Luso Academia

Início » 04 Ensino Superior » 02 Física » Exercícios Resolvidos

Exercícios Resolvidos

— 1. Introdução —

A pedido de um dos nossos leitores vamos publicar alguns exercícios resolvidos para ajudá-lo a ele e aos seus colegas na compreensão da matéria de Cálculo I para o curso de Gestão e Economia.

— 2. Exercícios —

Exercício 1 Considera a sucessão {U_n} definida por: {U_n=\frac{n+1}{n}}.

  1. Calcule os 4 primeiro termos de {U_n}

    {U_1=\frac{1+1}{1}=\frac{2}{1}=2}

    {U_2=\frac{2+1}{2}=\frac{3}{2}}

    {U_3=\frac{3+1}{3}=\frac{4}{3}}

    {U_4=\frac{4+1}{2}=\frac{5}{4}}

  2. Verifica se {\frac{6}{5}} é um termo da sucessão

    Para que {\frac{6}{5}} seja um termo da sucessão {U_n} tem que existir um {n} pertencente a {\mathbb{N}} tal que {U_n=\frac{6}{5}}.

    {\begin{aligned} \displaystyle \frac{6}{5}&= \frac{n+1}{n} \\ 6n &= 5n+5\\ 6n-5n &= 5\\ n &= 5 \end{aligned}}

    Como {n=5} é uma afirmação válida podemos concluir que {\frac{6}{5}} é um termo da sucessão.

  3. {\exists N \in \mathbb{N}: U_n=\frac{7}{8}}

    {\begin{aligned} \displaystyle \frac{7}{8}&= \frac{n+1}{n} \\ 7n &= 8n+8\\ 7n-8n &= 8\\ -n &= 5 \\ n &= -8 \end{aligned}}

    Como {n=-8} é uma afirmação que não é válida podemos que concluir que {n \nexists \mathbb{N}: U_n=\frac{7}{8}}

  4. Mostre que {a_{n+1}-a_n=-\frac{1}{(n+1)n}}. Que monotonia se trata?

    {\begin{aligned} \displaystyle a_{n+1}-a_n &=\frac{n+1+1}{n+1}-\frac{n+1}{n} \\ &= \frac{n+2}{n+1}-\frac{n+1}{n} \\ &= \frac{(n+2)n-(n+1)^2}{(n+1)n} \\ &= \frac{n^2-2n-n^2-2n-1^2}{(n+1)n} \\ &= \frac{-1}{(n+1)n} \\ &= -\frac{1}{(n+1)n} \end{aligned}}

    Uma vez que a diferença entre termos sucessivos da sucessão {U_n} é negativa temos a seguinte relação:

    \displaystyle  a_{n+1}-a_n < 0

    Ora isto implica que

    \displaystyle  a_{n+1} < a_n

    Assim sendo vemos que os termos sucessivos são sempre menores que os termos anteriores, logo a sucessão {U_n} tem uma monotonia decrescente.

Exercício 2 Prove que a sucessão de termo geral

\displaystyle  a_n=\frac{3n-4}{2n-1}

é uma sucessão crescente.

Tal como vimos no exercício anterior para calcularmos a monotonia de uma função temos que calcular o termo

\displaystyle  a_{n+1}-a_n

{\begin{aligned} \displaystyle a_{n+1}-a_n &=\frac{3(n+1)-4}{2(n+1)-1}-\frac{3n-4}{2n-1} \\ &= \frac{3n+3-4}{2n+2-1}-\frac{3n-4}{2n-1} \\ &= \frac{3n-1}{2n+1}-\frac{3n-4}{2n-1} \\ &= \frac{(3n-1)(2n-1)-(3n-4)(2n+1)}{(2n+1)(2n-1)} \\ &= \frac{6n^2-3n-2n+1-(6n^2+3n-8n-4)}{4n^2-1} \\ &= \frac{6n^2-3n-2n+1-6n^2-3n+8n+4)}{4n^2-1} \\ &= \frac{5}{4n^2-1} \end{aligned}}

Uma vez que

\displaystyle  a_{n+1}-a_n=\frac{5}{4n^2-1}

E que

\displaystyle \frac{5}{4n^2-1}>0

Temos que

\displaystyle  a_{n+1}-a_n>0

E assim é

\displaystyle  a_{n+1}> a_n

Logo {a_n} é uma sucessão crescente.

Exercício 3

Dada a sequência do exemplo anterior, justifique que são limitadas as seguintes sucessões

  • {a_n=10+\frac{1}{n}}

    Ora {a_1=10+\frac{1}{1}=10+1=11}

    Por outro lado vamos calcular o limite da sucessão.

    {\begin{aligned} \displaystyle \lim a_n &= \lim 10+\frac{1}{n}\\ &= 10+0\\ =10 \end{aligned}}

    Uma vez que

    \displaystyle  10 \leq a_n \leq 11

    A sucessão diz-se limitada.

  • {u_n=\frac{n+1}{n}}

    {u_1=\frac{1+1}{1}=\frac{2}{1}=2}

    Por outro lado

    {\begin{aligned} \displaystyle \lim u_n &= \lim \frac{n+1}{n}\\ &= 1 \end{aligned}}

    Uma vez que

    \displaystyle  1 \leq u_n \leq 2

    A sucessão diz-se limitada.

  • {d_n=\frac{3-n}{n+1}}

    {d_0=\frac{3-0}{0+1}=\frac{3}{1}=3}

    Por outro lado

    {\begin{aligned} \displaystyle \lim d_n &= \lim \frac{3-n}{n+1}\\ &= \lim \frac{-n}{n}\\ &= -1 \end{aligned}}

    Uma vez que

    \displaystyle  -1 \leq u_n \leq 3

    A sucessão diz-se limitada.

  • {d_n=n+\frac{1}{n}}

    {d_1=1+\frac{1}{1}=1+1=2}

    Por outro lado

    {\begin{aligned} \displaystyle \lim d_n &= n+\frac{1}{n}\\ &=\lim n+0\\ &= +\infty \end{aligned}}

    Uma vez que

    \displaystyle  \lim d_n=+\infty

    A sucessão diz-se não limitada.


  • 3 comentários

    1. Alfredo diz:

      Gostei de ver, preciso conhecer técnica de como averiguar se uma sucessão é ou não limitada.

      Gostar

    2. Edilma diz:

      Boa tarde! Como posso ter acesso aos exercícios resolvidos de analise matemática para estudar. Agradeço se puderem me ajuar.

      Gostar

    Deixe um comentário

    Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

    Logótipo da WordPress.com

    Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

    Google photo

    Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

    Imagem do Twitter

    Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

    Facebook photo

    Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

    Connecting to %s

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Donativos

    Donate Button

    Localização

    wordpress com stats
    %d bloggers like this: