tinham comprimentos {l_{o1}} e {l_{o2}}, respectivamente, e estavam separadas a uma distância {d}.

 

A situação 2, representada na figura a seguir, apresenta o fenómeno de dilatação, quando o sistema sofre variação de temperatura {t_o} para {t} e as dimensões das peças também variam de {l_{o1}} para {l_1} e de {l_{o2}} para {l_2}, respectivamente, e a distâncias entre as peças aumenta de {d} para {2d}.

Dados

{t_o =16 \ ^oC}

{l_{o1} = 2 \ cm}

{l_{o2} = 1 \ cm}

{d = 6 \cdot 10^{-3} \ cm}

{\alpha_1 = 4 \cdot 10^{-5} \ ^oC^{-1}}

{ \alpha_2 = 5 \cdot 10^{-5} \ ^o C^{-1}}

{t \longrightarrow ?} {d' = 2d}

Temos a equação de dilatação linear que é:

\displaystyle \Delta l = \alpha l_o\Delta t

A equação da dilatação para as peças será:

\displaystyle \left\{\begin{array}{cccccccc} \Delta l_1 &=& \alpha_1 l_{o1}\Delta t\ \ (1)\\ \Delta l_2 &=& \alpha_2 l_{o2}\Delta t\ \ (2) \end{array} \right.

Para que as peças estejam separadas a uma distância igual ao dobro de {d}, é necessário que as duas peça se comprimam a uma distância total igual a {d}, como vimos na figura anterior.

Assim é suficiente que:

\displaystyle \Delta l_1 = l_1 - l_{o1}\ \ \ e\ \ \Delta l_2 = l_2 - l_{o2}

Sabemos que: {\Delta l_1+ \Delta l_2=-d}. A diminuição total de comprimento deve ser d. O sinal de menos (-) aparece devido ao facto de estarmos a lidar com uma diminuição de comprimento (variação negativa). Então:

\displaystyle -d = \alpha_1 l_{o1}\Delta t + \alpha_2 l_{o2}\Delta t

\displaystyle \Rightarrow -d = \Delta t (\alpha_1 l_{o1} + \alpha_2 l_{o2})

Isolando {\Delta t} na equação, obtemos:

\displaystyle \Delta t = \dfrac{-d}{\alpha_1 l_{o1} + \alpha_2 l_{o2}}

Substituindo os valores:

\displaystyle \Delta t = \dfrac{-6 \cdot 10^{-3} \cdot 10^{-2} }{4 \cdot 10^{-5} \cdot 2 \cdot 10^{-2} + 4 \cdot 10^{-5} \cdot 1 \cdot 10^{-2} }

\displaystyle \Delta t = -46,15 \ ^oC

Sabemos que a variação da temperatura é dada por:

\displaystyle \Delta t = t - t_o

\displaystyle ou \ t - t_o = \Delta t

Isolando {t}, tem-se:

\displaystyle t = \Delta t + t_o

Substituindo os valores de {\Delta t} e {t_o}, tem-se:

\displaystyle t = -46,15 \ ^oC + 16 \ ^oC

\displaystyle t = -30,15 \ ^oC

Exercício 5 Dois corpos, A e B, de massas { m_{A} = 600 \ g } e { m_{B} = 300 \ g }, são aquecidos separadamente por uma mesma fonte que lhes fornece calor a razão de { 300 \ cal/min}. O gráfico a seguir mostra a variação da temperatura { \theta } dos corpos em função do tempo {t} para o aumento dessa temperatura.

 

Determine:

  1. A relação entre os calores específicos das substâncias que constituem os corpos { (c_{B}/c_{A})} .
  2. Depois de quanto tempo o corpo A atinge a temperatura de { 90 \ ^{o}C }.

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .O problema em questão está relacionado a calorimetria. São dados dois corpos A e B que são aquecidos separadamente através de uma mesma fonte que fornece calor a razão de { 300 \ cal/min }. Esta quantidade de calor por unidade de tempo que a fonte fornece aos corpos representa a potência da fonte, isto é: { P_{F}=300 \ cal/min }. Então temos os seguintes dados.

 

Dados

{ m_{A}=600 \ g}

{ m_{B}=300 \ g}

{ P_{F}=300 \ cal/min}

  1. Buscaremos as equações da quantidade de calor para os corpos A e B.Da calorimetria sabemos que:

    \displaystyle Q=m \cdot c \cdot \Delta \theta \ \ \ \ \ (9)

    Onde:
    m – massa da substância;
    c – calor específico da substância;
    { \Delta \theta} = {(\theta_{f} - \theta_{i})} – variação de temperatura.

    Então temos para o corpo A:

    \displaystyle Q_{A}=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA}) \ \ \ \ \ (10)

    Para o corpo B:

    \displaystyle Q_{B}=m_{B} \cdot c_{B} \cdot(\theta_{fB} - \theta_{iB}) \ \ \ \ \ (11)

    Por outro lado, sabe-se que ambos os corpos, A e B, são aquecidos por uma mesma fonte com potencia { P_{F}=300 \ cal/min}. De acordo com gráfico, os dois corpos são aquecidos durante um intervalo de tempo { \Delta t=10 \ minutos }.

    Sendo assim, os dois corpos recebem a mesma quantidade de calor, isto é, { Q_{A}=Q_{B}=P_F \cdot \Delta t}.

    Dividindo a equação 5 pela 5, obtemos:

    \displaystyle \dfrac{Q_{B}}{Q_{A}}= \dfrac{m_{B}}{m_{A}} \cdot \dfrac{c_{B}}{c_{A}} \cdot (\dfrac{\theta_{fB}-\theta_{iB}}{\theta_{fA}-\theta_{iA}})

    \displaystyle \Rightarrow 1= \dfrac{m_{B}}{m_{A}} \cdot \dfrac{c_{B}}{c_{A}} \cdot (\dfrac{\theta_{fB} - \theta_{iB}}{\theta_{fA} - \theta_{iA}})

    Isolando a razão { \dfrac{c_{B}}{c_{A}}}, obtemos:

    \displaystyle \dfrac{c_{B}}{c_A}= \dfrac{1}{\dfrac{m_{B}}{m_{A}} \cdot \dfrac{\theta_{fB} - \theta_{iB}}{\theta_{fA} - \theta_{iA}}}

    Aplicando a regra de divisão de frações, obtemos:

    \displaystyle \dfrac{c_{B}}{c_{A}}= \dfrac{m_{A} \cdot(\theta_{fA} - \theta_{iA})}{m_{B} \cdot(\theta_{fB} - \theta_{iA})}

    O gráfico inicial dá-nos para o corpo A:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iA}=10 \ ^oC\\ \theta_{fA}=30 \ ^oC\\ \end{array}\right.

    Para o corpo B:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iB}=20 \ ^oC\\ \theta_{fB}=30 \ ^oC\\ \end{array}\right.

    Substituindo os dados, obtemos:{ \dfrac{c_{B}}{c_{A}}= \dfrac{600 \cdot(30-10)}{300 \cdot(30-20)}}

    \displaystyle \dfrac{c_{B}}{c_{A}}=4

    Então, a razão entre os calores específicos das substâncias que constituem os corpos é:

    \displaystyle \dfrac{c_{B}}{c_{A}}=4

  2. Para determinamos o tempo em que o corpo A atinge a temperatura de {90 ^oC}, precisaremos conhecer em primeiro lugar o seu calor específico({c_A}). Vamos obter o valor de { c_{A}} (calor especifico do corpo A) fazendo a análise através do gráfico.Para o corpo A:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iA}=10 \ ^oC \\ \theta_{fA}=30 \ ^oC \\ \end{array}\right.

    Consideremos a equação:

    \displaystyle Q_{A}=m_{A} \cdot c_{a} \cdot(\theta_{fA} - \theta_{iA})

    Entretanto, sabemos que:

    \displaystyle P_{F}=\dfrac{Q_{A}}{\Delta t}

    Isolando {Q_{A}}, temos:

    \displaystyle Q_{A}=P_{F} \cdot \Delta t

    Neste caso:

    \displaystyle P_{F} \cdot \Delta t=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    Onde: { \Delta t=(t_{f} - t_{i})} – Intervalo de tempo.

    Então:

    \displaystyle P_{F} \cdot(t_{f} - t_{i})=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    Isolando { c_{A}}:

    \displaystyle c_{A}= \dfrac{P_{F} \cdot(t_{f} - t_{i})}{m_{A}(\theta_{fA} - \theta_{iA})}

    Substituindo os dados, obtemos:

    \displaystyle c_{A}= \dfrac{300 \cdot(10-0)}{600 \cdot(30-10)}=0,25

    \displaystyle c_{A}=0,25 \ cal/g \cdot \ ^oC

    Obs: Não fizemos conversão pelo SI, mas determinamos a unidade equivalente.

    Agora, analisando para um novo intervalo de tempo desconhecido, buscamos o tempo necessário para que o corpo A atinja a temperatura de { 90 \ ^oC}, isto é, { \theta_{fA}=90 \ ^oC}.

    Sabemos que:

    \displaystyle Q_{A} =m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    \displaystyle \Rightarrow P_{F} \cdot(t_{F} - t_{i})=m_{A} \cdot c_{A}\cdot(\theta_{fA} - \theta_{iA})

    Isolando o intervalo de tempo { t_{f} - t_{i}}, obtemos:

    \displaystyle (t_{f} - t_{i})= \dfrac{m_{A} \cdot c_{A}(\theta_{FA} - \theta_{iA})}{P_{F}}

    Substituindo os dados, obtemos:

    \displaystyle (t_{f} - t_{i})= \dfrac{600 \cdot 0,25 \cdot(90-10)}{300}

    \displaystyle ( t_{f} - t_{i})=40 \ min

    Como no inicio, de acordo ao gráfico, o corpo A em { t_{i}=0} tem temperatura { \theta_{iA}=10 \ ^oC}, como substituindo acima, então temos:

    \displaystyle t_{f}- 0 =40 \ min

    \displaystyle t_{f}=40 \ min

    Portanto, o corpo A atinge de { \theta_{fA}=90 \ ^oC} depois de { 40 \ min} sendo aquecido pela fonte de potencia { P_{F}=300 \ cal/min}.

Exercício 6 Como resultado de um aumento de temperatura de {36 \ ^oC}, uma barra com uma rachadura no centro dobra para cima (ver figura abaixo). Se a distância fixa {L_o} é de {3,78\ m} e o coeficiente de dilatação linear da barra é de {26 \cdot 10^{-6} \ ^oC^{-1}}, determine a altura {x} do centro da barra.

 

NÍVEL DE DIFICULDADE: Regular.

Resolução 6Trata-se do fenómeno de dilatação térmica devido a variação de temperatura. Quando a barra se dilatar, o seu tamanho (comprimentos) aumenta. Fruto desse aumento de comprimento e do orifício já existente, a barra divide-se em duas partes iguais. Se a barra dilatada tem comprimento final { L }, então cada uma das partes (metades) da barra dilatada mede { \dfrac{L}{2} }.

 

Na figura acima, designamos:

A – ponto fixo de ligação da barra a uma extremidade:

B – centro da distancia fixa { L_o };

C – ponto onde, acima do centro, onde a barra se dobra.

{Dados}

{ \Delta t = 36 \ ^oC}

{ L_o = 3,78 \ m}

{ \alpha = 26 \cdot 10^{-6} \ ^oC^{-1}}

{ x \longrightarrow? }

Do triângulo ABC, é válido o Teorema de Pitágoras:

\displaystyle \Big( \dfrac{L}{2} \Big)^2 = x^2 + \Big( \dfrac{L_o}{2} \Big)^2

\displaystyle \Rightarrow \dfrac{L^2}{4} = x^2 + \dfrac{ L_o^2 }{4}

\displaystyle x^2 = \dfrac{L^2}{4} - \dfrac{L_o^2}{4} = \dfrac{L^2 - L_o^2 }{4}

Isolando {x}:

\displaystyle x = \sqrt{ \dfrac{ L^2 - L_o^2 }{4}} \Rightarrow x= \dfrac{ \sqrt{L^2 - L_o^2}}{\sqrt{4}}

\displaystyle x = \dfrac{\sqrt{L^2 - L_o^2}}{2} \ \ \ \ \ (12)

Antes da variação da temperatura a barra tinha o comprimento igual à {L_o}. Depois da variação da temperatura a barra passou a ter um comprimento igual à {L}.

Pela lei da dilatação linear, temos:

\displaystyle \Delta L = \alpha L_o \Delta T

Com { \alpha } em { ^oC^{-1}} e { \Delta t } em { ^o C }. A partir desta equação podemos determinar {L}.

Como { \Delta L = L - L_o }, então:

\displaystyle \Delta L = \alpha L_o \Delta T \Rightarrow L - L_o = \alpha L_o \Delta T

\displaystyle L = \alpha L_o \Delta t + L_o \Rightarrow L = L_o (\alpha\Delta t + 1) \ \ \ \ \ (13)

Substituindo 13 em 12, tem-se:

\displaystyle x = \dfrac{ \sqrt{L^2 - L_o^2} }{2} \Rightarrow x = \dfrac{\sqrt{[L_o (\alpha\Delta t + 1)]^2 - L_o^2}}{2}

\displaystyle \Rightarrow x = \dfrac{\sqrt{L_o^2(\alpha\Delta t + 1)^2 - L_o^2}}{2} \Rightarrow x= \dfrac{\sqrt{L_o^2[(\alpha\Delta t + 1)^2 - 1]}}{2}

\displaystyle \Rightarrow x = \dfrac{\sqrt{L_o^2}\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}}{2} \Rightarrow x= \dfrac{L_o\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}}{2}

\displaystyle \Rightarrow x = \dfrac{L_o}{2}\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}

Substituindo os valores dados, obtemos:

\displaystyle x = \dfrac{3,78 \ m}{2} \cdot \sqrt{(26 \cdot 10^{-6} \cdot 36 \ + 1)^2 - 1}

\displaystyle \Rightarrow x = 0,082 \ m \ \Rightarrow x= 8,2 \ cm

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercício sobre Dilatação Térmica (Parte 1)

— 1. Exercício sobre Calor e Temperatura —

— 1.1. Exercício sobre Dilatação Térmica —

Exercício 1 Um quadrado de área interna de {2,35 \ m^{2}} foi montado com duas hastes de alumínio {(\alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1} )} e duas hastes de aço {(\alpha_{Aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1})}, todos inicialmente à mesma temperatura de {27 \ ^{o}C}, conforme a figura abaixo. O sistema é, então, submetido a um processo de aquecimento, de forma que a variação de temperatura é a mesma em todas as hastes, até a temperatura final de {100 \ ^{o}{\mathbb C}}.

Considerando que no final as hastes de alumínio continuam perpendiculares as hastes de aço, determine a área do plano limitado pelas hastes após o aquecimento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 1 .

O problema em questão trata de dilatação térmica dos corpos (expansão dos corpos). É dada uma área { A_{o}=2,35 \ m^{2}} limitada por duas hastes de alumínio e duas hastes de aço sob uma temperatura { t_{o}=27\ ^{o}C}.

Dado que a área limitada é a área de quadrado, então, de acordo a definição da área de um quadrado, temos que:

\displaystyle A_{o}=l_{o Aco} \cdot l_{o Al} \ \ \ \ \ (1)

Onde:
{ l_{o Aco}} – Comprimento da haste de aço.

{ l_{o Al}} – Comprimento da haste de alumínio.

Por outro lado, para que as hastes de alumínio e de aço formem ou limitem a área de um quadrado deve-se cumprir a seguinte condição:

\displaystyle l_{o Aco}=l_{o Al}=l_o \ \ \ \ \ (2)

Então, cada haste de alumínio e/ou de aço possui um comprimento { l_{o}} inicialmente.

Entretanto, depois de aquecidas as hastes de aço e alumínio, de modo que a variação de temperatura é a mesma em todas as hastes, até a temperatura de { 100\ ^{o}C}, cada uma das hastes, de alumínio e aço, dilatam e ganham novos comprimento { l_{Al}} e { l_{Aco}} que são diferentes, pois os seus coeficientes de dilatação linear são diferentes, com { \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}} e { \alpha_{Aco}= 1,2 \cdot 10^{-5} \ ^{o}C^{-1}}.

Dados:
{ A_{0}=2,35 \ m^{2}}
{ t_{0}=27\ ^{o}C}
{ \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}}
{ \alpha_{aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1}}
{ t=100 \ ^{o}C}

Depois do aquecimento até { t=100 \ ^{o}C}, as hastes de alumínio ainda permanecem perpendiculares as hastes de aço, conforme enunciado. Logo, como o aumento nos comprimentos nas hastes, temos uma nova área.

Então, a nova área limitada pelas hastes de alumínio e aço é dada como sendo o produto dos comprimento finais das hastes, { l_{Al}} e { l_{Aco}}, de alumínio e aço respectivamente.

\displaystyle A=l_{Al} \cdot l_{Aco} \ \ \ \ \ (3)

Pela figura acima percebe-se que:

\displaystyle l_{Al}=l_{o} + \Delta l_{Al} \ \ \ \ \ (4)

\displaystyle l_{Aco}=l_{o} + \Delta l_{Aco} \ \ \ \ \ (5)

Onde: { \Delta l_{Al}} e { \Delta l_{Aco}} são os aumentos nos comprimentos das hastes, devido o aquecimento, do alumínio e do aço, respectivamente.

Para determinarmos a área que as hastes de alumínio e aço vão limitar após o aquecimento, substituímos as equações 4 e 5 na equação 3. Obtemos:

\displaystyle A= (l_{o}+\Delta l_{Al}) \cdot (l_{o}+ \Delta l_{Aco}) \ \ \ \ \ (6)

Determinamos { l_{o}} pela equação 3:

\displaystyle A_{o}=l_{o} \cdot l_{o} \Rightarrow A_{o}=l^{2}_{o}

Invertendo a igualdade:

\displaystyle l^{2}_{o}=A_{o} \Rightarrow l_{o} = \sqrt{A_{o}}

Substituindo os dados:

\displaystyle l_{o}=\sqrt{2,35}=1,533 \ m

\displaystyle \\ l_{o}=1,533 \ m

Determinemos { \Delta l_{Al}} e { \Delta l_{Aco}} através da relação da dilatação linear.

Para o alumínio:

\displaystyle \Delta l_{Al}=l_{o} \cdot \alpha_{Al} \cdot (t-t_{o}) \ \ \ \ \ (7)

Substituindo os dados:

\displaystyle \Delta l_{Al}=1,533 \cdot 2,4 \cdot 10^{-5} \cdot (100-27)

\displaystyle \Delta l_{Al}=2,685 \cdot 10^{-3} \ m

Para o aço:

\displaystyle \Delta l_{Aco}=l_{Aco} \cdot \alpha_{Aco} \cdot (t-t_{o}) \ \ \ \ \ (8)

Substituindo os dados:

\displaystyle \Delta l_{Aco}=1,533 \cdot 1,2 \cdot 10^{-5}(100-27)

\displaystyle \Delta l_{Aco}=1,343 \cdot 10^{-3} \ m

Portanto, a área limitada pelas hastes após o aquecimento é:

\displaystyle A=(l_{Al}+\Delta l_{Al}) \cdot (l_{Aco}+ \Delta l_{Aco})

\displaystyle A=(1,533+2,685 \cdot 10^{-3}) \cdot (1,533+1,343 \cdot 10^{-3})

\displaystyle A=2,356 \ m^{2}

Exercício 2 Uma ponte tem comprimento {L_1 = 145 \ m} à temperatura de {{26} \ ^oC}. É construída de uma liga metálica especial com o coeficiente de expansão térmica {\alpha = 1 \cdot 10^{-5} \ (^o{\mathbb C}^{-1})}. Calcule o comprimento {L_2} da ponte quando a temperatura for de {{43} \ ^oC}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 2 .

Trata-se do fenómeno de dilatação térmica que um corpo sofre quando é submetido a variações de temperatura.

Dados

{L_1=145 \ m}

{t_1 ={26} \ ^oC}

{\alpha=1 \cdot 10 \ ^{-5} \ ^oC^{-1}}

{L_2 \longrightarrow?}

{t_2 ={43} \ ^oC}

A equação da dilatação térmica de um sólido é:

\displaystyle \Delta L = \alpha L_1\Delta t

Mas {\Delta L=L_2 - L_1 \ } e {\Delta t = t_2 - t_1}.
Substituindo na equação anterior temos:

\displaystyle \Delta L = \alpha L_1\Delta t \Rightarrow L_2 - L_1 = \alpha L_1(t_2 - t_1)

Isolando {L_2}, tem-se:

\displaystyle L_2 = \alpha L_1(t_2 - t_1) + L_1 \Rightarrow L_2 = L_1[\alpha (t_2 - t_1) + 1]

Substituindo os valores:

\displaystyle L_2= 145 \ [1 \cdot 10^{-5} \ (43 - 26) + 1]

\displaystyle L_2 = 145,025 \ m

Exercício 3 Na temperatura ambiente ({26 \ ^oC}) os carris dos caminhos de ferro são montados em unidades de {12 \ m} de comprimento. Entre duas destas unidades fica sempre uma distância de {8,7 \ mm} livre para compensar expansão térmica dos carris. Calcule a temperatura máxima {T}, que considerou o projectista? O coeficiente da expansão térmica do aço utilizado é de {\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Trata-se do fenómeno de dilatação térmica numa linha férrea. Para sabermos a temperatura máxima {T} considerada pelo projectista é suficiente que a variação do comprimento de cada peça seja igual a distância livre entre elas.

Dados

{t_o ={26} \ ^oC}

{l_o = 12\ m}

{d = 8,6\ mm = 8,6\cdot 10^{-3}\ m}

{t \longrightarrow?}

{\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}

A equação da dilatação linear é:

\displaystyle \Delta l = \alpha l_o \Delta T)

\displaystyle \Rightarrow \Delta l = \alpha l_o (t - t_o)\

Note que a variação de temperatura em Graus Celcius é igual a variação da temperatura em Kelvins.

Para se saber a temperatura máxima considerada pelo projetista é suficiente que, {\Delta l = d}. Substituindo na relação anterior, obtemos:

\displaystyle \Delta l = \alpha l_o (t - t_o) \Rightarrow d = \alpha l_o (t - t_o)

Isolando {t}:

\displaystyle t - t_o = \dfrac{d}{\alpha l_o} \Rightarrow t = \dfrac{d}{\alpha l_o} + t_o

Substituindo os valores de {t}, {l_o}, {d} e {\alpha} na equação anterior, obtemos:

\displaystyle t = \dfrac{8,6 \cdot 10^{-3}}{1,1 \cdot 10^{-5} \cdot 12} + 26

\displaystyle t = 91,15 \ ^oC

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.3. Expansão térmica

Como vimos, o funcionamento do termómetro a gás baseia-se no princípio de expansão térmica… Mas, o que é isso de expansão térmica?

A expansão térmica está associada com o aumento das dimensões (comprimento, área ou volume) de um corpo ou substância qualquer, devido ao aumento de temperatura.

Os mais atentos já puderam observar no dia-a-dia muitas situações de expansão térmica… A expansão térmica vai explicar porquê é que não podemos acelerar demasiado o motor do nosso carro; porquê é que a água quando guardada num recipiente fechado e cheio rebenta após congelar e reduzir consideravelmente de temperatura; porquê é que os balões de ar aquecido voam; etc.

A consequência da dilatação térmica é que a maioria das substâncias, quando submetidas a um aumento de temperatura aumentam também o seu volume.

“Algumas”, porquê? Porque há algumas substâncias que , em certas condições violam este princípio… O exemplo mais simples e comum destas substâncias é a água, que, para temperaturas inferiores a 4ºC, invés de ter uma dilatação térmica, tem uma compressão térmica, isto é, a medida que a temperatura aumenta, o volume diminui. Isto para já explica a razão de que o gelo flutue sobre a água, visto que é menos denso do que ela (para uma mesma massa de água e gelo, o gelo ocupará um volume maior do que a água).

Isto também explica o porquê é que a água quando guardada num recipiente fechado e cheio, rebenta, após reduzir consideravelmente de temperatura (convertendo-se em gelo, e esfriando mais, consequentemente, dilatando mais).
Nota: por isso é que os fabricantes de refrigerantes e outras bebidas líquidas deixam um pequeno espaço sem liquido no interior da garrafa.

A dilatação térmica está, na realidade, associada ao significado microscópico da temperatura e tem dois sentidos de interpretação diferentes: no caso dos sólidos e líquidos, e no caso dos gases.

Como sabemos, a matéria é formada por átomos agregados em moléculas que ficam ligadas umas com as outras (no caso de sólidos e líquidos) ou que se movem quase que livremente (no caso dos gases).

Num sólido ou num líquido, ao aumentarmos a temperatura, estamos aumentando a energia de vibração das moléculas. Lembra-te de que o modelo físico de um sólido é o de um conjunto de moléculas ligadas entre si, mas com pequenos espaços intermoleculares, onde cada molécula vibra em torno de um ponto fixo.

Figura 4: Modelo físico do sólido. [7]

Naturalmente, o aumento das vibrações entre as moléculas levará a que as moléculas sedam parte da sua energia para as moléculas vizinhas, afastando-a mais (para ganhar mais espaço para poder vibrar mais). Isto conduzirá a um aumento das distâncias intermoleculares, conduzindo assim num aumento das dimensões (volume, comprimento, ária) do sólido. Nos líquidos, apesar de a distâncias intermoleculares serem maiores e as interacções intermoleculares também, mas o processo se dá por motivos muito semelhantes.

Nos gases, a dilatação térmica ocorre também, mais por razões diferentes. O modelo de um gás é o de um conjunto de moléculas (monoatómicas, diatómicas ou poliatómicas) que se movem quase que livremente, e que chocam sucessivamente umas com as outras. Explicar com palavras, por vezes é difícil, mas aprendi com um aluno numa das minhas aulas de Física 2, que para imaginarmos o comportamento de um gás monoatómico devemos observar a animação de protecção de ecrã “bolinhas coloridas” ou “bolhas” que vem em algumas edições do sistema operativo Windows.

Portanto, num gás, quando aumentamos a temperatura, estamos aumentando a energia cinética das moléculas que o constituem, ou seja, estamos aumentando a velocidade do movimento de translação (e, eventualmente, de rotação) das suas moléculas. Com isso, aumentarão significativamente as colisões intermoleculares, o que conduzirá a um aumento de pressão, e se as paredes que contêm o gás forem facilmente móveis, conduzira a um aumento de volume. Vale lembrar que o facto de os gases serem muito mais compressíveis do que os líquidos e sólidos, faz com que nem sempre um aumento de temperatura conduza a um aumento de pressão.

— 1.3.3. Dilatação Linear —

A dilatação linear é abordada com mais ênfase nos sólidos, pois , como sabemos, os sólidos têm forma própria. Nos líquidos e nos gases não tem muito de se falar de dilatação linear, visto que eles não têm forma própria, e portanto, quando aquecidos, dilatam- se por onde encontram “espaço livre”.

Imaginemos um corpo sólido qualquer . Vamos supor que uma das suas dimensões (comprimento, largura ou altura) será {L_0} para uma dada temperatura {T}. Se aumentarmos a sua temperatura em {\Delta T}, cada uma das suas dimensões também sofrerá um aumento, no caso de {L_0}, será {\Delta L}. Poderíamos pensar que este aumento é aleatório, mas não. Poderíamos também pensar que toda a elevação de temperatura igual em diferentes barras, mas feitas de um mesmo material ocasionariam um mesmo aumento de tamanho, mas também não. A dilatação linear vai depender da matéria que se dilata, da magnitude da grandeza que se dilata e das diferenças de temperatura.

A dependência da matéria de que é constituída o material que se dilata é descrita através do coeficiente de dilatação linear ({ \alpha}) que vai caracterizar o aumento de magnitude em função da diferença de temperaturas e do comprimento inicial. A unidade de {\alpha} no SI é o {(^0C)^(-1)}.

Figura 5: Coeficientes de dilatação linear de algumas substâncias. [7]

A dependência do comprimento é vista do seguinte modo: se pegarmos em duas barras do mesmo material, mas onde o comprimento da primeira é igual ao dobro do comprimento da segunda e submetermos ambas a uma mesma variação de temperatura, iremos observar que o aumento de comprimento da primeira barra será também igual ao dobro da segunda barra.

A dependência da variação da temperatura é vista do seguinte modo: A mesma barra de comprimento {L_0}, se for submetida a um aquecimento ou arrefecimento que produza uma variação de temperatura “absoluta” {\Delta T_1} ou em outra circunstância for submetida a uma variação de temperatura {\Delta T_2} que seja igual ao dobro de {\Delta T_1}, então veremos que na segunda situação a barra terá uma dilatação igual ao dobro da dilatação da primeira.

Portanto,os diversos parâmetros da dilatação linear estão relacionados a partir da seguinte equação:

\displaystyle \Delta L = L_0 . \alpha . \Delta T \ \ \ \ \ (7)

Vale notar que esta equação é a equação para o aumento de comprimento e não para o comprimento final… O comprimento final (após a dilatação ou compressão térmica) será:

\displaystyle L= L_0+ \Delta L = L_0 + L_0 . \alpha . \Delta T = L_0 ( 1 + \alpha . \Delta T) \ \ \ \ \ (8)

Quando se diminui a temperatura, a luz do que foi postulado anteriormente, as dimensões do corpo também diminuem, mas relações continuam a ser exactamente as mesmas.

Esta formula para a dilatação linear não é exacta, visto que o coeficiente de dilatação linear da maioria das substâncias sofre também variações com a temperatura, mas ela é válida para pequenas variações de temperatura, e, em geral é aplicada deste modo nos estudos mais simples de Física.

— 1.3.4. Dilatação volumétrica —

A dilatação volumétrica ocorre segundo as mesmas leis que a dilatação linear, mas é o um conceito que pode ser aplicado tanto em sólidos, líquidos ou gases. Na realidade é o único que se pode aplicar em líquidos , visto que nestes não se pode falar de dilatação linear.

Quando submetemos um sólidos ou líquido a um aquecimento (ou esfriamento), o seu volume aumenta (ou diminui). Este aumento ou diminuição de volume é, de igual modo como na dilatação linear, directamente proporcional ao volume inicial, ao coeficiente de dilatação volumétrica e a variação de temperatura.

Imaginemos uma substância qualquer (solida ou líquida) . Vamos supor que o seu volume inicial seja {V_0} para uma dada temperatura {T}. Se aumentarmos a sua temperatura em {\Delta T}, o seu volume sofrerá um aumento {\Delta V}.

O aumento de volume será dado pela seguinte equação:

\displaystyle \Delta V = V_0 . \beta . \Delta T \ \ \ \ \ (9)

Vale notar que esta equação é a equação para o aumento de volume e não para o volume final… O volume final (após a dilatação ou compressão térmica) será:

\displaystyle V= V_0+ \Delta V = V_0 + V_0 . \beta . \Delta T = V_0 ( 1 + \beta . \Delta T) \ \ \ \ \ (10)

O parâmetro {\beta} é chamado de coeficiente de dilatação volumétrica, o seu valor varia de substância para substância.

Figura 6: Coeficientes de dilatação volumétrica de algumas substâncias. [7]

É necessário recordar que, para os sólidos, o coeficiente de dilatação volumétrica é igual ao triplo do coeficiente de dilatação linear.

\displaystyle \beta = 3 . \alpha \ \ \ \ \ (11)

Nos sólidos, alem de se falar de dilatação linear e volumétrica, também pode se falar em dilatação superficial, que obedecerá a princípios semelhantes, e cujo coeficiente {\gamma} obedecerá à relação:

\displaystyle \gamma = 2 . \alpha \ \ \ \ \ (12)

— Referências Bibliográficas —

 

[1] Jorge A. V illar Alé. MECÂNICA DOS FLUIDOS:CURSO BÁSICO, [2011].

[2] Luiz F.  F. Carvalho. CURSO DE FORMAÇÃO DE OPERADORES DE REFINARIA – FÍSICA APLICADA: MECÂNICA DOS FLUIDOS, Curitiba, [2002].

[3] Daniel Fonseca de Carvalho & Leonardo Duarte Batista da Silva. FUNDAMENTOS DE HIDRÁULICA, [2008].

[4] J. Gabriel F. Simões. MECÂNICA DOS FLUIDOS: NOTAS DAS AULAS, [2008].

[5] Luiz Eduardo Miranda J. Rodrigues. MECÂNICA DOS FLUIDOS : NOTAS DAS AULAS, (2010)

[6] Halliday  & Resnick. FUNDAMENTOS DE FÍSICA, VOL. 2 (2008)

[7] Young & Freedman. FÍSICA 2: TERMODINÂMICA E ONDAS, 10ª ed (2003)

%d bloggers like this: