Luso Academia

Início » 04 Ensino Superior » 01 Matemática

Category Archives: 01 Matemática

Continuidade em Espaços Métricos. Continuação.

— 1.2.10. Continuidade em Espaços Métricos. Continuação —

Agora apresentaremos alguns exemplos de funções contínuas. Vou assumir que os leitores já estão familiarizados com a noção de continuidade apresentada nos cursos de Cálculo, principalmente as funções trigonométricas, logaritimicas e polinomiais. Em seguida, darei alguns exemplos sobre o conceito de continuidade nos espaços métricos.

Proposição 33 Seja {(X,d)} um espaço métrico e {A\subseteq X}, com {A\neq\emptyset}. Então para todo {x,y\in X} e {z\in A}, temos:

\displaystyle  \mid d(x,A)-d(y,A)\mid\leq d(x,y) \ \ \ \ \ (2)

Demonstração: Como {X} éum espaço métrico, então é válida a desigualdade triângular:

\displaystyle d(x,y)\leq d(x,z)+d(z,y)

tomando o ínfimo para todo {z\in A} e considerando

\displaystyle  d(x,A)=\inf_{z\in A}d(x,z)

e

\displaystyle d(y,A)=\inf_{z\in A}d(y,z)

teremos, {d(x,A)-d(y,A)\leq d(x,y)}, e depois trocando {x} e {y} se obtem:

\displaystyle \mid d(x,A)-d(y,A)\mid\leq d(x,y)

\Box

Proposição 34 Seja {(X,d)} um espaço métrico, e {x_{0}\in X}. Se definirmos a função distância {f:X\longrightarrow \mathbb{R}}, como

\displaystyle f(x)=d(x,x_{0})

então {f} é contínua.

Demonstração: Para provarmos isto usaremos a Prop. 1.31 assim como a 1.33. Sabemos que uma função é contínua em um ponto {a} se e só se {\forall x_{n}\subset X: x_{n}\longrightarrow a\implies f(x_{n})\longrightarrow f(a)}.

É importante notarmos que na definição da função distância o espaço imagem é basicamente {(Y=\mathbb{R},\rho_{\text{usual}})} portanto, {\rho(f(x),f(y))=\mid f(x)-f(y)\mid}.

Seja {x_{n}} uma sequência de {X} tal que : {x_{n}\longrightarrow a}, então por definição {d(x_{n},a)<\epsilon}, onde {\epsilon>0}. Logo,

\displaystyle \rho(f(x_{n}),f(a))=\mid f(x_{n})-f(a)\mid=\mid d(x_{n},x_{0})-d(x_{0},a)\mid\leq d(x_{n},a)<\epsilon

Portanto, é suficiente tomar {\delta=\delta(a,\epsilon)=\epsilon} e {d(x,a)<\delta}, para garantirmos a continuidade de {f}. E como {a\in X} é arbitrário isto significa que {f(x)=d(x,x_{0})} é contínua para todo {\mathbb{R}}. \Box

Exemplo 13

  1. Se {(X,d)} é um espaço métrico discreto e {(Y,\rho)} um espaço métrico qualquer, então as únicas funções contínuas {f:x\longrightarrow Y} são as funções constantes.

    Para provarmos isto, seja {\epsilon>0} basta tomar {\delta<1}, com {d(x,a)<\delta<1} e como {d} é a métrica discreta, i.e.,

    \displaystyle  d(x,y) = \left \{ \begin{array}{cl} 1 & \mbox{, } x\neq y\\ 0 & \mbox{, } x= y \end{array}\right.

    então obviamente {d(x,a)=0} o que implica {x=a}. Assim,

    \displaystyle \rho(f(x),f(a))=\rho(f(a),f(a))=0.

  2. A função {f:\mathbb{R}\times\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n}} definida como:

    \displaystyle f(k,x)=kx

    é contínua.(É facíl provar, deixada ao leitor, não esquecer que {x\in\mathbb{R}^{n}} é um vector, i.e., {x=(x_{1},\cdots,x_{n})}).

Proposição 35 Seja {(X,d)} um espaço métrico e {f,g:X\longrightarrow \mathbb{R}} duas funções contínuas. Então:

  1. {(f+g)(x)=f(x)+g(x)} e {(fg)(x)=f(x)g(x)} são contínuas.
  2. Se {f(x)\neq0} para todo {x\in X}, então {h(x)=\frac{1}{f(x)}} é uma função contínua.

Demonstração: Deixada ao leitor. \Box

O conceito de continuidade reveste-se de capital importância para a Topologia por isso em aulas subsequentes continuaremos a explorar o conceito até as suas aplicações mais importantes.

Continuidade em Espaços Métricos

— 1.2. Continuidade em Espaços Métricos —

Definição 15 Seja {(X,d)} e {(Y,\rho)} dois espaços métricos, uma função {f:X\longrightarrow Y} é contínua no ponto {a} em {X} se para todo {\epsilon>0} exise um {\delta>0} tal que quando {d(a,x)<\delta} segue que {\rho(f(a),f(x)<\epsilon}.
Comentário 6 Uma função {f} é contínua se é contínua em cada ponto de {X}.
Comentário 7 Se na definição acima fazermos {X=Y=\mathbb{R}} torna-se na definição padrão ensinada nos cursos de cálculo, i.e., para todo {\epsilon>0} existe um {\delta>0} tal que {\mid x-a\mid<\delta} temos {\mid f(a)-f(x)\mid}.

Proposição 31 Se {(X,d)} e {(Y,\rho)} são espaços métricos e {f:X\longrightarrow Y}, então {f} é contínua em {a} se e somente se sempre que {x_{n}\subset X} e {x_{n}\longrightarrow a}, então {f(x_{n})\longrightarrow f(a)} em {Y}.

Demonstração: Suponhamos que {f} é contínua em {a} e {x_{n}\longrightarrow a}. Como {f} é contínua, então para algum {N\geq 1} tal que {d(x_{n},a)<\delta} quando {n\geq N}. Portanto, {\rho(f(x_{n}),f(a)<\epsilon} quando {n\geq N}. Como {\epsilon} é arbitrário, isto significa que {f(x_{n})\longrightarrow f(a)}.

Para provarmos a implicação inversa, suponhamos que {f} não é contínua em {a}, i.e., existe um {\epsilon>0} tal que para todo {\delta>0} existe pelo menos um {x} com {d(x,a)<\delta}, mas {\rho(f(x),f(a))\geq \epsilon}.

Em particular, tomando {\delta=\frac{1}{n}} temos que para todo {n\geq1} existe um {x_{n}} com {d(x_{n},a)<\frac{1}{n}} e {\rho(f(x_{n}),f(a))\geq\epsilon}. Quando {n\longrightarrow\infty} então {x_{n}\longrightarrow a}, e {f(x_{n})} não converge a {f(a)}. \Box

Teorema 32 Se {(X,d)} e {(Y,\rho)} são espaços métricos e {f:X\longrightarrow Y}, então as seguintes afirmações são equivalentes:

  1. {f} é uma função contínua em {X}.
  2. Se {U} é um subconjunto aberto de {Y}, então {f^{-1}(U)} é um subconjunto aberto de {X}.
  3. Se {V} é um subconjunto fechado de {Y}, então {f^{-1}(V)} é um subconjunto fechado de {X}.

Demonstração: 2. implica 3.:

Note que {f^{-1}(Y-U)=X-f^{-1}(U)} e {f^{-1}(Y-V)=X-f^{-1}(V)}.

1.implica 2.: Seja {a\in f^{-1}(U)} tal que {\alpha=f(a)\in U}. Como {U} é aberto, existe um {\epsilon>0} talque {B(\alpha,\epsilon)\subseteq U}. Como {f} é contínua exise um {\delta>0} tal que {d(a,x)<\delta} implica {\rho(f(a),f(x))<\epsilon}. Em outras palavras, {B(a,\delta)\subseteq f^{-1}(B(\alpha,\epsilon))\subseteq f^{-1}(U)}. Como {a} era um ponto arbitrário em {f^{-1}(U)}, isto significa que {f^{-1}(U)} é aberto. \Box

Demonstração do Teorema de Cantor

Demonstração: Na proxima aula. \Box

ilon>0}&fg=000000$, seja {N} tal que {diam F_{n}<\epsilon}, {\forall n\geq N}. Assim, se {m,n\geq N}, então ii) implica que {F_{N}\subseteq F_{n,m}},i.e., {diam F_{N}<diam F_{n}<\epsilon}, logo {x_{n}} é uma sequência de Cauchy, e como {(X,d)} é completo, então {\exists x\in X}: {x_{n}\longrightarrow x}.

Como cada {F_{n}} é fechado, então {x\in \cap_{n=1}^{\infty}F_{n}}. Se {\exists y\in \cap_{n=1}^{\infty}F_{n}}, então {d(x,y)\leq diam F_{n}}, logo {x=y}.

Seja agora {x_{n}} uma sequência de Cauchy. Tomando {F_{n}=\overline{\{x_{n+1}, x_{n},\cdots\}}}. Claramente {F_{n}} é fechado e decrescente. Seja {\epsilon>0} e seja {N} tal que {d(x_{n},x_{m})<\epsilon}, {\forall m,n\geq N}. Como {diam F_{k}=\sup\{d(x_{n},x_{m}):m,n\geq k\}\leq\epsilon\Longrightarrow diam F_{k}\longrightarrow0}.

Para qualquer {n\geq 1}, {d(x,x_{n})\leq diam F_{n}\longrightarrow0}, i.e., {x_{n}\longrightarrow x}, logo {(x,d)} é completo.

\Box

Topologia dos Espaços Métricos e Sequências

— 1.1.8. Topologia dos Espaços Métricos e Sequências —

Proposição 24 Seja {(X,d)} um espaço métrico. Um subconjunto {F} de {X} é fechado em {(X,d)}, se e só se, toda sequência de pontos em {F} converge para um ponto em {F}. ({\forall x_{n}\subset F: x_{n}\longrightarrow x\implies x\in F}).

Demonstração: Primeiramente temos de provar que se {x_{n}\subset F}, { x_{n}\longrightarrow x} e {F} é fechado, então {x\in F}.

Suponhamos pelo contrário que {x\notin F}, então {x\in X-F} que é aberto, logo pela definição 1.4, {\exists r>0: B(x,r)\subseteq X-F}, então a partir de uma certa ordem deve existir um {N}, tal que para todo {n\geq N}, {d(x_{n},x)<r}, i.e., {x_{n}\in B(x,r)\subseteq X-F}, o que é uma contradição,já que por hipótese {x_{n}\in F}. Portanto, {x\in F}.

Se {x\in F}, então {x\in\widehat{F}}, pela definição 1.5 {B(x,r)\cap F\neq\emptyset} {\forall r>0}. Em particular, para todo natural {n} existe umponto {x_{n}} em {B(x,\frac{1}{2n})\cap F}. Por isso {x_{n}\subset F} e {d(x,x_{n})<\frac{1}{2n}}, assim {x_{n}\longrightarrow x} e {x\in F}. \Box

Definição 14 Um espaço métrico é completo se toda sucessão de Cauchy nesse espaço é convergente.
Exemplo 12 Todo espaço métrico discreto é completo porque suas sucessões de Cauchy são constantes.
Lema 25 Se {x_{n}} é uma sucessão de Cauchy de elementos de {\mathbb{R}}, então sua imagem é um conjunto limitado.
Teorema 26 {\mathbb{R}} é completo.

Demonstração: Deixada ao leitor. \Box

Proposição 27 Se {(X,d)} é um espaço métrico completo e {Y\subseteq X}, então {(Y,d)} é completo se e só se {Y} é fechado em {X}.
Corolário 28 Os subconjuntos fechados de {\mathbb{R}} são espaços métricos completos.
Proposição 29 Todo producto {X_{1}\times \cdots \times X_{n}} de espaços métricos completos {X_{1},\cdots, X_{n}}, é um espaço métrico completo.
Teorema 30 (Cantor) Um espaço métrico {(X,d)} é um espaço métrico completo se e só se sempre que {\{F_{n}\}} é uma sequência não vazia de subconjuntos satisfazendo:

  • Cada {F_{n}} é fechado;
  • {F_{1}\supseteq F_{2}\supseteq\cdots};
  • {diam F_{n}\longrightarrow 0}, então {\cap_{n=1}^{\infty}F_{n}} é um único ponto.

Demonstração: Na proxima aula. \Box

Espaços Métricos e Sequências

Aula 6

— 1.1.7. Espaços Métricos e Sequências —

Nesta aula introduziremos o conceito de sequências em espaços métricos. Embora este conceito já seja conhecido de modo elementar no espaço dos números reais, {\mathbb{R}}, procederemos à generalização do mesmo para qualquer espaço métrico {X}

Definição 11 Seja {(X,d)} um espaço métrico. Uma sequência, num espaço métrico, é uma aplicação {x:\mathbb{N}\longrightarrow X}, onde os {(x_{n})_{n\in\mathbb{N}}} são pontos em {(X,d)}.
Exemplo 10 Em particular se tomarmos {X=\mathbb{R}} retornaremos ao conceito usual de sequências.
Definição 12 Uma sequência {\{x_{n}\}} em {X} converge para {x}, i.e., {x_{n}\longrightarrow x}, se {\forall\epsilon>0} {\exists N>0}: {d(x_{n},x)<\epsilon}, {\forall n\geq N(\epsilon)}.
Exemplo 11 Seja {(X,d)} o espaço métrico discreto, então uma sequência {\{x_{n}\}} em {X} converge para {x} se e só se existe um inteiro {N} tal que {x_{n}=x} sempre que {n\geq N}.
Proposição 21 Se {x_{n}\longrightarrow x} em {X} e {\{x_{n_{k}}\}} é uma subsequência, então {x_{n_{k}}\longrightarrow x}.

Demonstração: Deixada ao leitor. \Box

Definição 13 Uma sequência {\{x_{n}\}} em {X} é de Cauchy se {\forall\epsilon>0} {\exists n_{0}\in\mathbb{N}} tal que {d(x_{m},x_{n})<\epsilon}, para todo {m,n\geq n_{0}}.
Proposição 22 Toda sucessão {x_{n}} convergente de {X} é de Cauchy.

Demonstração: A proposição acima basicamente diz que se uma sucessão é convergente, então ela é de Cauchy.

Como por hipótese, {x_{n}\longrightarrow x}, então pela definição 1.12, {d(x_{n},x)<\frac{\epsilon}{2}} para algum {\epsilon>0} e para todo {n\geq n_{0}}, onde {n_{0}\in\mathbb{N}}. De modo similar, a partir de uma certa ordem,{m}, temos {d(x_{m},x)<\frac{\epsilon}{2}}, com {m\geq n_{0}}. Portanto, aplicando a desigualdade triângular obtemos:

\displaystyle  d(x_{m},x_{n})\leq d(x_{m},x)+d(x_{n},x)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.

\Box

Em geral,a recíproca da proposição anterior é falsa. Para isto, consideremos por exemplo a sucessão {x_{n}=\frac{1}{n}} no espaço {X=\mathbb{R}-\{0\}} com a métrica euclidiana usual.

Proposição 23 Se {\{x_{n}\}} é uma sequência de Cauchy e alguma subsequência de {X_{n}} converge para {x}, então {x_{n}\longrightarrow x}.

Demonstração: Por hipótese temos que {x_{n_{k}}\longrightarrow x} para algum {\epsilon>0}. Seja {N_{1}, N_{2}\in\mathbb{N}} tal que {d(x_{n_{k}},x)<\frac{\epsilon}{2}}, para todo {n_{k}\geq N_{1}}. Por outro lado, como {x_{n}} é umasequência de Cauchy, então {d(x_{m},x_{n})<\frac{\epsilon}{2}}, para {m,n\geq N_{2}}. Fixemos {n_{k}>N} e seja {N=\max\{N_{1},N_{2}\}}, então:

\displaystyle d(x,x_{n})<d(x,x_{n_{k}})+d(x_{n_{k}},x_{n})<\epsilon.

\Box

Topologia – Distância entre conjuntos e diâmetro

— 1.1.6. Distância entre conjuntos e diâmetro —

Definição 8 Seja {(X,d)} um espaço métrico e {x\in X}. Se {A\subset X} não vazio, o conjunto das distâncias {x} e os elementos de {A} é definido por

\displaystyle d(x,A):=\inf\{d(x,y):y\in A\}.

Ao número real {d(x,A)\geq 0} chama-se distância de {x} ao conjunto {A}.

Comentário 5 É óbvio que se {x\in A}, então {d(x,A)=0}, mas o recíproco, em geral, nem sempre é verdadeiro.
Exemplo 8 Se {X=\mathbb{R}} e {A=(a,b)}, então {d_{1}(a,A)=0} e {a\not\in A}. Temos também, {d_{1}(0,[1,2])=d_{1}(0,(1,2])=1}.

É evidente que {d(A,x)=d(x,A)}.

Proposição 17 Seja {A\subset X} e {x,y\in X}. Então:

\displaystyle \mid d(x,A)-d(y,A)\mid \leq d(x,y)

Demonstração: Sejam {x,y\in X}, então {\forall a\in A}:

\displaystyle d(x,a)\leq d(x,y)+d(y,a)

,i.e.,

\displaystyle d(x,A)\leq d(y,A)+d(x,y)

de modo análogo,

\displaystyle d(y,A)\leq d(x,A)+d(x,y).

Assim,

\displaystyle -d(x,y)\leq d(x,A)-d(y,A)\leq d(x,y).

\Box

Para cada conjunto {A} de {X} e {\epsilon\geq 0}, denotaremos o conjunto {A_{\epsilon}:=\{x:d(x,A)<\epsilon\}}, onde pode se dar o caso de {\epsilon=\infty}.

Proposição 18 Seja {(X,d)} um espaço métrico e {x\in X}. Então, para cada {A,B} e {\{B_{j}\}_{j\in J}} subconjuntos de {X},as seguintes afirmações são verdadeiras:

  1. {d(x,\emptyset)=\infty} e {d(x,A)<\infty} se {A\neq\emptyset}.
  2. {d(x,\{x\})=0}.
  3. Se {A\subseteq B}, então {d(x,A)\leq d(x,B)}.
  4. {\forall \epsilon>0},{0\leq\epsilon\leq\infty}, {d(x,A)\leq d(x,A_{\epsilon})+\epsilon}.
  5. {d(x,\cup_{j\in J})B_{j})=\inf_{j\in J}d(x,B_{j})}
  6. {d(x,\cap_{j\in J}B_{j})\geq\sup_{j\in J}d(x,B_{j})}

Demonstração:

  1. {d(x,\emptyset)=\inf\emptyset=\infty} (pela definição do ínfimo de um conjunto).
  2. Basta tomar {A=\{x\}\longrightarrow d(x,A)=0}.
  3. Deixada ao leitor.
  4. Seja {a\in A_{\epsilon}},existe {a'\in A}, {d(a,a')<\epsilon}. Portanto,

    \displaystyle d(x,A)\leq d(x,a)+d(a,a')\leq d(x,A_{\epsilon})+\epsilon.

  5. {d(x,\cup_{j\in J})B_{j})=\inf_{b\in \cup_{j\in J}B_{j}}d(x,b)=\inf_{j\in J}(\inf_{b\in B_{j}}d(x,b))=\inf_{j\in J}d(x,B_{j}).}
  6. Sugestão: {d(x,A)\geq d(x,B)} se {A\subseteq B}.

\Box

Definição 9 Sejam {A,B} subconjuntos de {X}, onde {(X,d)} é um espaço métrico. A distância entre {A} e {B} é o número

\displaystyle d(A,B)=\inf\{d(x,y):x\in A,y\in B\}.

É evidente que se {A\cap B\neq\emptyset}, então {d(A,B)=0}, em geral o recíproco não é verdadeiro e, obviamente {d(A,B)=d(B,A)}.

Proposição 19 Seja {(X,d)} um espaço métrico e {A,B,C} e {D} subconjuntos de {X}, e famílias {\{A_{i}\}_{i\in I}}, {\{B_{j}\}_{j\in J}} de subconjuntos de {X}. Então:

  1. {d(A,B)<\infty} se e só se {A} e {B} são não vazios.
  2. {d(A,B)=0} se {A\cap B\neq\emptyset}.
  3. Se {A\subseteq B} e {C\subseteq D}, então {d(A,C)\leq d(B,D)}.
  4. Para todo {\epsilon,\epsilon'}, {0\leq\epsilon,\epsilon'\leq\infty}, {d(A,B)\leq d(A_{\epsilon},B_{\epsilon})+\epsilon+\epsilon'}.
  5. {d(\cup_{i\in I}A_{i},\cup_{j\in J}B_{j})=\inf_{i\in I,j\in J}d(A_{i},B_{j})}.
  6. {d(A,\cap_{j\in J}B_{j})\geq\sup_{j\in J}d(A,B_{j})}.

Demonstração: Deixadas ao leitor. \Box

Definição 10 Seja {A\subseteq X}, onde {(X,d)} é um espaço métrico. O diâmetro de {A} é definido como

\displaystyle \delta(A)=\sup\{d(x,y):x,y\in A\}.

Exemplo 9 {\delta(\emptyset)=\sup \emptyset=-\infty}.
Proposição 20 Sejam {A,B\subseteq X}. Então:

  1. Se {A\subseteq B}, então {\delta(A)\leq\delta(B)}.
  2. {\delta(A_{\epsilon})\leq 2\epsilon+\delta(A)}, {\forall\epsilon>0}.
  3. {\delta(A\cup B)\leq \delta(A)+\delta(B)+d(A,B)}.

Demonstração: Deixada ao leitor. \Box

Topologia dos Espaços Métricos

— 1.1.5. Topologia dos Espaços Métricos —

Definição 4 Seja {(X,d)} um espaço métrico e {A\subseteq X}. Diz-se que {A} é um conjunto aberto se para todo {x\in A} existe {r>0}: {B(x,r)\subseteq A}. Um subconjunto {F} de {X} é fechado se seu complementar {X\setminus F} é aberto.
Comentário 4 É importante notarmos que o facto de um conjunto não ser aberto, não implica que ele seja fechado.
Exemplo 6 Observamos que {X} e {\emptyset} são ambos conjuntos aberto e fechado. É claro que a condição acima é satisfeita para ambos, i.e., {X} e {\emptyset} são abertos, logo, novamente pela definição acima, seus complementares são fechados.
Proposição 9 Toda bola aberta é um conjunto aberto.

Demonstração: Esta proposição é uma consequência imediata da proposição 1.3. \Box

Proposição 10 A união arbitrária de conjuntos abertos num espaço métrico, também é um conjunto aberto.

Demonstração: Seja {\{A_{i}\}_{i\in I}} uma família de abertos, e {A=\cup_{i\in I}A_{i}}. Temos de mostrar que {A} é aberto.

Seja {x\in \cup_{i\in I}A_{i}}, então existe {i_{0}\in I} tal que {x\in A_{i_{0}}}, pela definição 1.4 existe uma bola aberta {B(x,r)\subseteq A_{i_{0}}}, como {A_{i_{0}}\subseteq \cup_{i\in I}A_{i}}, concluímos que {B(x,r)\subseteq \cup_{i\in I}A_{i}}. \Box

Proposição 11 A intersecção finita de conjuntos abertos num espaço métrico, também é um conjunto aberto.

Demonstração: Seja {\{A_{i}\}_{i}^{n}} uma família de abertos e {A=\cap_{i=1}^{n}A_{i}}. Temos de mostrar que {A} é fechado.

Seja {x \in \cap_{k=1}^{n}A_{k} \Longrightarrow x\in A_{i}} para todo {i}. Então existem {r_{k}>0} tais que {B(x,r_{k})\subseteq A_{i}}. Se {r=\min\{r_{1},\cdots,r_{n}\}} então {r>0} e {B(x,r)\subseteq\cap_{i=1}^{n}A_{i}} é

\Box

Proposição 12

  1. Toda bola fechada num espaço métrico é um conjunto fechado.
  2. A intersecção enumerável de conjuntos fechados num espaço métrico é um conjunto fechado.
  3. A união finita de conjuntos fechados num espaço métrico é um conjunto fechado.
  4. Todo conjunto finito é fechado.

Demonstração: Deixada ao leitor. \Box

Definição 5 O interior de {A} é o maior conjunto aberto contido em {A}, i.e.,

\displaystyle int A=\cup\{U:U\subseteq A\text{ onde }U \text{ é aberto }\}.

O fecho de {A}, {\overline{A}}, é o menor conjunto fechado em {X} contendo {A}, i.e.,

\displaystyle \overline{A}=\cap\{K: A\subseteq K, K\text{ fechado }\}.

Exemplo 7 Da definição anterior podemos imediatamente verificar que {\mathbb{Q}\subset\mathbb{R}}, é tal que {int(\mathbb{Q})=\emptyset} (muito importante !!!) e {\overline{\mathbb{Q}}=\mathbb{R}}. Para provarmos isto, suponha que {U\subset\mathbb{R}} é aberto. Então, como as bolas abertas em {\mathbb{R}} são intervalos, existe um intervalo {(a,b)\subset U\subset\mathbb{R}}, onde {a<b}. Como entre dois números reais sempre existe um número irracional, segue-se que {(a,b)\cap \mathbb{R}\setminus \mathbb{Q}\neq \emptyset}, {U\nsubseteqq\mathbb{Q}} e por isso {int(\mathbb{Q})=\emptyset}. Se {\mathbb{Q}\subset K} é um subespaço fechado de {\mathbb{R}}, então {\mathbb{R}\setminus K} é aberto e não contém racionais. Segue-se que não contêm nenhum intervalo por que qualquer intervalo não vazio de números reais contém um número racional. Assim, {\mathbb{R}\setminus K=\emptyset} e {\overline{\mathbb{Q}}=\mathbb{R}}.
Proposição 13 Seja {A\subseteq X}. Então:

  1. {x\in int A} se e só se existe {r>0} tal que {B(x,r)\subseteq A}.
  2. {x\in \overline{A}} se e só se para todo {r>0}, {B(x,r)\cap A\neq\emptyset}.

Demonstração: 1. Seja {x\in intA}, pela Definição 1.5 significa que existe um aberto {U} tal que {x\in U\subseteq A}. Como {U} é aberto, então existe {r>0} e uma bola {B(x;r)\subseteq U\subseteq A}. A implicação inversa é simples, basta notarmos que se {B(x,r)\subseteq A} e {B(x,r)} é um conjunto aberto, então {B(x,r)\subseteq intA}.

2.Deixada ao leitor.

\Box

Proposição 14 Seja {A} um subconjunto de {X}.

  1. {A} é fechado se e só se {A=\overline{A}}.
  2. {A} é aberto se e só se {A=int A}.
  3. Seja {\{A_{i}\}_{i=1}^{n}} uma família de subconjuntos de {X}, então {\overline{\cup_{i=1}^{n}A_{i}}= \cup_{i=1}^{n}\overline{A_{i}}}.
  4. Seja {\{A_{i}\}_{i=1}^{n}} uma família de subconjuntos de {X}, então {int(\cap_{i=1}^{n}A_{i})=\cap_{i=1}^{n}int(A_{i})}.

Demonstração: deixada ao leitor. \Box

Definição 6 Um subconjunto {A} de um espaço métrico {X} é denso se {\overline{A}=X}. Um espaço métrico {X} é separável se contém um subconjunto denso enumerável.
Proposição 15 Um conjunto {A} é denso em {(X,d)} se e só se para todo {x\in X} e todo {r>0}, {B(x,r)\cap A\neq\emptyset}.

Demonstração: É uma aplicação trivial da proposição 1.13. \Box

Definição 7 Seja {A\subseteq X}, então um ponto {x\in X} é chamado de ponto limite de {A} se para todo {\epsilon >0} existe um ponto {y} em {B(x,\epsilon)\cap A} com {y\neq x}.
Proposição 16 Seja {A\subset X}, onde {X} é um espaço métrico, então {\overline{A}=A\cup A'}, onde {A'} representa o conjunto dos pontos limites de {A} ou derivado de {A}.

Demonstração: Por definição, o fecho de {A}, {\overline{A}}, é fechado e por isso {A\subset\overline{A}}. Segue que se {x\in \overline{A}}, então existe um conjunto aberto {U} contendo {x} com {U\cap A=\emptyset} e daí {x\not\in A} e {x\not\in A'}. Isto mostra que {A\cup A' \subset \overline{A}}.

Por outro lado, suponhamos {x\in\overline{A}} e {V} um aberto contendo {x}. Se {V\cap A=\emptyset}, então {A\subset(X\setminus V)} é um conjunto fechado e {\overline{A}\subset(X\setminus V)}. Mas, {x\not\in \overline{A}}, contradição. Se {x\in \overline{A}} e {x\not\in A}, então, para qualquer aberto {V} com {x\in V}, temos {V\cap A\neq\emptyset}. Logo, {x} é um ponto limite de {A}. Assim, {\overline{A}\subset A\cup A'}. \Box

%d bloggers like this: