Luso Academia

Início » 04 Ensino Superior » 01 Matemática

Category Archives: 01 Matemática

Anúncios
Anúncios

Topologia – Distância entre conjuntos e diâmetro

— 1.1.6. Distância entre conjuntos e diâmetro —

Definição 8 Seja {(X,d)} um espaço métrico e {x\in X}. Se {A\subset X} não vazio, o conjunto das distâncias {x} e os elementos de {A} é definido por

\displaystyle d(x,A):=\inf\{d(x,y):y\in A\}.

Ao número real {d(x,A)\geq 0} chama-se distância de {x} ao conjunto {A}.

Comentário 5 É óbvio que se {x\in A}, então {d(x,A)=0}, mas o recíproco, em geral, nem sempre é verdadeiro.
Exemplo 8 Se {X=\mathbb{R}} e {A=(a,b)}, então {d_{1}(a,A)=0} e {a\not\in A}. Temos também, {d_{1}(0,[1,2])=d_{1}(0,(1,2])=1}.

É evidente que {d(A,x)=d(x,A)}.

Proposição 17 Seja {A\subset X} e {x,y\in X}. Então:

\displaystyle \mid d(x,A)-d(y,A)\mid \leq d(x,y)

Demonstração: Sejam {x,y\in X}, então {\forall a\in A}:

\displaystyle d(x,a)\leq d(x,y)+d(y,a)

,i.e.,

\displaystyle d(x,A)\leq d(y,A)+d(x,y)

de modo análogo,

\displaystyle d(y,A)\leq d(x,A)+d(x,y).

Assim,

\displaystyle -d(x,y)\leq d(x,A)-d(y,A)\leq d(x,y).

\Box

Para cada conjunto {A} de {X} e {\epsilon\geq 0}, denotaremos o conjunto {A_{\epsilon}:=\{x:d(x,A)<\epsilon\}}, onde pode se dar o caso de {\epsilon=\infty}.

Proposição 18 Seja {(X,d)} um espaço métrico e {x\in X}. Então, para cada {A,B} e {\{B_{j}\}_{j\in J}} subconjuntos de {X},as seguintes afirmações são verdadeiras:

  1. {d(x,\emptyset)=\infty} e {d(x,A)<\infty} se {A\neq\emptyset}.
  2. {d(x,\{x\})=0}.
  3. Se {A\subseteq B}, então {d(x,A)\leq d(x,B)}.
  4. {\forall \epsilon>0},{0\leq\epsilon\leq\infty}, {d(x,A)\leq d(x,A_{\epsilon})+\epsilon}.
  5. {d(x,\cup_{j\in J})B_{j})=\inf_{j\in J}d(x,B_{j})}
  6. {d(x,\cap_{j\in J}B_{j})\geq\sup_{j\in J}d(x,B_{j})}

Demonstração:

  1. {d(x,\emptyset)=\inf\emptyset=\infty} (pela definição do ínfimo de um conjunto).
  2. Basta tomar {A=\{x\}\longrightarrow d(x,A)=0}.
  3. Deixada ao leitor.
  4. Seja {a\in A_{\epsilon}},existe {a'\in A}, {d(a,a')<\epsilon}. Portanto,

    \displaystyle d(x,A)\leq d(x,a)+d(a,a')\leq d(x,A_{\epsilon})+\epsilon.

  5. {d(x,\cup_{j\in J})B_{j})=\inf_{b\in \cup_{j\in J}B_{j}}d(x,b)=\inf_{j\in J}(\inf_{b\in B_{j}}d(x,b))=\inf_{j\in J}d(x,B_{j}).}
  6. Sugestão: {d(x,A)\geq d(x,B)} se {A\subseteq B}.

\Box

Definição 9 Sejam {A,B} subconjuntos de {X}, onde {(X,d)} é um espaço métrico. A distância entre {A} e {B} é o número

\displaystyle d(A,B)=\inf\{d(x,y):x\in A,y\in B\}.

É evidente que se {A\cap B\neq\emptyset}, então {d(A,B)=0}, em geral o recíproco não é verdadeiro e, obviamente {d(A,B)=d(B,A)}.

Proposição 19 Seja {(X,d)} um espaço métrico e {A,B,C} e {D} subconjuntos de {X}, e famílias {\{A_{i}\}_{i\in I}}, {\{B_{j}\}_{j\in J}} de subconjuntos de {X}. Então:

  1. {d(A,B)<\infty} se e só se {A} e {B} são não vazios.
  2. {d(A,B)=0} se {A\cap B\neq\emptyset}.
  3. Se {A\subseteq B} e {C\subseteq D}, então {d(A,C)\leq d(B,D)}.
  4. Para todo {\epsilon,\epsilon'}, {0\leq\epsilon,\epsilon'\leq\infty}, {d(A,B)\leq d(A_{\epsilon},B_{\epsilon})+\epsilon+\epsilon'}.
  5. {d(\cup_{i\in I}A_{i},\cup_{j\in J}B_{j})=\inf_{i\in I,j\in J}d(A_{i},B_{j})}.
  6. {d(A,\cap_{j\in J}B_{j})\geq\sup_{j\in J}d(A,B_{j})}.

Demonstração: Deixadas ao leitor. \Box

Definição 10 Seja {A\subseteq X}, onde {(X,d)} é um espaço métrico. O diâmetro de {A} é definido como

\displaystyle \delta(A)=\sup\{d(x,y):x,y\in A\}.

Exemplo 9 {\delta(\emptyset)=\sup \emptyset=-\infty}.
Proposição 20 Sejam {A,B\subseteq X}. Então:

  1. Se {A\subseteq B}, então {\delta(A)\leq\delta(B)}.
  2. {\delta(A_{\epsilon})\leq 2\epsilon+\delta(A)}, {\forall\epsilon>0}.
  3. {\delta(A\cup B)\leq \delta(A)+\delta(B)+d(A,B)}.

Demonstração: Deixada ao leitor. \Box

Anúncios

Topologia dos Espaços Métricos

— 1.1.5. Topologia dos Espaços Métricos —

Definição 4 Seja {(X,d)} um espaço métrico e {A\subseteq X}. Diz-se que {A} é um conjunto aberto se para todo {x\in A} existe {r>0}: {B(x,r)\subseteq A}. Um subconjunto {F} de {X} é fechado se seu complementar {X\setminus F} é aberto.
Comentário 4 É importante notarmos que o facto de um conjunto não ser aberto, não implica que ele seja fechado.
Exemplo 6 Observamos que {X} e {\emptyset} são ambos conjuntos aberto e fechado. É claro que a condição acima é satisfeita para ambos, i.e., {X} e {\emptyset} são abertos, logo, novamente pela definição acima, seus complementares são fechados.
Proposição 9 Toda bola aberta é um conjunto aberto.

Demonstração: Esta proposição é uma consequência imediata da proposição 1.3. \Box

Proposição 10 A união arbitrária de conjuntos abertos num espaço métrico, também é um conjunto aberto.

Demonstração: Seja {\{A_{i}\}_{i\in I}} uma família de abertos, e {A=\cup_{i\in I}A_{i}}. Temos de mostrar que {A} é aberto.

Seja {x\in \cup_{i\in I}A_{i}}, então existe {i_{0}\in I} tal que {x\in A_{i_{0}}}, pela definição 1.4 existe uma bola aberta {B(x,r)\subseteq A_{i_{0}}}, como {A_{i_{0}}\subseteq \cup_{i\in I}A_{i}}, concluímos que {B(x,r)\subseteq \cup_{i\in I}A_{i}}. \Box

Proposição 11 A intersecção finita de conjuntos abertos num espaço métrico, também é um conjunto aberto.

Demonstração: Seja {\{A_{i}\}_{i}^{n}} uma família de abertos e {A=\cap_{i=1}^{n}A_{i}}. Temos de mostrar que {A} é fechado.

Seja {x \in \cap_{k=1}^{n}A_{k} \Longrightarrow x\in A_{i}} para todo {i}. Então existem {r_{k}>0} tais que {B(x,r_{k})\subseteq A_{i}}. Se {r=\min\{r_{1},\cdots,r_{n}\}} então {r>0} e {B(x,r)\subseteq\cap_{i=1}^{n}A_{i}} é

\Box

Proposição 12

  1. Toda bola fechada num espaço métrico é um conjunto fechado.
  2. A intersecção enumerável de conjuntos fechados num espaço métrico é um conjunto fechado.
  3. A união finita de conjuntos fechados num espaço métrico é um conjunto fechado.
  4. Todo conjunto finito é fechado.

Demonstração: Deixada ao leitor. \Box

Definição 5 O interior de {A} é o maior conjunto aberto contido em {A}, i.e.,

\displaystyle int A=\cup\{U:U\subseteq A\text{ onde }U \text{ é aberto }\}.

O fecho de {A}, {\overline{A}}, é o menor conjunto fechado em {X} contendo {A}, i.e.,

\displaystyle \overline{A}=\cap\{K: A\subseteq K, K\text{ fechado }\}.

Exemplo 7 Da definição anterior podemos imediatamente verificar que {\mathbb{Q}\subset\mathbb{R}}, é tal que {int(\mathbb{Q})=\emptyset} (muito importante !!!) e {\overline{\mathbb{Q}}=\mathbb{R}}. Para provarmos isto, suponha que {U\subset\mathbb{R}} é aberto. Então, como as bolas abertas em {\mathbb{R}} são intervalos, existe um intervalo {(a,b)\subset U\subset\mathbb{R}}, onde {a<b}. Como entre dois números reais sempre existe um número irracional, segue-se que {(a,b)\cap \mathbb{R}\setminus \mathbb{Q}\neq \emptyset}, {U\nsubseteqq\mathbb{Q}} e por isso {int(\mathbb{Q})=\emptyset}. Se {\mathbb{Q}\subset K} é um subespaço fechado de {\mathbb{R}}, então {\mathbb{R}\setminus K} é aberto e não contém racionais. Segue-se que não contêm nenhum intervalo por que qualquer intervalo não vazio de números reais contém um número racional. Assim, {\mathbb{R}\setminus K=\emptyset} e {\overline{\mathbb{Q}}=\mathbb{R}}.
Proposição 13 Seja {A\subseteq X}. Então:

  1. {x\in int A} se e só se existe {r>0} tal que {B(x,r)\subseteq A}.
  2. {x\in \overline{A}} se e só se para todo {r>0}, {B(x,r)\cap A\neq\emptyset}.

Demonstração: 1. Seja {x\in intA}, pela Definição 1.5 significa que existe um aberto {U} tal que {x\in U\subseteq A}. Como {U} é aberto, então existe {r>0} e uma bola {B(x;r)\subseteq U\subseteq A}. A implicação inversa é simples, basta notarmos que se {B(x,r)\subseteq A} e {B(x,r)} é um conjunto aberto, então {B(x,r)\subseteq intA}.

2.Deixada ao leitor.

\Box

Proposição 14 Seja {A} um subconjunto de {X}.

  1. {A} é fechado se e só se {A=\overline{A}}.
  2. {A} é aberto se e só se {A=int A}.
  3. Seja {\{A_{i}\}_{i=1}^{n}} uma família de subconjuntos de {X}, então {\overline{\cup_{i=1}^{n}A_{i}}= \cup_{i=1}^{n}\overline{A_{i}}}.
  4. Seja {\{A_{i}\}_{i=1}^{n}} uma família de subconjuntos de {X}, então {int(\cap_{i=1}^{n}A_{i})=\cap_{i=1}^{n}int(A_{i})}.

Demonstração: deixada ao leitor. \Box

Definição 6 Um subconjunto {A} de um espaço métrico {X} é denso se {\overline{A}=X}. Um espaço métrico {X} é separável se contém um subconjunto denso enumerável.
Proposição 15 Um conjunto {A} é denso em {(X,d)} se e só se para todo {x\in X} e todo {r>0}, {B(x,r)\cap A\neq\emptyset}.

Demonstração: É uma aplicação trivial da proposição 1.13. \Box

Definição 7 Seja {A\subseteq X}, então um ponto {x\in X} é chamado de ponto limite de {A} se para todo {\epsilon >0} existe um ponto {y} em {B(x,\epsilon)\cap A} com {y\neq x}.
Proposição 16 Seja {A\subset X}, onde {X} é um espaço métrico, então {\overline{A}=A\cup A'}, onde {A'} representa o conjunto dos pontos limites de {A} ou derivado de {A}.

Demonstração: Por definição, o fecho de {A}, {\overline{A}}, é fechado e por isso {A\subset\overline{A}}. Segue que se {x\in \overline{A}}, então existe um conjunto aberto {U} contendo {x} com {U\cap A=\emptyset} e daí {x\not\in A} e {x\not\in A'}. Isto mostra que {A\cup A' \subset \overline{A}}.

Por outro lado, suponhamos {x\in\overline{A}} e {V} um aberto contendo {x}. Se {V\cap A=\emptyset}, então {A\subset(X\setminus V)} é um conjunto fechado e {\overline{A}\subset(X\setminus V)}. Mas, {x\not\in \overline{A}}, contradição. Se {x\in \overline{A}} e {x\not\in A}, então, para qualquer aberto {V} com {x\in V}, temos {V\cap A\neq\emptyset}. Logo, {x} é um ponto limite de {A}. Assim, {\overline{A}\subset A\cup A'}. \Box

Topologia – Introdução aos Espaços Métricos

— 1.1.4. Alguns Exemplos de Espaços Métricos —

Na aula de hoje, daremos alguns exemplos de espaços métricos, e só depois continuaremos com a topologia dos espaços métricos. Infelizmente, pela grande variedade de espaços métricos que existem, que são infinitos, não poderemos demonstrar que cada métrica definida em um conjunto dado realmente fora um espaço métrico, por isso as respectivas demonstrações são deixadas ao leitor.

Comentário 3 É importante notarmos que em um mesmo conjunto podemos definir várias métricas.
Exemplo 5

  1. Seja {X=\mathbb{R}}, este é sem dúvida o espaço métrico mais importante, podemos definir nele as seguintes métricas:
    • {d_{1}(x,y)=\mid x-y\mid }, {\forall x,y\in \mathbb{R},}. Esta é a métrica usual ou euclidiana.
    • {d(x,y)=\sqrt{\mid x-y\mid}}, {\forall x,y\in \mathbb{R}}. (Sugestão: para provarmos que esta métrica satisfaz a desigualdade triangular podemos aplicar a desigualdade: {\sqrt{a+b}\leq\sqrt{a}+\sqrt{b}}, {\forall a,b\in \mathbb{R}}).
    • {\rho(x,y)=\frac{d_{1}(x,y)}{1+d_{1}(x,y)}}, onde {d_{1}} é a métrica usual euclidiana.(sugestão: a função {f(a)=\frac{a}{1+a}} é crescente, logo, {\mid a+b\mid\leq\mid a\mid+\mid b\mid\Longrightarrow f(\mid a+b\mid)\leq f(\mid a\mid + \mid b\mid)}).
  2. Se {X=\mathbb{R}^{2}} podemos definir as seguintes métricas:
    • {d_{t}(x,y)=\mid x_{1}-y_{1}\mid + \mid x_{2}-y_{2}\mid}, onde {x=(x_{1},x_{2})} e {y=(y_{1},y_{2})}. Esta métrica é conhecida como métrica do táxi.
    • {d_{2}(x,y)=\sqrt{( x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}}}, {x,y\in\mathbb{R}^{2}}. Esta é a métrica euclidiana no plano.
    • {d_{max}(x,y)=\max{\mid x_{1}-y_{1}\mid,\mid x_{2}-y_{2}\mid}}, é a métrica do máximo.
  3. Se {X=\mathbb{R}^{n}}, temos:
    • {d_{n}(x,y)=\sqrt{\sum_{i=1}^{n}(x_{i}-y_{i})^{2}}}, onde {x=(x_{1},...,x_{n})} e {y=(y_{1},...,y_{n})}.(sugestão: use a desigualde de Cauchy-Schwarz: {(\sum_{i=1}^{n}\mid x_{i}y_{i}\mid)^{2}\leq (\sum_{i=1}^{n}x_{i}^{2})^{2}(\sum_{i=1}^{n}y_{i}^{2})^{2}}, {\forall x,y\in\mathbb{R}^{n}}).
    • {d_{\infty}(x,y)=\max\{\mid x_{i}-y_{i}\mid:1\leq i\leq n\}}, {x,y\in \mathbb{R}^{n}}.
    • Para {p\geq 1}, definimos a métrica:

      \displaystyle d_{p}(x,y):=\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}-y_{i}\mid^{p}}

      também é uma métrica em {\mathbb{R}^{n}}.(sugestão: use a desigualdade de Minkovsky: {\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}+y_{1}\mid}\leq\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}\mid^{p}}+\sqrt[p]{\sum_{i=1}^{n}\mid y_{i}\mid^{p}}}, {\forall p\geq 1}).

  4. Seja {B(A)} o conjunto de todas as funções limitadas no conjunto {A}, então a métrica {d_{\infty}:B(A)\times B(A)\longrightarrow \mathbb{R}^{+}} definida por

    \displaystyle d_{\infty}(f,g):=\sup\{\mid f(x)-g(x)\mid:x\in A\}

    torna-o num espaço métrico {\forall f,g\in B(A)} .

  5. Seja {C_{[a,b]}}, o conjunto de todas as funções contínuas no intervalo {[a,b]\subset \mathbb{R}} é um espaço métrico com as métricas:
    • {d(f,g):=\max\{\mid f(x)-g(x)\mid:x\in [a,b]\}}, {\forall f,g\in C_{[a,b]} }.
    • {d_{p}(f,g):=\sqrt[p]{\int_{a}^{b}\mid f(x)-g(x)\mid^{p}dx}}. (sugestão: para a desigualdade triangular use o equivalente integral da desigualdade de Minkovsky)
  6. Terminamos com a métrica {d_{0}:X\times X\longrightarrow \mathbb{R}^{+}}, definida por

    \displaystyle d_{0}(x,y):=\sum_{i=1}^{\infty}\frac{d(x_{i},y_{i})}{2^{i}}

    onde {d} é uma métrica em {X}. Demonstração: É evidente que {d_{0}(x,y)\geq 0} e que {d_{0}(x,y)=0} se e só se {x=y}. Também é fácil verificar que {d_{0}(x,y)=d_{0}(y,x)}, vamos portanto mostrar apenas a desigualdade triangular,

    {d_{0}(x,y)=\sum_{i=1}^{\infty}\frac{d(x_{i},y_{i})}{2^{i}}}

    {\leq\sum_{i=1}^{\infty}\frac{d(x_{i},z_{i})+d(z_{i},y_{i})}{2^{i}}=}

    {\sum_{i=1}^{\infty}\frac{d(x_{i},z_{i})}{2^{i}}+\sum_{i=1}^{\infty}\frac{d(z_{i},y_{i})}{2^{i}}}

    {=d_{0}(x,z)+d(z,y)}

    \Box

Definição 3 Seja {d:X\times X\longrightarrow \mathbb{R}^{+}} uma aplicação, o par {(X,d)} é chamado de pseudométrica ou pseudodistância em {X} se,

  1. {d(x,y)=0} se {x=y},
  2. {d(x,y)=d(y,x)} para todo {x,y\in X},
  3. {d(x,y)\leq d(x,z)+d(z,y)} para todo {x,y,z \in X}.
Exercício 1 Seja dada a aplicação {f:X\longrightarrow \mathbb{R}^{+}}, a aplicação

\displaystyle d:X\times X\longrightarrow \mathbb{R}^{+}

definida por

\displaystyle d(x,y)= \left \{ \begin{array}{cl} 0 & \mbox{, } x= y\\ f(x)+f(y) & \mbox{, } x\neq y \end{array}\right.

é uma pseudométrica se e só se {f^{-1}(0)} tem no máximo um elemento.

Exercício 2 Prove que se

\displaystyle d_{i}:X\times X\longrightarrow \mathbb{R}^{+}\,\,\,(i\in \mathbb{N})

é uma família enumerável de pseudométricas e

\displaystyle \alpha:\mathbb{R}_{\geq0}^{\mathbb{N}}\longrightarrow \mathbb{R}^{+}

é uma função que satisfaz:

  • {\alpha(x)=0} se e só se {x=0},
  • Se {x\leq y}, então {\alpha(x)\leq\alpha(y)}
  • {\alpha(x+y)\leq\alpha(x)+\alpha(y)}

então a função

\displaystyle d:X\times X\longrightarrow \mathbb{R}^{+}

definida por

\displaystyle d(x,y):=\alpha(d_{1}(x,y),...,d_{n}(x,y),...),

é uma pseudométrica, e que é uma métrica se e só se para todo {x,y\in X}, com {x\neq y}, existe {i\in \mathbb{N}} tal que {d_{i}(x,y)>0}.

Topologia – Introdução II

— 1.1. Bolas Abertas e Fechadas —

Definição 2 Dado {x\in X} e {r>0}. Definimos os seguintes conceitos:

  • (Bola aberta) {B(x,r)=\{y\in X:d(x,y)<r\}}.
  • (Bola fechada) {\overline{B}(x,r)=\{y\in X:d(x,y)\leq r\}}
  • (Esfera){S(x,r)=\{y\in X:d(x,y)=r\}}

Exemplo 4 Se, na definição tomarmos {X=\mathbb{R}}, então as bolas abertas (resp. fechadas) serão basicamente intervalos abertos (resp. fechados), i.e., {B(x,r)=(x-r,x+r)} e {\overline{B}(x,r)=[x-r,x+r]}. Se {x=0} e {r=1}, então {B(0,1)=(-1,1)}, {\overline{B}(0,1)=[-1,1]}.

Comentário 2 É enganoso pensarmos, conforme aconselha o Kreyszig, que as bolas(abertas ou fechadas) em espaços métricos arbitrários não euclidianos possuem as mesmas propriedades que as bolas ou esferas em {\mathbb{R}^{3}}. Por exemplo, nos espaços métricos que surgem a partir da métrica discreta, espaços discretos, uma esfera pode ser vazia, i.e., {S(x,r)=\{y\in X:d(x,y)=r\}=\emptyset }, para isso, basta tomarmos {r\neq1}.

— 1.1.1. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 1 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 2 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

— 1.1.2. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 3 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 4 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

— 1.1.3. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 5 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 6 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

Proposição 7 Sejam {B(x,r_{1})} e {B(y,r_{2})}, tais que {B(x,r_{1})\cap B(y,r_{2})\neq \emptyset}. Se {a\in B(x,r_{1})\cap B(y,r_{2})}, então existe uma bola aberta de centro {a} contida na intersecção {B(x,r_{1})\cap B(y,r_{2})}.

Demonstração: Deixada ao leitor. \Box

Proposição 8 Sejam {B(x_{1},r_{1})} e {B(x_{2},r_{2})} duas bolas abertas. Se {r_{1}+r_{2}\leq d(x_{1},x_{2})}, então

\displaystyle B(x_{1},r_{1})\cap B(x_{2},r_{2})=\emptyset.

Demonstração: deixada ao leitor. \Box

Topologia – Introdução

Topologia

— 1. Espaços Métricos —

A topologia, literalmente, a ciência da forma, é uma área da Matemática, muito ligada à Geometria e Análise, que têm como objectivo fundamental a análise do conceito de continuidade entre espaços.

Existem duas maneiras de se introduzir uma estrutura topológica em um espaço, a primeira através da noção de distância entre elementos de um conjunto, que passará a ser um espaço métrico, a outra, numa abordagem mais conjuntista e abstracta, utilizando a noção primitiva de conjunto aberto. Nas primeiras aulas abordaremos principalmente a primeira maneira, por ser talvez a mais intuitiva e também por cumprir com os objectivos que preconizamos.

Definição 1 Seja {X} um conjunto não vazio. A aplicação {d:X\times X\longrightarrow\mathbb{R}} define uma distância ou métrica em {X} se as condições abaixo são cumpridas {\forall x,y,z\in X}:

  1. {d(x,y)\geq 0}, com igualdade se e só se {x=y}
  2. {d(x,y)=d(y,x)}
  3. {d(,y)\leq d(x,z)+d(z,y)}.
Comentário 1 Ao par {(X,d)} chamamos de espaço métrico mas, muitas vezes omitiremos a notação anterior à favor de uma mais simples, i.e., denotaremos um espaço métrico apenas pela letra {X}.

Do axioma 3 obtemos por indução a desigualdade triangular generalizada:

\displaystyle  d(x_{1},x_{n})\leq d(x_{1},x_{2})+d(x_{2},x_{3})+\cdots+d(x_{n-1},x_{n}) \ \ \ \ \ (1)

Um subespaço {(Y,\rho)} de um espaço métrico {(X,d)} é obtido se tomarmos o subconjunto {Y\subset X} e restringirmos {d} a {Y\times Y}, assim a métrica em {Y} é a restrição

\displaystyle \rho=d\mid _{Y\times Y}

A definição acima nos mostra claramente que em um mesmo conjunto podemos definir várias métricas, ou seja, várias maneiras de se medir distâncias. Um dos conjuntos mais famosos que possui várias distâncias nele definidas é o conjunto dos números reais {\mathbb{R}}.

Exemplo 1 1. O conjunto dos Números Reais {\mathbb{R}}. Munido com a distância:

\displaystyle d(x,y)=\mid x-y\mid

Esta é com certeza a distância mais famosa em matemática, pois quase toda a análise elementar é feita usando esta métrica e é também bastante intuitiva, vamos provar que os números reais com essa distância é de facto um espaço métrico. Demonstração: (i) Vamos verificar o primeiro axioma, {d(x,y)\geq 0} e {x=y \Longleftrightarrow d(x,y)=0}. Então temos,

\displaystyle d(x,y)\geq 0 \Longleftrightarrow d(x,y)=\mid x-y\mid \geq 0

o que é evidente pela definição de módulo. Resta demonstrar a segunda parte do axioma 1, temos então

\displaystyle d(x,y)= 0 \Longleftrightarrow \mid x-y \mid =0

\displaystyle \Longleftrightarrow x-y=0

\displaystyle \Longleftrightarrow x=y

a reciproca é evidentemente verdadeira, se tomarmos {x=y} então {d(x,x)=0}. (ii)O segundo axioma também é simples de demonstrar,

\displaystyle d(x,y)=\mid x-y\mid =\mid (-1).(y-x)\mid = \mid (-1)\mid \mid y-x\mid 		=\mid y-x\mid = d(y,x)

(iii)Para demonstrarmos a desigualdade triangular vamos precisar da desigualdade triangular nos reais, i.e.,

\displaystyle \mid x-y\mid \leq \mid x\mid + \mid y\mid

Fazendo uso de um pequeno artifício temos,

\displaystyle (x-y)=(x-z)+(z-y)

Então,

\displaystyle \mid x-y\mid \leq \mid (x-z)+(z-y)\mid \leq \mid x-z\mid +\mid z-y\mid

assim demonstramos que o par {(\mathbb{R},d)} é um espaço métrico. \Box

Exemplo 2 Ao tomarmos qualquer conjunto {X\neq \emptyset} podemos definir nele a seguinte métrica,

\displaystyle  \rho(x,y) = \left \{ \begin{array}{cl} 1 & \mbox{, } x\neq y\\ 0 & \mbox{, } x= y \end{array}\right.

O exemplo a seguir foi tirado do livro an epsilon of room, escrito por Terence Tao, e é muito interessante porque mostra como a partir de duas métricas podemos formar outras métricas, chamadas de métricas produto.

Exemplo 3 Dado dois espaços métricos {X=(X,d_{X})} e {Y=(Y,d_{Y})}, podemos definir o produto {X\times Y=(X\times Y,d_{X}\times d_{Y})} como sendo o produto cartesiano {X \times Y} com a métrica produto

\displaystyle  d_{X}\times d_{Y}((x,y),(x',y')):=\max \{d_{X}(x,x'),d_{Y}(y,y')\}

ou ainda

\displaystyle  d_{X}\times d_{Y}((x,y),(x',y')):= d_{X}(x,x')+d_{Y}(y,y')

Introdução à Lógica – Classificação de Argumentos

— 6. Definições Lógicas —

Nesta secção vamos introduzir de uma forma mais sistemática algumas das ideias básicas em lógica que nos vão permitir utilizar de uma forma mais poderosa os ensinamentos desta disciplina.

Tal como já vimos, existe na Lógica uma distinção entre forma e conteúdo. De modo análogo existe também uma distinção na lógica entre argumentos que são correctos quanto à sua forma e argumentos que são correctos quanto ao seu conteúdo.

Esta distinção é melhor entendida se dermos alguns exemplos:

  1. Todos os peixes são seres humanos;
  2. Todos os seres humanos são quadrúpedes;
  3. Assim, todos os peixes são quadrúpedes.
  1. Todos os gatos são animais;
  2. Todos os mamíferos são animais;
  3. Assim, todos os gatos são mamíferos.

Nenhum destes argumentos é correcto ainda que sejam incorrectos por razões diferentes.

Em primeiro lugar vamos considerar o seu conteúdo. Enquanto que no primeiro argumento todas as sentenças são falsas, todas as sentenças no segundo argumento são verdadeiras. Por outro lado, uma vez que nem todas as premissas do primeiro argumento são verdadeiras este argumento não é válido quanto ao seu conteúdo; ao contrário do segundo argumento que é perfeitamente válido quanto ao seu conteúdo.

Vamos agora considerar os argumentos quanto à forma. Aqui a pergunta essencial é: “As premissas suportam a conclusão?”. Ou dito de outra forma: mesmo que as premissas não sejam verdadeiras, será que a conclusão a que se chega deriva directamente das premissas estipuladas? No caso do segundo argumento as premissas são todas verdadeiras assim como a conclusão. Ainda assim a verdade da conclusão não é uma função da veracidade das premissas (queremos com isto dizer que este argumento não foi bem construído). Tudo isto é perfeitamente inteligível a um nível intuitivo, mas iremos dar agora algumas definições para tornar a nossa explanação mais rigorosa. Ao examinar um argumento temos sempre que colocar duas questões:

  1. As premissas são verdadeiras?
  2. A conclusão deriva das premissas?

As respostas às duas perguntas acima irão ajudar a classificar os argumentos apresentados.

Definição 6

Um argumento diz-se factualmente correcto se e só se todas as suas premissas são verdadeiras.

Definição 7

Um argumento diz-se válido se e só se a conclusão deriva logicamente das premissas.

Definição 8

Um argumento diz-se sólido se e só se for válido e factualmente correcto.

De uma forma simples podemos dizer que um argumento factualmente correcto tem um bom conteúdo enquanto que um argumento tem boa forma. Um argumento sólido, por sua vez, tem sempre um bom conteúdo e uma boa forma.

De notar que um argumento factualmente correcto pode ter uma conclusão falsa, uma vez que a sua definição somente se refere às premissas.

A validade de um argumento por vezes é difícil de se afirmar com certeza. Pode acontecer que seja impossível de se saber se a conclusão deriva ou não das premissas. Parte deste problema tem a ver com o facto de termos de saber o que queremos dizer com “deriva”.

Por outro lado a Lógica analisa a validade ou invalidade de um argumento, mas nada pode dizer sobre a verdade factual das premissas. A questão da verdade factual é uma questão deixada para as ciências experimentais.

Podemos então em jeito de conclusão deixar a seguinte definição:

Definição 9

Um argumento diz-se válido se e só se é impossível que a conclusão seja falsa quando as premissas são todas verdadeiras.

Ou ainda de forma equivalente:

Definição 10

Dizer que um argumento é válido é o mesmo que dizer que se as premissas fossem verdadeiras, então a conclusão seria necessariamente verdadeira também.

De acordo com tudo o que foi dito acima vamos então listar todas as possibilidades para os argumentos:

  • Os argumentos podem ser válidos com premissas verdadeiras e conclusão verdadeira
  • Os argumentos podem ser válidos, com premissas falsas e conclusão falsa
  • Os argumentos podem ser válidos com premissas falsas e conclusão verdadeira
  • Os argumentos podem ser inválidos com premissas verdadeiras e conclusão verdadeira
  • Os argumentos podem ser inválidos com premissas verdadeiras e conclusão falsa
  • Os argumentos podem ser inválidos com premissas falas e conclusão falsa
  • Os argumentos podem ser inválidos com premissas falsas e conclusão verdadeira

Mas nunca podermos ter

  • Um argumento válido, com premissas verdadeiras e conclusão falsa.

Para terminar este artigo vamos deixar um simples argumento que deverá ser analisado pelos nossos leitores:

  • Todos os números pares são números primos.
  • Vinte e um é um número par.
  • Logo, Vinte e um é um número primo.

Introdução à Lógica – Lógica Dedutiva e Lógica Indutiva

— 3. Lógica Dedutiva e Lógica Indutiva —

Vamos analisar dois argumentos:

  1. Vejo fumo;
  2. Logo há fogo.

e

  1. Este blog tinha 20 leitores;
  2. Neste momento este blog tem 19 leitores;
  3. Logo, um dos leitores está desaparecido.

Existe um diferença muito importante entre estas duas inferências, e esta diferença espelha a diferença entre dois tipos de Lógica.

Por um lado nós sabemos que a mera existência de fumo não é garantia para a existência de fogo. Apenas torna provável a existência de um fogo.

Assim, inferir a existência de fogo porque visualizámos fumo é um acto razoável, mas não é de todo um acto infalível. É perfeitamente possível a existência de fumo sem ser necessário haver fogo.

A investigação deste tipo de lógica tem o nome de Lógica Indutiva. A Lógica Indutiva estuda o procedimento de inferir conclusões de premissas através de um método probabilístico. Outra forma de definirmos a Lógica Indutiva é dizermos que a Lógica Indutiva estuda argumentos nos quais a verdade das premissas torna provável a verdade da conclusão.

A Lógica Indutiva é um tema fascinante e profundamente rico, mas é também um extremamente complexa. Um dos motivos desta complexidade é o facto dos praticantes desta modalidade da Lógica não estarem em completo acordo entre si sobre quais os atributos de um raciocínio indutivo correcto!

Mas descansem prezados leitores, que a Lógica Indutiva e as suas múltiplas nuances não são o objectivo de estudo destes artigos e vamos somente estudarmos o igualmente rico campo da Lógica Dedutiva.

Voltando ao segundo exemplo, podemos afirmar categoricamente que se as premissas são de facto verdadeiras então a conclusão é necessariamente verdadeira.

No entanto, e só para agitarmos as águas, vamos terminar esta secção introdutória com o seguinte comentário.

Uma vez que na Lógica Dedutiva a veracidade das premissas implica necessariamente a veracidade da conclusão, podemos dizer que a probabilidade da conclusão ser verdadeira é {1}. Assim sendo a Lógica Dedutiva é um subconjunto da Lógica Indutiva. Ou seja, todos os argumentos dedutivos são necessariamente argumentos indutivos, mas um argumento indutivo pode não ser um argumento dedutivo.

— 4. Sentenças e Proposições —

A Lógica investiga inferências sob a forma dos argumentos que representam as inferências em questão. Relembramos que um argumento é uma colecção de sentenças (frases declarativas) onde uma das quais é denominada de conclusão e as restantes sentenças são as premissas.

As sentenças são objectos linguísticos, tal como as palavras. São formadas por sequências de sons ou por sequências de símbolos. As sentenças podem ser distinguidas das proposições que elas expressam (no entanto, muitos filósofos criticam violentamente a noção de proposição). De uma forma simples podemos dizer que uma sentença expressa de forma particular a realidade de algo enquanto que uma proposição expressa a real natureza de algo.

Um exemplo simples que nos permite distinguir uma sentença de uma proposição:

  • O céu é azul
  • The sky is blue
  • El cielo es azul
  • Le ciel est bleu

São todas sentenças diferentes mas que expressam uma mesma proposição. Voltamos no entanto a dizer que vários filósofos que se debruçam sobre este tema de forma intensa são bastante críticos da noção de proposição considerando-a um conceito que só deturpa a análise. Como vemos nem a Lógica Dedutiva que é bastante mais simples que a Lógica Indutiva está livre de controvérsias entre os seus estudiosos…

— 5. Forma e Conteúdo —

Ainda que as proposições estão sempre a olhar por cima dos nossos ombros colectivos, a Lógica Dedutiva tal como a vamos estudar estará mais focada no estudo de sentenças. A motivação para esta abordagem é simples: as sentenças são mais fáceis de interpretar e mais fáceis de trabalhar.

Outro motivo para trabalharmos com sentenças e não com proposições prende-se com o facto de que a Lógica Dedutiva analisa e classifica os argumentos de acordo com a sua forma e não com o seu conteúdo.

Uma sentença é constituída por palavras organizadas por uma ordem particular. Assim, a forma de uma sentença pode ser analisada em termos da disposição das suas palavras constituintes. De forma mais precisa: uma sentença é constituída por termos, que podem ser termos simples ou termos compostos.

Definição 4

Um termos simples é uma palavra a que está associado uma função gramatical.

Exemplos de termos simples são substantivos, verbos, adjectivos, etc.

Definição 5

Um termos composto é uma sequência de palavras que tem a função de uma única unidade gramatical no corpo de uma sentença.

Exemplos de termos compostos são “Presidente da República”.

Para este curso vamos vamos dividir os termos em duas categorias:

  1. Termos descritivos
  2. Termos lógicos

Temos que ter em atenção, no entanto que esta distinção não é absoluta, mas depende essencialmente do nível de análise lógica que estamos a executar. Para o âmbito deste curso vamos tomar em conta três níveis de Análise Lógica:

  1. Lógica Silogística
  2. Lógica Sentencial / Lógica Proposicional / Lógica de Ordem Zero
  3. Lógica de Primeira Ordem / Cálculo de Predicados de Primeira Ordem

Cada nível de análise tem associado a si uma classe especial de termos lógicos. Para a Lógica Silogística os termos lógicos disponíveis são “todo”, “algum”, “não” e “é/são”. Para a Lógica de Ordem Zero os termos lógicos são conectivos de sentenças “e”, “ou”, “se, então”, “se e somente se”. No caso da Lógica de Primeira Ordem os termos lógicos disponíveis são os termos da Lógica Silogística e da Lógica de Ordem Zero.

Voltando ao que foi dito atrás a lógica analisa e classifica argumentos de acordo com a sua forma. A forma lógica de um argumento é função das formas das sentenças individuais que constituem o argumento. Por sua vez a forma lógica de uma sentença da disposição dos seus termos (os termos lógicos são considerados mais importantes que os termos descritivos).

Uma vez que a distinção entre termos lógico e termos descritivo depende do nível de análise que estamos a empregar, assim também a noção de forma lógica também será função do nível de análise empregado.

A diferença entre forma e conteúdo pode ser difícil de entender no abstracto e por isso mesmo vamos dar alguns exemplos concretos no próximo artigo.

%d bloggers like this: