Luso Academia

Início » 04 Ensino Superior

Category Archives: 04 Ensino Superior

Interacção de corpos carregados. Força Eléctrica. Lei de Coulomb. Princípio de superposição.

— 1.2. Interacção de corpos carregados. Força Eléctrica. Lei de Coulomb —

Os corpos carregados interagem, ou seja, exercem forças um no outro.

A força eléctrica é uma grandeza vectorial com intensidade, direcção e sentido. A direcção coincide com a recta que une as duas cargas, e o sentido é estabelecido pelo sinal das cargas em presença.

As intersecções podem ser atração ou repulsão. As cargas eléctricas de sinais contrários atraem-se (puxam-se simultaneamente, uma em direcção a outra), e cargas eléctricas de um mesmo sinal repelem-se (empurra-se simultaneamente, uma em direcção oposta a outra). Este princípio é denominado Princípio impírico de Du Fay.

As forças eléctricas provocadas por objetos carregados foram medidas quantitativamente por Charles Coulomb a partir de uma balança de torção, da qual ele mesmo inventou.

A força de interacção electrostática entre dois corpos carregados e fixos, é diretamente proporcional ao produto de suas cargas e inversamente proporcional ao quadrado da distância que as separa.

O módulo da força electrostática entre as cargas é igual e é dada por:

\displaystyle F_{12}=F_{21}=k \cdot \frac{|q_1| \cdot |q_2|}{r^2}

Onde:
{ k= \frac{1}{4\pi\varepsilon_{0}}}
{ \varepsilon= \varepsilon_{r} \cdot \varepsilon_{0}}
{ \varepsilon_{0}=8,85 \cdot 10^{-12} \ \ F/m}
{ {\varepsilon} \rightarrow} Permissividade eléctrica do meio;
{ \varepsilon_{r} \rightarrow } Permissividade relativa do meio;
{ r \rightarrow } módulo de distância entre as cargas;
{ q \rightarrow } Carga eléctrica;

Vectorialmente:

\displaystyle \vec{F_{21}}=-\vec{F_{12}}=k \cdot \frac{q_1 \cdot q_2}{r^3} \cdot \vec{r}

Ou

\displaystyle \vec{F_{21}}=-\vec{F_{12}}=k \cdot \frac{q_1 \cdot q_2}{r^2} \cdot \vec{u_r}

Onde:
{\vec{u_r}} é o unitário do vector {\vec{r}}.

— 1.3. Princípio de Sobreposição das forças eléctricas —

A superposição ou sobreposição de efeitos é o efeito de obtido quando um conjunto de elementos causadores do efeito se sobrepõem. É um princípio muito usado na Física, nas mais diversas áreas.

O princípio de sobreposição postula que o efeito criado por um conjunto de causas aplicado num corpo é igual á soma ou superposição dos efeitos que cada das causas iria gerar quando aplicada separadamente sobre esse mesmo corpo.

De acordo com o princípio da supersposição, a força resultante na carga {q_1} será:

\displaystyle \vec{F_1}=\vec{F_{12}}+\vec{F_{13}}+...+\vec{F_{1n}}

A forma de calcular a resultante, vai depender do número de vectores que se sobreposurem.

Exemplo 2

 

Consideremos o sistema de três cargas. Determinemos a expressão para a força resultante na carga {q_3}.

Para tal, devemos representar as forças de interacção entre as cargas, sendo de atracção ou de repulsão, dependendo de as cargas terem mesmos sinais ou sinais opostos. As forças entre {q_1} e {q_2} são de atracção, as forças entre {q_1} e {q_3} são de repulsão e as forças entre {q_2} e {q_3} são de atracção. Assim, representamos as forças neste sistema:

Neste caso, actuarão em {q_3} duas forças ({F_{31}} e {F_{32}}). Então, de acordo com o princípio de sobreposição, a força resultante será:

\displaystyle \vec{F_3}= \vec{F_{31}} + \vec{F_{32}}

Em módulo, sendo uma soma entre dois vectores, podemos usar a fórmula do triângulo (lei dos co-senos). Mas para tal, deveremos antes determinar os ângulos {\alpha} e {\beta}. Após determinação dos ângulos, teremos:

\displaystyle F_3= \sqrt{F_{31}^2 + F_{32}^2+2 \cdot F_{31} F_{32} \cdot \cos (\alpha+\beta)}

Neste caso, o cálculo da resultante pode fazer-se em uma única expressão porque apresenta a soma de apenas dois vectores.

Para um caso em que se sobreponham mais de dois vectores, a resultante deverá ser calculada pelo método de componentes.

Exemplo 3 Consideremos o sistema de quatro cargas abaixo. Determinemos a expressão para a força resultante na carga {q_1}.

 

Para tal, devemos representar as forças de interacção entre as outras cargas com a carga {q_1}, sendo de actracção ou de repulsão, dependendo de as cargas terem mesmos sinais ou sinais opostos. As forças entre {q_1} e {q_2} são de repulsão, as forças entre {q_1} e {q_3} são de atração e as forças entre {q_1} e {q_4} são de repulsão.

Neste caso, actuarão em {q_1} três forças ({F_{12}}, {F_{13}} e {F_{14}}). Então, de acordo com o princípio de sobreposição, a força resultante será:

\displaystyle \vec{F_1}= \vec{F_{12}} + \vec{F_{13}}+ \vec{F_{14}}

Devemos agora notar que pretendemos somar mais de dois vectores ( três no caso), e todos de direcção diferente. Para tal, como {\vec{F_{12}}} e {\vec{F_{14}}} são horizontal e vertical, respectivamente, e {\vec{F_{13}}} é oblíquo, então se projectará o {\vec{F_{13}}} na horizontal e na vertical, obtendo assim {\vec{F_{13x}}} e {\vec{F_{13y}}}. Mas para tal, deveremos antes determinar o ângulo {\alpha}.

Neste caso, teremos:

\displaystyle F_{13x}= F_{13} \cos \alpha

\displaystyle F_{13y}= F_{13} \sin \alpha

Neste caso, calcularemos as componentes do vector resultante em cada eixo:

\displaystyle \ F_{1x}= F_{12}-F_{13x}

\displaystyle \ F_{1y}=F_{14}- F_{13y}

Em seguida, se poderá calcular o vector resultante:

\displaystyle F_1= \sqrt{(F_{1x})^2+(F_{1y})^2}

Está a gostar da Abordagem? Veja também:
Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo; Todas as Categorias (Início).
  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1. Electrostática (Introdução). Carga Eléctrica. Electrização dos corpos.

1.1. Introdução O conhecimento de fenómenos eléctricos e magnéticos vem já da Antiguidade Clássica: na Grécia de Aristóteles, descobriu-se que o âmbar (‘elektron’) atrai penas ou pós e que a pedra de Magnésia atrai pequenos pedaços de ferro; na China desses tempos já o compasso magnético era usado na navegação. Contudo, o estudo sistemático destes fenómenos só viria a ocorrer nos séculos XVIII e XIX: Charles Du Fay (1733) reconhece haver dois tipos de electricidade (‘vítrea’ e ‘resinosa’), mas seria Benjamim Franklin a propor a existência de cargas positivas e negativas. A electrostática é a parte do electromagnetismo que estuda os fenómenos eléctricos resultantes de cargas eléctricas em repouso. A carga eléctrica, é uma propriedade intrínseca da matéria e está associada a existência da matéria. A unidade de medida da grandeza carga eléctrica no Sistema Internacional de Unidades é o Coulomb, representado por C, que recebeu este nome em homenagem ao físico francês Charles Augustin de Coulomb. Não podemos ver a carga eléctrica, mas podemos sentir os seus efeitos. Podemos dizer que a carga eléctrica representa acumulação de electricidade. Nas suas experiências, os cientistas Milikan e Jofre, concluíram que a carga eléctrica é quantizada, isto é, os seus valores apenas podem ser múltiplos inteiros de um mesmo valor mínimo de carga, denominado carga elementar.

\displaystyle q= n \cdot e

Onde: {n \rightarrow } número de partículas. {e \rightarrow } carga elementar (que corresponde a carga de um electrão). A carga eléctrica elementar é a menor quantidade de carga que pode ser encontrada na natureza. A carga eléctrica é uma propriedade fundamental da matéria. As partículas elementares detentoras desta propriedade são o electrão e o protão, ambas constituintes do átomo, localizando-se os protões no núcleo e os electrões em órbitas envolventes do mesmo. Além dos protões, o núcleo dos átomos é também constituído por neutrões, neutros do ponto de vista eléctrico. O modelo atómico simples é ilustrado na figura abaixo, onde os electrões se movem em torno do núcleo do átomo.

Um protão tem uma carga {q_p=+e} e um electrão tem uma carga {q_e=-e}. Um neutrão tem carga eléctrica nula ({q_n=0}).

\displaystyle \vert q_p \vert= \vert q_e \vert= e = 1,602 \cdot 10^{-19} \ C

Um corpo possui carga positiva se tiver na sua constituição defeito de electrões (ou seja, possui mais protões do que electrões) e possui carga negativa se tiver na sua constituição excesso de electrões (ou seja, possui mais electrões do que protões). O átomo, no estado fundamental é electricamente neutro (ou seja, possui o mesmo número de electrões e de protões, logo a sua carga total é nula {q_t=0}). Os átomos neutros contêm o mesmo número de electrões e de protões. Os átomos não neutros são designados por iões. Um átomo torna-se num ião negativo(anião) quando captura electrões numa das suas órbitas, e positivo (catião) quando os perde. Os protões, os electrões e em geral os iões são as entidades responsáveis pelo fenómeno da força eléctrica. A figura abaixo apresenta o modelo de um ião positivo. Claramente se nota na figura que o número de protões no núcleo é diferente e maior que o número de electrões em orbita.

Chamamos de carga pontual a qualquer corpo cujas dimensões do corpo seja muito menor do que as distâncias envolvidas no fenómeno, ou seja, as suas dimensões podem ser desprezadas na análise dos problemas. Em um sistema isolado, a carga total permanece constante. Esta afirmação é conhecida como a Lei de Conservação da Carga eléctrica. Existem, dois tipos de materiais. De acordo com a descoberta de Stephen Gray, as cargas eléctricas podiam ser transmitidas através de determinados materiais, mas permaneciam retidas em outros. Aqueles materiais nos quais as cargas fluíam foram chamados de condutores e aqueles nos quais ficavam retidas de isolantes.
Exemplo 1 Consideremos dois corpos condutores carregados inicialmente com cargas {q_1} e {q_2}. Ao colocarmos elas em contacto, elas trocam carga eléctrica (por serem condutoras). Em função disso, a carga de cada uma delas altera-se. Se deixarmos elas em contacto por tempo suficiente, no final a carga equilibra-se. Mas a carga total conserva-se.

\displaystyle q_1 + q_2= \ q'_1 + q'_2

Sabemos que: { q'_1=q'_2}. Logo:

\displaystyle q_1+q_2=2 \ q'_1

\displaystyle \Rightarrow q'_1= \ \frac{q_1+q_2}{2}

Para se obterem iões, pode se realizar a electrização dos corpos. A electrização são fenómenos em que electrões são transferidos de um corpo para outro devido a uma diferença na quantidade de cargas eléctricas existente os corpos, ou, pela aquisição de energia advinda do atrito entre os corpos. A electrização por atrito (ou fricção) acontece principalmente quando dois ou mais corpos isolantes são friccionados (esfregados) um contra o outro. O processo de esfregar ou friccionar os corpos fornece energia aos electrões desses materiais. Os electrões dos materiais isolantes geralmente encontram-se fortemente atraídos pelos núcleos de seus próprios átomos, por isso, precisam de uma energia extra para saltar de um corpo para outro. Durante a electrização por atrito, um dos corpos perde electrões e o outro ganha . Deste modo, ao final do processo, os dois corpos estarão com cargas de módulo igual, mas de sinais opostos. Nem todos os corpos vão se electrizar quando esfregados. Para se saber quais são os pares de materiais que, quando friccionados, ficam electrizados, é preciso conhecer sua afinidade eléctrica, uma vez que existem materiais que tendem a ganhar electrões, quanto outros tendem a perde-los. A electrização por contacto, diferentemente da electrização por atrito, necessita de pelo menos um dos corpos carregado electricamente. Por exemplo, considere um condutor carregado positivamente e outro condutor neutro. Aproxima-se o condutor positivo do condutor neutro até que ocorra o contacto entre eles. Quando isso acontece, haverá uma transferência de electrões do corpo neutro para o corpo carregado positivamente. Essa transferência irá ocorrer de maneira bem rápida até que ambos os condutores fiquem com o mesmo potencial eléctrico.

Na electrização por atrito (fricção) e por contacto, há obrigatoriamente a necessidade do contacto físico entre os corpos que electriza e o electrizado. Na electrização por indução isso já não é necessário e é por isso que esse processo recebe esse nome de indução. Considere três condutores, um carregado electricamente e ou outros dois neutros e encostados um no outro. Aproxima-se o condutor carregado dos condutores neutros. O condutor carregado será o indutor e os condutores neutros, os induzidos. Durante essa aproximação, observa-se uma separação de cargas nos condutores neutros. Como o indutor é negativo, o induzido mais próximo do indutor ficará carregado positivamente e o induzido mais afastado ficará carregado negativamente. Com o indutor ainda próximo, separam-se os dois condutores que estão juntos. E por fim retira-se o indutor das proximidades dos outros dois corpos. Teremos como resultado os dois condutores que inicialmente eram neutros, agora carregados com cargas de sinais a opostos. Note que em momento algum houve o contacto entre o condutor carregado e os condutores inicialmente neutros.

Está a gostar da Abordagem? Veja também: Exercícios e problemas resolvidos e explicados de Mecânica (Física 1); Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2); Exercícios e problemas resolvidos e explicados de Gravitação (Física 2); Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2); Exercícios e problemas resolvidos e explicados de Fluidos (Física 2); Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3); Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4); Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4); Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias; Exercícios e problemas resolvidos e explicados de Cálculo; Todas as Categorias (Início).
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

Economia dos Recursos Naturais

1. Introdução

Definição:

Recursos Naturais são elementos da natureza utilizados para satisfazer demandas / procura de energia e matéria-prima do ser humano.

Figura 1: Produtos vegetais e animais
Figura 2: Energia
Figura 3: Minerais
Figura 4: Fosseis

Esses elementos são úteis no dia a dia, fornecem matéria prima, energia e garantem o desenvolvimento da sociedade e das diversas atividades exercidas pelo homem em seu cotidiano.

Classificação dos Recursos Naturais

Os recursos naturais podem ser classificados em função da sua origem, duração das reservas e grau de obtenção.

Classificação I – Origem:

Quanto a sua origem, os recursos naturais são classificados em função a sua fonte primaria. Estão subdivido nos seguintes subgrupos:

  1. Origem Mineral: são substâncias inorgânicas extraídas da Terra e que têm utilidade como matéria prima. Não há participação do ser humano no seu processo de criação. As areias, rochas e outros minérios, como ferro e prata, são alguns dos exemplos destes recursos.
Figura 5: Carvão Mineral

2. Origem Vegetal: são os recursos como plantas, solo, flores e árvores. Estes bens são usados para muitas finalidades, como na indústria de extração de madeira, agricultura, construção, medicamentos e alimentação.

Figura 5: Madeira

3. Origem Animal: são os benefícios decorrentes da utilização dos animais para atender às diversas necessidades humanas. A principal delas, é claramente a alimentação.

Figura 6: Carne

4. Origem Energética: são todos os recursos naturais que podem ser aproveitados para obter energia. Os recursos energéticos estão divididos em dois grandes grupos: os recursos energéticos não-renováveis, que advém dos combustíveis fósseis e recursos energéticos renováveis.

Figura 7: Energia eólica

Classificação II – Duração das reservas:

A durabilidade de renovação dos recursos naturais trazem uma vertente a nível da sua classificação importantíssima. Os recursos podem divididos em: Renováveis/Não Exauríveis e Não renováveis/Exauríveis.

  1. Recursos Renováveis/Não Exauríveis: são aqueles que podem ser renovados após o seu uso pelo homem. São exemplos: água, florestas, solo.
Figura 8: Sol
Figura 9: Produtos Agrícolas

2. Recursos Não renováveis/Exauríveis: são aqueles que não se renovam em um espaço de tempo que garanta o suprimento das necessidades do ser humano, tendo assim, uma regeneração lenta. São exemplos: combustíveis fosseis, diamante etc.

Figura 10: Petróleo
Figura 11: Diamante

Classificação III – Obtenção:

Existem vários métodos para obtenção dos recursos naturais, tais métodos estão subdivido em:

  1. Extrativismo: é a atividade de extrair da natureza, de forma controlada, os recursos que estão à disposição do homem. O extrativismo consiste na coleta de plantas que nascem espontaneamente em diversos ambientes entre outros recursos;
  2. Agricultura: é o conjunto de técnicas utilizadas para cultivar plantas com o objetivo de obter alimentos, bebidas, fibras, energia, matéria-prima para roupas, construções, medicamentos, ferramentas, ou apenas para contemplação estética;
  3. Pecuária: é a atividade que envolve a criação, domesticação e abate de animais;
  4. Geração/Transformação de energia: a geração ou transformação de energia no mundo está resumida, em sua grande maioria, pelas fontes de energias tradicionais como petróleo, carvão mineral e gás natural, mas também envolve as fontes renováveis de energia.

Impactos:

  • A extração desses recursos naturais tem impacto sobre o solo, a atmosfera, vegetação, a qualidade da água, a paisagem e produz outros impactes provocados pelo ruído;
  • Pode concluir-se que a extração de recursos naturais requer uma atenção especial por afetar o desenvolvimento sustentável se não for planificado acompanhado e, monitorado porque envolve questões económicas, ambientais e socioculturais.

Classificação IV – Uso:

Uma ultima classificação dos recursos naturais esta relacionada com o uso a que se dado com os mesmos. Estão divididos em:

  1. Matéria-prima
Figura 12: Madeira

2. Energia

Figura 13: Energia solar

Abundância de Recursos Naturais em AngolaMaldição ou Bênção?

Os fracassos observados no desenvolvimento baseado nos recursos naturais têm sido explicados pela:

  1. Doença Holandesa: refere-se à relação entre a exportação de recursos naturais e o declínio do setor manufatureiro. A abundância de recursos naturais gera vantagens comparativas para o país que os possui, levando-o a se especializar na produção desses bens e a não se industrializar ou mesmo a se desindustrializar – o que, a longo prazo, inibe o processo de desenvolvimento econômico.
  2. Tese da maldição dos recursos (Paradoxo da abundância): refere-se ao paradoxo em que os países e regiões, com uma abundância de recursos naturais tendem a ter menos crescimento econômico e piores resultados de desenvolvimento se comparados a países com menos recursos naturais.
Figura 14: Esquema

Exploração produção e transformação de recursos naturais (Angola)

  • Devido a sua posição geográfica Angola tem potencialidades consideráveis em termos de recursos hídricos e biológicos.
  • Quanto a disponibilidade de águas subterrâneas, 95% alimentam diretamente os rios e apenas 5% fluem para o mar.
  • Tem ainda 47 bacias hidrográficas direcionadas para 5 vertentes principais:
    • Atlântico — 41%;
    • Zaire(Congo) — 22%;
    • Zambeze — 18%; 
    • Okavango — 12%
    • Etosha — 4%.
  • Efetivamente os recursos geológicos angolanos possuem um potencial de influência direta, reconhecido no mercado global, sobre o desenvolvimento do país, nomeadamente através da indústria mineira. Entre eles encontram-se:
    • petróleo;
    • diamantes;
    • minas de ferro;
    • fosfatos;
    • cobre;
    • feldspatos;
    • ouro;
    • bauxite;
    • urânio;
    • zinco;
    • chumbo;
    • volfrâmio;
    • manganês e estanho.

1. Introdução à Mecânica (Parte 1)

1. Introdução à Mecânica

1.1. Introdução Geral à Física


A Ciência e a Engenharia se baseiam em medições e comparações.


Assim, precisamos de regras para estabelecer de que forma as grandezas devem ser medidas e comparadas, e de experimentos para estabelecer as unidades para essas medições e comparações.


Um dos propósitos da física é elaborar, postar e relacionar modelos em um esforço para descrever, explicar ir para ver a realidade. Esse processo envolve hipóteses, experimentos reprodutíveis e as observações e novas hipóteses.


O resultado final é um conjunto de princípios fundamentais e leis que descrevem os fenómenos do mundo que nos cerca. Estas leis e princípios são aplicáveis tanto ao mundo macroscópico como buracos negros, matéria e energia escura, gravidade, etc como para o mundo microscópico partículas quânticas como leptoquarks e bósões. Quanto ao nosso dia-dia, são incontáveis as questões sobre o nosso mundo que podem ser respondidas com conhecimento básico de física.


Se a agua não tem cor, porque razão a uma distância do mar, a água parece azul?


Como é que os astronautas no espaço flutuam?


Como funciona um CD?

1.2. Medindo grandezas

Ao estudarmos conteúdos relacionados com a Física, muitas vezes, deparamo-nos com a palavra grandeza definindo termos científicos, como velocidade, aceleração, força, tempo etc.


Numa linguagem muito elementar, uma grandeza é tudo aquilo que pode ser medido e possibilita que tenhamos características baseadas em informações numéricas e/ou geométricas. A grandeza é toda a característica de um sistema ou corpo a que possamos associa uma quantidade. Medir uma grandeza física é compara-lá com uma outra da mesma espécie na natureza.


Medimos cada grandeza física em medidas apropriadas, por comparação com padrão. A unidade é um nome particular que atribuímos as medidas dessa grandeza.


Assim por exemplo, o metro (m) é uma unidade da grandeza comprimento. O padrão corresponde a exatamente 1,0 unidade da grandeza, como vamos ver o padrão de comprimento que corresponde exatamente 1,0 m é a distância percorrida pela Luz no vácuo durante uma certa fração de tempo .


Em princípio podemos definir uma unidade e o seu padrão da forma que quisermos, mas é importante que cientistas em diferentes partes do mundo concordem que nossas definições e que, ao mesmo tempo sejam razoáveis e práticas.


Depois de escolher um padrão (neste caso comprimento) precisamos estabelecer procedimentos através dos quais qualquer comprimento seja {r} o raio do átomo de hidrogénio, {a} largura de uma aresta de um cubo ou {d} a distância entre duas estrelas, possa ser expresso em termos da unidade.


Usar uma régua de comprimento aproximadamente igual ao padrão pode ser uma forma de executar medidas de comprimento. Entretanto, muitas das comparações são necessariamente indiretas. Por exemplo, não dá para medir a distâncias entre planetas directamente.


É portanto, impossível usar uma régua, por exemplo, para medir o raio de um átomo ou a distância de uma estrela. Assim o que fazemos é escolher, através de um acordo internacional, um pequeno número de grandezas físicas como comprimento e tempo, e atribuir unidades a elas.


Em seguida, definimos as demais grandezas físicas em termos dessas grandezas fundamentais e de suas unidades (conhecidas, como unidades fundamentais). A velocidade, por exemplo é definida em termos das grandezas fundamentais comprimento e tempo e suas unidades fundamentais.


Portanto as unidades fundamentais de um sistema de unidades dado são as unidades de grandezas físicas de diferentes espécies, escolhidas arbitrariamente para constituição desse sistema. As grandezas físicas que correspondem às mesmas unidades têm o nome de grandezas fundamentais do sistema considerado.


Unidades derivadas são as unidades que se estabelecem sendo deduzidas a partir das outras unidades de um sistema dado, desde que se observem as leis e os princípios físicos a exprimirem as relações mútuas existentes entre as respetivas grandezas físicas.

1.3. O sistema Internacional de Unidade


Na 14ª conferência geral de pesos e medidas, foram selecionadas sete grandezas como fundamentais, as quais constituem a base do sistema internacional de unidade cuja abreviação é S.I. popularmente conhecido como sistema métrico.

A tabela a seguir mostra as unidades das grandezas fundamentais do S.I. que serão usadas nos principais capítulos desta página. Essas unidades foram definidos modo a serem da mesma ordem de grandeza que a escala humana.


Muitas unidades derivadas do SI são definidas em termos dessas unidades fundamentais. Assim, por exemplo, a unidade de trabalho no SI, chama Joule (J) é definido em termos das unidades fundamentais de massa, comprimento e tempo.

\displaystyle 1 \ Joule= \ 1 \ J= \ 1k \cdot \frac{m^2}{s^2}


Além destas, há duas unidades complementares: o radiano e o esterradiano.


1.3.1 Tempo


Do latim tempus, a palavra tempo é a grandeza física que permite medir a duração ou a separação das coisas mutáveis/sujeitas a alterações (ou seja, o período decorrido entre o estado do sistema quando este apresentava um determinado estado e o momento em que esse dito estado regista uma variação perceptível para o observador).


Em física, tempo é a grandeza física diretamente associada ao correto sequenciamento, mediante ordem de ocorrência, dos eventos naturais, estabelecendo assim um passado, um presente e um futuro.


Na física clássica (que abordaremos nesta secção), o tempo transcorre sempre da mesma forma, esteja o móvel se movimentando ou parado em relação a um determinado referencial. Isso significa dizer que o tempo passa igualmente tanto para uma pessoa que se encontra na superfície da Terra, quanto para uma pessoa que se encontra viajando dentro de uma nave espacial. O que em grande rigor não é verdade.


Para a física moderna, o intervalo de tempo para um móvel que se move em altíssima velocidade (próxima à velocidade da luz no vácuo) passa mais lentamente. Podemos dizer que uma hora para uma pessoa que se encontra parada na superfície da Terra pode corresponder a alguns minutos ou segundos para um observador que se move em altíssima velocidade. Na física moderna, esse fato é conhecido como dilatação do tempo. Porém este não é o foco desta secção.


O tempo marcado pelo relógio não é universal, mas sim uma construção histórica. Medir o tempo significa em princípio registrar coincidências. Quando alguém marca um compromisso, digamos às {13:00} horas do presente dia, está informando que ela estará no local combinado quando o ponteiro pequeno do relógio colocado naquele local coincidir com a marca {1} e enquanto o ponteiro grande esteja na inscrição {12}.


Portanto, podemos entender o tempo como uma medida da simultaniedade de eventos.


A unidade usada para o tempo é o segundo s, apesar de poder usar outras unidades como minutos, horas, dia, semana, mês, anos, décadas, séculos ou milénios (de acordo com o contexto)


Podemos definir o segundo de diversas maneiras. Há um conjunto de frequências e comprimentos de onda especifico para radiação de cada átomo associados a cada transição energética sofrida pelos electrões no mesmo, quando este é aquecido. O que se sabe é que essas frequências seguem constantes.


O segundo (s) pode ser definido em termos de uma frequência para característica associada ao átomo de césio. Todos os átomos, depois que absorver energia, emitem luz com frequências e comprimentos de onda característica do elemento específico.


O Segundo é então definido como duração de {9192631770} períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.


1.3.2 Comprimento


Em 20 de Maio de 1875 um tratado internacional conhecido como Convention du Mètre (Convenção do Metro), foi assinado por 17 Estados e estabeleceu a criação do Bureau Internacional de Pesos e Medidas (Bureau International des Poids et mesures – BIPM), um laboratório permanente e centro mundial da metrologia científica e da Conferência Geral de Pesos e Medidas (Conférence Générale des Poids et mesures – CGPM), que em 1889, em sua 1ª edição, definiu o protótipos internacional de metro. Sua base era o metro definido como à décima milionésima parte do quadrante de um meridiano terrestre.

Mais tarde, por razões práticas, essa padrão foi abandonado e o metro veio a ser definido como a distância entre duas linhas finas gravadas perto das extremidades de uma barra de Platina-Vítrio (a barra do metro-padrão), mantida no Bureau internacional de pesos e medidas nas vizinhanças de Osaris.


Réplicas preciosas dessa barra foram enviadas ao laboratórios de padronização em várias partes do mundo. Com o tempo a precisão deste padrão também se mostrou inadequado e outros padrões foram criados para o metro.


Actualmente O metro é determinado usando a rapidez da luz no vácuo que é definida como exatamente 299792458 m/s. O metro, então, é a distância que a luz percorre no vácuo em {1/(299792 458)} segundos. Estas definições fazem com que unidades do tempo e comprimento sejam acessíveis aos laboratórios de todo mundo.


1.3.3 Massa


A massa ({m}) é uma grandeza escalar positiva e invariável, a qual mede a inércia (propriedade dos corpos em permanecerem em movimento acelerado ou retardado) dos corpos, ou seja, a quantidade de matéria presente num corpo.


A unidade da massa no S.I é o quilograma (kg), é definido como a massa de um litro de água a {4 \ ^oC} com volume de {1 \ } (que é igual ao volume de um cubo de {10 \ cm} de lado).


Assim como os padrões de tempo comprimento, o padrão de quilograma mudou ao longo do tempo. O quilograma é agora definido como a massa de um determinado cilindro chamado de corpo-padrão mantido no Bureau Internacional de Pesos e Medidas em Sévres na França.


Assim comparando pesos de diferentes objetos ou tamanho comum com o peso do corpo-padrão,as massas dois objetos podem ser comparadas entre si.


1.4 Prefixos de Unidade

Às vezes torna-se necessário trabalhar com medidas que são muitos menores ou muito maiores do que as unidades padrão do S.I. Nessas situações podemos usar outras unidades, são relacionadas as unidades padrão do S.I por um múltiplo de dez(10).


Os prefixos são usados para designar as diferentes potências de 10, por exemplo, prefixo “quilo” significa {1000} ou { 10^3 }, enquanto o prefixo “micro” significa {0,000001} ou { 10^{-6} }.


A tabela a seguir mostra o prefixo dos mais comuns múltiplos das unidades do S.I. Os prefixos podem ser aplicados a qualquer unidades S.I, por exemplo {0,001} segundo é um milissegundo ( {1 \ ms}), e {1000000 \ Watts} são {1 \ MW} (apesar de ainda não termos definido o Watt).


Alguns prefixos muito usados nas Unidades do S.I são mostrados a seguir:


Sendo assim:

\displaystyle 1,27\cdot 10^9 \ W= \ 1,27 \ GW

\displaystyle 2,35 \cdot 10^{-6} \ s= 2,35 \ \mu s


OBS : alguns grandezas, para dimensões diferentes utiliza outras unidades, tais como a hora para o tempo ({1 \ h} equivale á {3600 \ s}) e o Angstron para o comprimento ({1  \  \r{A}} equivale {10^{-10} \ m}).


1.5 Outros sistemas de unidades


Além do S.I, outros sistemas de unidades são as vezes utilizados. Um deles é o sistema CGS cujas unidades fundamentais são os centímetro para os comprimentos , o grama para massa e o segundo para o tempo.


Sistema CGS de unidades é um sistema de unidades de medidas físicas, ou sistema dimensional, de tipologia LMT (comprimento, massa tempo), cujas unidades-base são o centímetro para o comprimento, o grama para a massa e o segundo para o tempo. Foi adotado em 1881 no Congresso Internacional de Eletricidade.


CGS é, assim, um acrônimo maiúsculo para centímetro–grama–segundo. É o sistema de unidades físicas primordial que precedeu o Sistema Internacional de Unidades (SI), por este sendo substituído.


Outras unidades CGS incluem Dina (para força), Erg (para energia, trabalho, calor, etc.), Gal (para aceleração), Gauss (para campo magnético), Maxwell (para fluxo magnético), Öersted (para intensidade de campo), Phot (para intensidade luminosa), Poise (para viscosidade dinâmica em fluidos), Stilb (para luminância), Stokes (para viscosidade cinemática)e Dina por centímetro cúbico (para peso específico).


1.6 Conversão de Unidades


Como diferentes sistemas de unidades são utilizados, é importante saber como converter uma unidade para outra, em diversos contextos quando quantidades físicas são somadas, subtraídas, multiplicadas ou divididas em uma equação algébrica. A unidade pode ser tratada como qualquer outra quantidade algébrica.


Muitas vezes precisamos alterar as unidades nas quais uma grandeza física está expressa. Isto pode ser feito usando um método conhecido como conversão em cadeia. Nesse método multiplicarmos o valor original por um fator de conversão(uma razão entre unidades e igual à unidade). Assim como 1 min e 60 s correspondem a intervalos de tempo iguais, temos:

\displaystyle \frac{1 \ min}{60 \ s}=1 \Rightarrow \frac{60 \ s}{1 \ min}= 1


Assim, as razões {(1 \ min)/(60 \ s)} e {(60 \ s)/(1 \ min)} podem ser usadas como fatores de conversão. Nota que isso não é o mesmo que escrever {\frac{1}{60}=1} ou {60=1}; cada número e a sua unidade devem ser tratadas conjuntamente.

Exemplo 1 Converter {3 \ min} em segundos.

Neste exemplo, temos:

\displaystyle 3 \ min= \ (3 \ min)\cdot 1= \ 3min \cdot \frac{60 \ s}{1 \ min}= \ 180 \ s \displaystyle 3 \ min= \ 180 \ s

Exemplo 2 Converter {240 \ km} em milhas.

Neste exemplo, temos:

\displaystyle 240 \ km= \ (240 \ km)\cdot 1= \ 240 \ km \cdot \frac{1 \ milhas}{1,6091 \ km}= \ 149 \ milhas

Exemplo 3 Converter {90 \ km/h} em metros por segundo.
Neste exemplo, temos:

\displaystyle 90 \ km/h= \ (90 \ \frac{km}{h})\cdot 1 = \ 90 \ \frac{km}{h} \cdot \frac{1 \ h}{3600 \ s} \cdot \frac{1000 \ km}{1 \ km} \displaystyle = \ 25 \ m/s


Por vezes, podemos fazer a conversão de um modo mais rápido, substituindo cada unidade pela unidade de destino, com o respectivo factor de conversão.

Exemplo 4 Converter {90 \ km/h} para o SI.

Sabemos que a unidade de velocidade no SI é {m/s}, então, temos de converter {km} em {m} e {h} em {s}. Então temos:

\displaystyle 90 \ \frac{km}{h}= \frac{90 \cdot 1000 \ m}{3600 \ s}=25 m/s


Este método também é usado em conversões de unidades com prefixos (múltiplos e submúltiplos).

Exemplo 5 Converter {100 \ kJ/s} para o SI.

Sabemos que a unidade de velocidade no SI é {m/s}, então, temos de converter {kJ} em {J} (substituindo apenas o multiplo quilo) e {s} já está no S.I. Então temos:

\displaystyle 100 \ \frac{kJ}{s}= \ 100 \ \frac{ \cdot {10^{3}} \ J}{s} =100000 \ J/s = \ 100000 \ W


Ainda há a clássica regra de “3 simples”, conhecida pela maioria.

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre sistema massa-mola (Parte 2)

Exercício 1 Um móvel executa MHS e obedece a função horária {x = 3 \cdot cos(0,5 \pi t + \pi)}, no SI.
  1. Determine o tempo necessário para que este móvel vá da posição de equilíbrio para a posição de elongação máxima.
  2. Obtenha o valor da aceleração no instante {t = 1 \ s}.

Nível de dificuldade: Regular.

Resolução 1 .
  1. Sabemos que num MHS o tempo que o corpo leva a sair do extremo para a posição de equilíbrio ou vice-versa é igual a um quarto do período {t= \dfrac{T}{4}}. Neste caso, precisamos calcular o período e depois calcular o {t}.
    Na equação obtemos que:

    \displaystyle \omega=0,5 \pi \ rad/s

    Mas sabemos que { \omega= \dfrac{2 \pi}{T}}. Então:

    \displaystyle \omega=0,5 \pi

    \displaystyle \Rightarrow \dfrac{2 \pi}{T}=0,5 \pi

    \displaystyle \Rightarrow \dfrac{2}{T}=0,5

    \displaystyle \Rightarrow 2 = 0,5 T

    \displaystyle \Rightarrow T = \dfrac{2}{0,5}

    \displaystyle \Rightarrow T = 4 \ s

    Neste caso, o tempo é:

    \displaystyle t= \dfrac{T}{4}

    \displaystyle \Rightarrow t = 1 \ s

  2. Precisamos saber primeiro a função da aceleração desse movimento, que é dada pela segunda derivada da posição em função do tempo, ou seja

    \displaystyle a = \dfrac{d^2x}{dt^2}

    Logo:

    \displaystyle a = \dfrac{d}{dt} \Bigg[ \dfrac{d x}{dt} \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg[ \dfrac{d}{dt}[3 \cos(0,5 \pi t + \pi)] \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg [-3 \cdot 0,5 \pi sen (0,5 \pi t + \pi) \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg [-1,5 \cdot \pi sen (0,5 \pi t + \pi) \Bigg]

    \displaystyle a = -1,5 \pi \cdot0,5 \pi \cos(0,5 \pi t + \pi)

    \displaystyle a = -0,75 \pi^2 \cdot \cos(0,5 \pi t + \pi)

    Considerando {t = 1 \ s}, logo:

    \displaystyle a = -0,75 \pi^2 \cdot \cos(0,5 \pi \cdot 1 + \pi)

    \displaystyle a = 0

Exercício 2 Na figura ao lado, dois blocos ({m = 2 \ kg} e {M = 16 \ kg}) e uma mola ({k = 250 \ N/m}) estão dispostos em uma superfície horizontal sem atrito. O sistema oscila em MHS com amplitude de {10 \ cm}. Qual deverá ser o coeficiente de atrito mínimo para que o bloco menor fique na eminência de deslizar sobre o bloco maior ?

Nível de dificuldade: Regular.

Resolução 2 .

Dados:

{m=2 \ kg}

{M=16 \ kg}

{k=250 \ N/m}

{A=10 \ cm = 0,1 \ m}

{ \mu \longrightarrow ? } (eminência de cair).

Para que o bloco menor fique fique em repouso relativo ao bloco maior, deslizando conjuntamente com ele, (na iminência de deslizar sobre bloco maior, mas não deslizando) é necessário que haja uma igualdade entre a força que o bloco maior aplica ao bloco menor (determinada a partir da aceleração) e a força de atrito existente na superfície de contacto entre eles (1ª Lei de Newton).

\displaystyle Diagrama \ do \ corpo \ livre

Como estamos a tratar de um MHS, a força aplicada pelo bloco de baixo ao bloco de cima é:

\displaystyle F_M = m \cdot a_{mhs}

Onde {a_{mhs}} é a aceleração do MHS.

Logo:

\displaystyle F_M = F_a

\displaystyle m \cdot a_{mhs} = \mu \cdot N

Como o bloco {m} não está inclinado nem em relação a horizontal, logo:

\displaystyle N = m \cdot g

Então:

\displaystyle F_M = F_a

\displaystyle \Rightarrow m \cdot a_{mhs} = \mu \cdot m \cdot g

\displaystyle a_{mhs} = \mu \cdot g

Nota: O enunciado não sugere que o bloco deslize, mas sim que ele fique prestes a deslizar. Esta situação só pode ser analisada quando os dois blocos atingem o extremo. Neste ponto a força exercida pela mola é máxima e consequentemente a {a_{mhs}} também é máxima. logo:

\displaystyle a_{mhs} = A \cdot \omega^2

Num sistema massa-mola:

\displaystyle \omega^2 = { \dfrac{k}{m_{sist}}}

Além disso, a frequência angular não depende somente do bloco {m}, mas sim dos dois, pois a mola desloca os dois em conjunto. Então:

\displaystyle \omega^2 = { \dfrac{k}{m + M}}

\displaystyle a_{mhs} = \mu \cdot g

Voltando a igualdade entre as forças, teremos:

\displaystyle A \cdot \omega^2 = \mu \cdot g

\displaystyle A \cdot \dfrac{k}{m + M} = \mu \cdot g

\displaystyle \mu = \dfrac{A \cdot k}{g(m + M)}

\displaystyle \mu = \dfrac{0,1 \cdot 250}{9,8(16 + 2)}

\displaystyle \mu = 0,142

Exercicío 3 Um corpo de {60 \ g}, preso a uma extremidade de uma mola ideal ({k = 3,2 \ N/m}) comprimida de {32 \ cm}, é abandonado do repouso na posição “A” da figura. A partir desse instante o corpo inicia o MHS. Despreze o atrito e adote o ponto de equilíbrio do corpo (ponto O) e sentido para a direita como referencial. Nessas condições, determine a equação da posição e da velocidade desse MHS.

 

Nível de dificuldade: Regular.

Resolução 3 .

 

Dados

{k = 3,2 \ N/m}

{A = 32 \ cm = 0,32 \ m}

{m = 60 \ g = 0,06 \ kg}

O corpo inicialmente se encontra no extremo negativo (de acordo com a figura inicial). Estando neste extremo, de acordo com a situação (mola comprimida) ao ser solto vai movimentar-se para a posição de equilíbrio e continuar a oscilar. Veja o gráfico analítico abaixo:

A equação geral da posição de um MHS é:

\displaystyle x = Asen ( \omega t + \varphi_0)

Considere o gráfico genérico da função {x=sen (\varphi)}.

Para a função {sen} o extremo negativo é atingido para a fase {- \dfrac{ \pi}{2}} ou { \dfrac{3 \pi}{2}}.

Sendo que a oscilação começa a partir do extremo negativo (Ponto A), logo { \varphi_0 = - \dfrac{ \pi}{2}}.

Sabemos que, num sistema corpo-mola:

\displaystyle \omega = \sqrt{ \dfrac{k}{m}}

Então:

\displaystyle \omega = \sqrt{ \dfrac{3,2}{0,06}} = 7,30 rad/s

Logo, substituindo na equação geral, obtemos:

\displaystyle x = 0,32sen \ (7,30 \ t - \dfrac{ \pi}{2}) \ [SI]

A velocidade de um movimento é dada como a derivada da equação da posição, ou seja:

\displaystyle v = \dfrac{dx}{dt}

Logo:

\displaystyle v = \dfrac{d}{dt} \Big[0,32sen \ (7,30 \ t - \dfrac{ \pi}{2}) \Big]

\displaystyle v = 0,32 \cdot 7,30 \cdot \cos \ (7,30 \ t - \dfrac{ \pi}{2})

\displaystyle v = 2,337 \cos \ (7,3 \ t - \dfrac{ \pi}{2}) \ [SI]

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2 Exercícios sobre Calor de Transformação e Equilíbrio Térmico (Parte 1)

— 1.2. Calor de Transformação —

Exercício 1. Qual é a quantidade de calor necessária para levar {600\ g} de água da temperatura de {{40} \ ^oC} para o estado de vapor à {{100} \ ^oC}. Utilize o calor específico da água {4190\ J/(kg\cdot K)} e o calor latente de vaporização {2256 \cdot 10^3\ J/kg}.
NÍVEL DE DIFICULDADE: Elementar.
Resolução 1 .

Trata-se de um exercício sobre calorimetria. Queremos saber qual é a quantidade de calor necessária para converter {600\ g} de água à {40 \ ^oC} em vapor.
Temos que converter as unidades das grandezas para o sistema internacional. A massa em {kg}. A temperaturas não precisa ser convertida, pois a variação de temperaturas em {^oC} e em {K} é igual.
Nota: o vapor de água na pressão atmosférica normal, está a uma temperatura de {100 \ ^oC}.

Dados
{Q \longrightarrow?}

{m = 600\ g}

{t_1 = 40 \ ^oC}

{t_2 = 100 \ ^oC}

{c = 4190\ J/(kg\cdot k)}

{l_V = 2256 \cdot 10^3\ J/kg}

Convertemos a massa para quilogramas ({kg}):

\displaystyle m = 600 \ g = 600 \cdot 10^{-3} \ kg

De acordo com o diagrama de transição de fases, na passagem de {40 \ ^oC} líquido {(1)} para vapor a {100 \ ^oC} {(2)} teremos duas quantidades de calor:

{Q_1 = m \cdot c \cdot \Delta t = m \cdot c \cdot (t_2 - t_1)} – quantidade de calor para variar a temperatura;

{Q_2 = m \cdot l_{V}} – quantidade de calor necessária para evaporar uma massa {m} de substância.

A quantidade de calor necessária para elevar a água à uma certa temperatura para o estado de vapor à {100 \ ^oC} é igual a soma das duas quantidades de calor anteriores. Assim:

\displaystyle Q = Q_1 + Q_2

\displaystyle m \cdot c \cdot \Delta t + m \cdot l_V = m \cdot c \cdot (t_2 - t_1) + m \cdot l_V

\displaystyle Q = m[c(t_2 - t_1) + l_V]

Substituindo os valores dados, obtemos:

\displaystyle Q = 600 \cdot 10^{-3} \cdot[4190 \cdot (100 - 40) + 2256 \cdot 10^3]

\displaystyle Q = 1504440

\displaystyle Q = 1,5\ MJ

— 1.3. Temperatura e Equilíbrio térmico —

Exercício 2. Mistura-se {25 \ g} de café a {90 \ ^oC} com {80 \ g} de leite a {25 \ ^oC}. Admitindo que não há troca de calor com o recipiente e que os líquidos têm o mesmo calor específico, determine a temperatura final do sistema (café+leite).
NÍVEL DE DIFICULDADE:Regular.
Resolução 2
Trata-se de um exercício de equilíbrio térmico (calorimetria) cujo o objectivo é determinar a temperatura final de um sistema (café-leite) dentro do recipiente.
Sempre que dois corpos são misturados, inicialmente a temperaturas diferentes, haverá sem troca de calor, até que os dois obtenham a mesma temperatura(temperatura de equilíbrio do sistema).
Aplicando o princípio de conservação de energia:

\displaystyle Q_1 + Q_2 + Q_3 + ... + Q_N=0

No caso, só temos quantidades de calor de mudança de temperatura:

\displaystyle Q_i = m \cdot c_i \cdot (t_2-t_1)

OBS: Não se considera a troca de calor com o recipiente pois o enunciado diz que não há troca de calor com o recipiente.

Dados

{m_c=25 \ g}

{t_{1C} = 90 \ ^oC}

{m_l = 80 \ g}

{t_{1l}= 25 \ ^oC}

{t_2-?}

{c_c = c_{l} = c_{agua} = 4190 \ J/(kg \cdot k)}

Como os dois trocam calor, teremos:

{Q_c = m_c \cdot c_c \cdot(t_2 - t_{1c})} – quantidade de calor do café.

{Q_l = m_l C_l \cdot (t_2 - t_{1l})} – quantidade de calor do leite.

Sabemos que:

\displaystyle Q_1+Q_2=0

\displaystyle \Rightarrow m_c \cdot c_c \cdot (t_2-t_{1c}) + m_l \cdot c_l \cdot (t_2-t_{1l})=0

\displaystyle \Rightarrow 25 \cdot 4190 \cdot (t_2- 90^o)+ 80 \cdot 4190 \cdot (t_2 - 25^o)=0

\displaystyle \Rightarrow 104750 t_2 - 9427500 + 335200t_2 - 8380000 = 0

\displaystyle \Rightarrow 104750 t_2 + 335200t_2 = 9427500 + 8380000

\displaystyle \Rightarrow 439950t_2 = 17807500

\displaystyle \Rightarrow t_2=\dfrac{17807500}{439950}

\displaystyle \Rightarrow t_2 = 40,5 \ ^oC

A temperatura de equilíbrio do sistema (café+leite) é igual a {T_f=41 \ ^oC}.

Exercício 3 .Quando {600 \ g} de substância {x} a {60 \ ^{o}C} são introduzidos num calorímetro contendo {80 \ g} de água a {15 \ ^{o}C} a temperatura de equilíbrio resultante é {19 \ ^{o}C}. Quando {90 \ g} de água a {50 \ ^{o}C} são vertidos sobre {500 \ g} de substância {x} a {15 \ ^{o}C} , contidos no mesmo calorímetro da situação anterior, a temperatura de e equilíbrio é de {36 \ ^{o}C}. Calcule o calor específico do substância {x}.

NÍVEL DE DIFICULDADE: Regular.

Resolução  3 .

O exercício em questão é sobre calorimetria. Inicialmente, em um calorímetro, com água com massa de { m_{AA} = 80 \ g } e temperatura { t_{1{AA}}= 15 \ ^{o}C }, é introduzido uma substância x, de massa { m_{Ax} = 600 \ g } e a temperatura de { t_{1Ax} = 60 \ ^{o}C }. Esta mistura atinge o equilíbrio térmico à temperatura de { \theta_{1}= 19 \ ^{o}C }.

Noutra situação, no mesmo calorímetro, tem a substância {x} de massa { m_{B{x}}=500 \ g } a temperatura de {t_{1{Bx}}=15 \ ^{o}C}, e nele verte-se água de massa { m_{B{A}}=90 \ g } e temperatura { t_{1{BA}}=50 \ ^{o}C } . A temperatura de equilíbrio desta mistura é {\theta_{2}=36 \ ^{o}C }.

Portanto, temos duas situações (A e B) de mistura de água com a substância {x}.

As grandezas associadas as substâncias, água e x, no inicio terão índice 1 e no fim índice 2. Mas como temos duas situações. Vamos usar A e ) para distingui-las.

No que o o exercício fala da existência do calorímetro e não pede para desprezar o seu efeito.

Dados

{ m_{Ax}=600 \ g = 0,6 \ kg}

{ t_{1Ax}=60 \ ^{o}C}

{ m_{AA}=80 \ g \ = 0,08 \ kg}

{ t_{1AA}= 15 \ ^{o}C}

{\theta_{1} = 19 \ ^{o}C }

{c_A = 4190 \ J / kg \cdot K }

{m_{BA} = 90 \ g = 0,09 \ kg}

{t_{1{Bx}}=50 \ ^{o}C}

{m_{2{Bx}}=500 \ g = 0,5 \ kg}

{t_{1{Bx}}=15 \ ^{o}C}

{\theta_{2}=36 \ ^{o}C}

Calcularemos o calor específico do substância.

Para ambas as situações (A e B), a lei de conservação de energia cumpre-se, considerando os sistema isolados. Como não se despreza a capacidade calorífica do calorímetro disponível, então consideremos também a quantidade de calor que este absorve em ambos os casos. Logo temos:

Situação A:

\displaystyle Q_{Ac}+ Q_{A{A}}+Q_{Ax}=0

{Q_{Ac}} – quantidade de calor do calorímetro na situação A ({ Q_{{Ac}}= C_c \cdot (\theta - t_{1{Ac}})}).

{Q_{A{A}}} – quantidade de calor da agua na situação A ({Q_{A{A}}= m_{A{A}} \cdot c_A \cdot (\theta - t_{1AA})}).

{Q_{Ax}} – quantidade de calor na substância x na situação A ({Q_{Ax}= m_{A{x}} \cdot c_x \cdot (\theta - t_{1{Ax}})}).

Onde:

{C_c} – Capacidade térmica do calorímetro.

{t_{1{Ac}}} – Temperatura inicial do calorímetro na situação A (que é a temperatura inicial na água, que estava inicialmente no calorímetro). Então: {t_{1{Ac}} = t_{1{AA}} = 15 \ ^oC}, (no caso B, estava inicialmente a substância x no calorímetro; {t_{1{Bc}} = t_{1{Bx}} = 15 \ ^oC} ).

Então, na situação A:

\displaystyle Q_{Ac}+ Q_{A{A}}+Q_{Ax}=0

\displaystyle \Rightarrow C_c \cdot (\theta-t_{1{Ac}})+ m_{A{A}} \cdot c_A \cdot (\theta-t_{1{AA}})+ m_{A{x}} \cdot c_x \cdot (\theta-t_{1{Ax}}) = 0

Há duas incógnitas: {C_c} e {c_x}.

Substituindo os dados, obtemos:

\displaystyle \Rightarrow C_c \cdot (19-15)+0,08 \cdot 4190 \cdot (19-15)+0,6 \cdot c_x \cdot (19-60) = 0

\displaystyle \Rightarrow 4C_c+1340,8-24,6 c_x = 0 \ \ \ \ \ (1)

Como é apenas uma equação e duas incognitas, precisamos formar mais uma equação.Neste caso, na situação B, temos:

\displaystyle Q_{Bc}+ Q_{B{A}}+Q_{Bx}=0

\displaystyle \Rightarrow C_c \cdot (\theta-t_{1{Bc}})+m_{B{A}} \cdot c_A \cdot (\theta-t_{1{BA}})+ m_{B{x}} \cdot c_x \cdot (\theta-t_{1{Bx}}) = 0

\displaystyle \Rightarrow C_c (30-15)+0,09 \cdot 4190 \cdot (30-50)+0,5 \cdot c_x (30-15) = 0

\displaystyle \Rightarrow 15C_c - 7542 + 7,5c_x = 0 \ \ \ \ \ (2)

Combinando as equações 1 e 2, obtemoS:

\displaystyle \left\{\begin{array}{ccc} 4C_c + 1340,8 - 24,6 c_x = 0\\ 15C_c - 7542 + 7,5c_x = 0\\ \end{array}\right.

Para resolver este sistema , podemos usar o método de substituição. Isolaremos {C_c} na primeira equação e substituiremos na segunda:

\displaystyle 4C_c + 1340,8 - 24,6 c_x = 0

\displaystyle \Rightarrow 4C_c = 24,6 c_x - 1340,8

\displaystyle \Rightarrow C_c = \dfrac{24,6 c_x - 1340,8}{4}

\displaystyle \Rightarrow C_c = \dfrac{24,6}{4} \cdot {c_x} - \dfrac{1340,8}{4}

\displaystyle \Rightarrow C_c = 6,15 c_x - 335,2

Substituindo este resultado na segunda equação do sistema anterior, obtemos:

\displaystyle 15(6,15c_x - 335,2) - 7542 + 7,5c_x = 0

\displaystyle \Rightarrow 92,25c_x - 5028 - 7542 + 7,5c_x = 0

\displaystyle \Rightarrow 92,25c_x+7,5c_x = 5028 + 7542

\displaystyle \Rightarrow 99,75c_x = 12570

\displaystyle \Rightarrow c_x = \dfrac{12570}{99,75}

\displaystyle \Rightarrow c_x \approx 126 \ J / (kg \cdot \ ^oC)

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

O início do processo registal de bens imóveis. (Parte I)

O início do processo registal depende do pedido das partes interessadas, artigo 4.º do CRP. Em regra os documentos apresentados para registo devem ter a força probatória legalmente exigida, excepto quando apenas se apresente para titular um facto judicial, isto é, através de uma simples fotocópia não autenticada de uma certidão judicial.

Os títulos para registo, juridicamente, são os documentos autenticados pela sua forma e conteúdo, podem considerar-se suficientes tanto para justificar a existência de um direito a favor de um sujeito sobre um imóvel, como para que seja lavrado o registo que respeite a esse bem e a esse direito. Art.º 93.º, Lei n.º 1/97).

Os documentos que servem de base para o registo devem ser anotados no Livro-Diário da Conservatória, ou seja, é através dessa anotação que os documentos constantes no impresso ganham força probatória, no qual a requisição é sempre mais rigorosa possível porque dela depende a realização do pedido de registo em conformidade com o que é requerido pelo interessado.

Com a anotação da apresentação fica definida a prioridade dos factos sujeitos a registo e os direitos que se pretendem inscrever, isto é, a anotação dos factos sujeitos a registo corresponde a uma apresentação por cada um dos factos, no entanto, cada acto titulado dever-se-á efectuar com a anotação no Diário. Sendo que, por cada registo lavrar-se-á uma inscrição ou um averbamento.

Inscrição: visa definir a situação jurídica dos prédios, ou seja, a essência da inscrição é a de recolher e publicitar a constituição, modificação, reconhecimento e transmissão de um direito real.

Averbamento: é uma declaração acessória feita à margem do registo e é destinada a actualizar o conteúdo do mesmo registo.

Por força do princípio da especialidade, as partes interessadas, na requisição dos actos de registo, devem discriminar os factos que pretendem submeter a registo de forma a possibilitar não só a apresentação de cada facto, mas também que se lavre uma inscrição por cada um desses factos. O princípio da especialidade em sede do sistema registal, estabelece que todo o imóvel objecto de registo deve estar perfeitamente individualizado ou descrito, permitindo desta forma a exacta localização e identificação do imóvel.

Cada negócio registável deve corresponder a uma inscrição própria e não deve acumular-se num único extracto sob pena de incorrer a uma desconformidade com os títulos que lhe serviram de base, podendo ser rectificado nos termos prescritos nos artigos 226.º e ss do CRP.

OBS.: na redacção das anotações de apresentação não são aconselháveis abreviaturas , aspas e/ou palavras iguais.

Nota: vários autores usam a forma “registral”, também correcta, mas com base ao Dicionário da Academia das Ciências diz ser a forma brasileira; e para este artigo utilizou-se a expressão “registal” que faz parte do português europeu.

Fonte bibliográfica: Decreto Lei N.º 47/611, De 28 de Março De 1967 (Código do Registo Predial Angolano), no qual 33 artigos foram revogados pela Lei N.º 1/97, De 17 De janeiro (Lei da Simplificação e Modernização do Registo Predial, Comercial e Serviços Notarial).

1.1. Exercício sobre Dilatação Térmica (Parte 2)

Exercício 4 Considere o micro-sistema abaixo formado por duas pequenas peças metálicas, I e II, presas em duas paredes laterais. Observamos que na temperatura de {16 \ ^oC}, a peça I, tem tamanho igual {2 \ cm}, enquanto que a peça II possui apenas {1 \ cm} de comprimento. Ainda nesta temperatura as peças estavam afastadas por uma pequena distância {d} igual à {6 \cdot 10^{-3}\ cm}. Sabendo que o coeficiente de dilatação linear da peça I é igual a {4 \cdot 10^{-5}(^oC)^{-1}} e que o coeficiente de dilatação linear dada peça II é igual à {5 \cdot 10^{-5}(^oC)^{-1}}, qual deverá ser a temperatura do sistema, em graus Celsius, para que as duas peças estejam afastadas a uma distância igual ao dobro de {d}?

 

NÍVEL DE DIFICULDADE: Regular.

Resolução 4 .
Trata-se de um exercício sobre dilatação linear, quando um corpo o sistema é submetido a variações de temperaturas.A figura do enunciado, na situação 1 apresenta o fenómeno quando o sistema estava em uma temperatura {t_o} e as peças tinham comprimentos {l_{o1}} e {l_{o2}}, respectivamente, e estavam separadas a uma distância {d}.

 

A situação 2, representada na figura a seguir, apresenta o fenómeno de dilatação, quando o sistema sofre variação de temperatura {t_o} para {t} e as dimensões das peças também variam de {l_{o1}} para {l_1} e de {l_{o2}} para {l_2}, respectivamente, e a distâncias entre as peças aumenta de {d} para {2d}.

Dados

{t_o =16 \ ^oC}

{l_{o1} = 2 \ cm}

{l_{o2} = 1 \ cm}

{d = 6 \cdot 10^{-3} \ cm}

{\alpha_1 = 4 \cdot 10^{-5} \ ^oC^{-1}}

{ \alpha_2 = 5 \cdot 10^{-5} \ ^o C^{-1}}

{t \longrightarrow ?} {d' = 2d}

Temos a equação de dilatação linear que é:

\displaystyle \Delta l = \alpha l_o\Delta t

A equação da dilatação para as peças será:

\displaystyle \left\{\begin{array}{cccccccc} \Delta l_1 &=& \alpha_1 l_{o1}\Delta t\ \ (1)\\ \Delta l_2 &=& \alpha_2 l_{o2}\Delta t\ \ (2) \end{array} \right.

Para que as peças estejam separadas a uma distância igual ao dobro de {d}, é necessário que as duas peça se comprimam a uma distância total igual a {d}, como vimos na figura anterior.

Assim é suficiente que:

\displaystyle \Delta l_1 = l_1 - l_{o1}\ \ \ e\ \ \Delta l_2 = l_2 - l_{o2}

Sabemos que: {\Delta l_1+ \Delta l_2=-d}. A diminuição total de comprimento deve ser d. O sinal de menos (-) aparece devido ao facto de estarmos a lidar com uma diminuição de comprimento (variação negativa). Então:

\displaystyle -d = \alpha_1 l_{o1}\Delta t + \alpha_2 l_{o2}\Delta t

\displaystyle \Rightarrow -d = \Delta t (\alpha_1 l_{o1} + \alpha_2 l_{o2})

Isolando {\Delta t} na equação, obtemos:

\displaystyle \Delta t = \dfrac{-d}{\alpha_1 l_{o1} + \alpha_2 l_{o2}}

Substituindo os valores:

\displaystyle \Delta t = \dfrac{-6 \cdot 10^{-3} \cdot 10^{-2} }{4 \cdot 10^{-5} \cdot 2 \cdot 10^{-2} + 4 \cdot 10^{-5} \cdot 1 \cdot 10^{-2} }

\displaystyle \Delta t = -46,15 \ ^oC

Sabemos que a variação da temperatura é dada por:

\displaystyle \Delta t = t - t_o

\displaystyle ou \ t - t_o = \Delta t

Isolando {t}, tem-se:

\displaystyle t = \Delta t + t_o

Substituindo os valores de {\Delta t} e {t_o}, tem-se:

\displaystyle t = -46,15 \ ^oC + 16 \ ^oC

\displaystyle t = -30,15 \ ^oC

Exercício 5 Dois corpos, A e B, de massas { m_{A} = 600 \ g } e { m_{B} = 300 \ g }, são aquecidos separadamente por uma mesma fonte que lhes fornece calor a razão de { 300 \ cal/min}. O gráfico a seguir mostra a variação da temperatura { \theta } dos corpos em função do tempo {t} para o aumento dessa temperatura.

 

Determine:

  1. A relação entre os calores específicos das substâncias que constituem os corpos { (c_{B}/c_{A})} .
  2. Depois de quanto tempo o corpo A atinge a temperatura de { 90 \ ^{o}C }.

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .O problema em questão está relacionado a calorimetria. São dados dois corpos A e B que são aquecidos separadamente através de uma mesma fonte que fornece calor a razão de { 300 \ cal/min }. Esta quantidade de calor por unidade de tempo que a fonte fornece aos corpos representa a potência da fonte, isto é: { P_{F}=300 \ cal/min }. Então temos os seguintes dados.

 

Dados

{ m_{A}=600 \ g}

{ m_{B}=300 \ g}

{ P_{F}=300 \ cal/min}

  1. Buscaremos as equações da quantidade de calor para os corpos A e B.Da calorimetria sabemos que:

    \displaystyle Q=m \cdot c \cdot \Delta \theta \ \ \ \ \ (9)

    Onde:
    m – massa da substância;
    c – calor específico da substância;
    { \Delta \theta} = {(\theta_{f} - \theta_{i})} – variação de temperatura.

    Então temos para o corpo A:

    \displaystyle Q_{A}=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA}) \ \ \ \ \ (10)

    Para o corpo B:

    \displaystyle Q_{B}=m_{B} \cdot c_{B} \cdot(\theta_{fB} - \theta_{iB}) \ \ \ \ \ (11)

    Por outro lado, sabe-se que ambos os corpos, A e B, são aquecidos por uma mesma fonte com potencia { P_{F}=300 \ cal/min}. De acordo com gráfico, os dois corpos são aquecidos durante um intervalo de tempo { \Delta t=10 \ minutos }.

    Sendo assim, os dois corpos recebem a mesma quantidade de calor, isto é, { Q_{A}=Q_{B}=P_F \cdot \Delta t}.

    Dividindo a equação 5 pela 5, obtemos:

    \displaystyle \dfrac{Q_{B}}{Q_{A}}= \dfrac{m_{B}}{m_{A}} \cdot \dfrac{c_{B}}{c_{A}} \cdot (\dfrac{\theta_{fB}-\theta_{iB}}{\theta_{fA}-\theta_{iA}})

    \displaystyle \Rightarrow 1= \dfrac{m_{B}}{m_{A}} \cdot \dfrac{c_{B}}{c_{A}} \cdot (\dfrac{\theta_{fB} - \theta_{iB}}{\theta_{fA} - \theta_{iA}})

    Isolando a razão { \dfrac{c_{B}}{c_{A}}}, obtemos:

    \displaystyle \dfrac{c_{B}}{c_A}= \dfrac{1}{\dfrac{m_{B}}{m_{A}} \cdot \dfrac{\theta_{fB} - \theta_{iB}}{\theta_{fA} - \theta_{iA}}}

    Aplicando a regra de divisão de frações, obtemos:

    \displaystyle \dfrac{c_{B}}{c_{A}}= \dfrac{m_{A} \cdot(\theta_{fA} - \theta_{iA})}{m_{B} \cdot(\theta_{fB} - \theta_{iA})}

    O gráfico inicial dá-nos para o corpo A:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iA}=10 \ ^oC\\ \theta_{fA}=30 \ ^oC\\ \end{array}\right.

    Para o corpo B:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iB}=20 \ ^oC\\ \theta_{fB}=30 \ ^oC\\ \end{array}\right.

    Substituindo os dados, obtemos:{ \dfrac{c_{B}}{c_{A}}= \dfrac{600 \cdot(30-10)}{300 \cdot(30-20)}}

    \displaystyle \dfrac{c_{B}}{c_{A}}=4

    Então, a razão entre os calores específicos das substâncias que constituem os corpos é:

    \displaystyle \dfrac{c_{B}}{c_{A}}=4

  2. Para determinamos o tempo em que o corpo A atinge a temperatura de {90 ^oC}, precisaremos conhecer em primeiro lugar o seu calor específico({c_A}). Vamos obter o valor de { c_{A}} (calor especifico do corpo A) fazendo a análise através do gráfico.Para o corpo A:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iA}=10 \ ^oC \\ \theta_{fA}=30 \ ^oC \\ \end{array}\right.

    Consideremos a equação:

    \displaystyle Q_{A}=m_{A} \cdot c_{a} \cdot(\theta_{fA} - \theta_{iA})

    Entretanto, sabemos que:

    \displaystyle P_{F}=\dfrac{Q_{A}}{\Delta t}

    Isolando {Q_{A}}, temos:

    \displaystyle Q_{A}=P_{F} \cdot \Delta t

    Neste caso:

    \displaystyle P_{F} \cdot \Delta t=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    Onde: { \Delta t=(t_{f} - t_{i})} – Intervalo de tempo.

    Então:

    \displaystyle P_{F} \cdot(t_{f} - t_{i})=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    Isolando { c_{A}}:

    \displaystyle c_{A}= \dfrac{P_{F} \cdot(t_{f} - t_{i})}{m_{A}(\theta_{fA} - \theta_{iA})}

    Substituindo os dados, obtemos:

    \displaystyle c_{A}= \dfrac{300 \cdot(10-0)}{600 \cdot(30-10)}=0,25

    \displaystyle c_{A}=0,25 \ cal/g \cdot \ ^oC

    Obs: Não fizemos conversão pelo SI, mas determinamos a unidade equivalente.

    Agora, analisando para um novo intervalo de tempo desconhecido, buscamos o tempo necessário para que o corpo A atinja a temperatura de { 90 \ ^oC}, isto é, { \theta_{fA}=90 \ ^oC}.

    Sabemos que:

    \displaystyle Q_{A} =m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    \displaystyle \Rightarrow P_{F} \cdot(t_{F} - t_{i})=m_{A} \cdot c_{A}\cdot(\theta_{fA} - \theta_{iA})

    Isolando o intervalo de tempo { t_{f} - t_{i}}, obtemos:

    \displaystyle (t_{f} - t_{i})= \dfrac{m_{A} \cdot c_{A}(\theta_{FA} - \theta_{iA})}{P_{F}}

    Substituindo os dados, obtemos:

    \displaystyle (t_{f} - t_{i})= \dfrac{600 \cdot 0,25 \cdot(90-10)}{300}

    \displaystyle ( t_{f} - t_{i})=40 \ min

    Como no inicio, de acordo ao gráfico, o corpo A em { t_{i}=0} tem temperatura { \theta_{iA}=10 \ ^oC}, como substituindo acima, então temos:

    \displaystyle t_{f}- 0 =40 \ min

    \displaystyle t_{f}=40 \ min

    Portanto, o corpo A atinge de { \theta_{fA}=90 \ ^oC} depois de { 40 \ min} sendo aquecido pela fonte de potencia { P_{F}=300 \ cal/min}.

Exercício 6 Como resultado de um aumento de temperatura de {36 \ ^oC}, uma barra com uma rachadura no centro dobra para cima (ver figura abaixo). Se a distância fixa {L_o} é de {3,78\ m} e o coeficiente de dilatação linear da barra é de {26 \cdot 10^{-6} \ ^oC^{-1}}, determine a altura {x} do centro da barra.

 

NÍVEL DE DIFICULDADE: Regular.

Resolução 6Trata-se do fenómeno de dilatação térmica devido a variação de temperatura. Quando a barra se dilatar, o seu tamanho (comprimentos) aumenta. Fruto desse aumento de comprimento e do orifício já existente, a barra divide-se em duas partes iguais. Se a barra dilatada tem comprimento final { L }, então cada uma das partes (metades) da barra dilatada mede { \dfrac{L}{2} }.

 

Na figura acima, designamos:

A – ponto fixo de ligação da barra a uma extremidade:

B – centro da distancia fixa { L_o };

C – ponto onde, acima do centro, onde a barra se dobra.

{Dados}

{ \Delta t = 36 \ ^oC}

{ L_o = 3,78 \ m}

{ \alpha = 26 \cdot 10^{-6} \ ^oC^{-1}}

{ x \longrightarrow? }

Do triângulo ABC, é válido o Teorema de Pitágoras:

\displaystyle \Big( \dfrac{L}{2} \Big)^2 = x^2 + \Big( \dfrac{L_o}{2} \Big)^2

\displaystyle \Rightarrow \dfrac{L^2}{4} = x^2 + \dfrac{ L_o^2 }{4}

\displaystyle x^2 = \dfrac{L^2}{4} - \dfrac{L_o^2}{4} = \dfrac{L^2 - L_o^2 }{4}

Isolando {x}:

\displaystyle x = \sqrt{ \dfrac{ L^2 - L_o^2 }{4}} \Rightarrow x= \dfrac{ \sqrt{L^2 - L_o^2}}{\sqrt{4}}

\displaystyle x = \dfrac{\sqrt{L^2 - L_o^2}}{2} \ \ \ \ \ (12)

Antes da variação da temperatura a barra tinha o comprimento igual à {L_o}. Depois da variação da temperatura a barra passou a ter um comprimento igual à {L}.

Pela lei da dilatação linear, temos:

\displaystyle \Delta L = \alpha L_o \Delta T

Com { \alpha } em { ^oC^{-1}} e { \Delta t } em { ^o C }. A partir desta equação podemos determinar {L}.

Como { \Delta L = L - L_o }, então:

\displaystyle \Delta L = \alpha L_o \Delta T \Rightarrow L - L_o = \alpha L_o \Delta T

\displaystyle L = \alpha L_o \Delta t + L_o \Rightarrow L = L_o (\alpha\Delta t + 1) \ \ \ \ \ (13)

Substituindo 13 em 12, tem-se:

\displaystyle x = \dfrac{ \sqrt{L^2 - L_o^2} }{2} \Rightarrow x = \dfrac{\sqrt{[L_o (\alpha\Delta t + 1)]^2 - L_o^2}}{2}

\displaystyle \Rightarrow x = \dfrac{\sqrt{L_o^2(\alpha\Delta t + 1)^2 - L_o^2}}{2} \Rightarrow x= \dfrac{\sqrt{L_o^2[(\alpha\Delta t + 1)^2 - 1]}}{2}

\displaystyle \Rightarrow x = \dfrac{\sqrt{L_o^2}\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}}{2} \Rightarrow x= \dfrac{L_o\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}}{2}

\displaystyle \Rightarrow x = \dfrac{L_o}{2}\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}

Substituindo os valores dados, obtemos:

\displaystyle x = \dfrac{3,78 \ m}{2} \cdot \sqrt{(26 \cdot 10^{-6} \cdot 36 \ + 1)^2 - 1}

\displaystyle \Rightarrow x = 0,082 \ m \ \Rightarrow x= 8,2 \ cm

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

Noções fundamentais do registo predial.

O registo predial é um ramo especial do Direito Administrativo que rege a organização e o funcionamento dos serviços do Estado, incumbidos de assegurar a protecção de terceiros e a publicidade da situação jurídica de um imóvel. Tal como os demais sistemas de registo público, o registo predial faz parte da chamada Administração Pública de Direito Privado, inserindo-se no conjunto de normas jurídicas que certificam e dão boa-fé a determinados actos jurídicos de natureza privada.

Noção: o registo predial destina-se essencialmente em dar publicidade à situação jurídica do prédio ou a exteriorizar a existência de direitos reais, isto é, é através da informação disponibilizada pelas conservatórias do registo predial (órgão competente), que as partes interessadas poderão saber qual é a composição de um determinado prédio, a quem o pertence e que tipo de encargos incidem sobre ele. Mediante o ordenamento jurídico angolano, o registo predial tem como lei própria e aplicável o Decreto Lei n.º 47/611 de 28 de Março de 1967.

De acordo com Ataíde, (2018, p.14):

A noção de “prédio” no direito do registo predial não se deve basear no conceito civil do art. 204.º do CC. O conceito de prédio deve ser diferenciado do destino de prédio, isto é, prédio é uma parte delimitada do solo, juridicamente autónoma. Diferente do que acontece com o destino dos prédios onde são classificados da seguinte forma: prédios rústicos, os que se destinam a prática agrícola e pecuária; prédios urbanos, os que se destinam a fins habitacionais e comerciais; prédios mistos, os que partilham simultaneamente todas as utilizações mencionadas sem que nenhuma delas se assuma como principal.

É importante referir que, todo e qualquer sistema procedimental é regido por princípios que os norteiam e o registo predial não foge dessa realidade, no qual encontramos os seguintes princípios:

*Princípio da instância: o princípio da instância, tipificado no artigo 4.º do CRP, estabelece que o registo não deve ser feito de forma oficiosa, mas através do requerimento dos interessados, isto é, o processo de registo inicia-se com o correspondente pedido. O pedido é formulado por escrito, sendo efectuado pessoalmente pelas partes interessadas.

*Princípio da legalidade: o artigo 5.º do CRP, estabelece que os actos de registo são objecto de controlo do conservador, ou seja, é da responsabilidade do conservador apreciar a viabilidade do pedido à luz das normas legais aplicáveis, cabendo-lhe examinar os documentos apresentados que por sua vez podem ser recusados ou aceites provisoriamente por dúvidas.

*Princípio da prioridade do registo: o princípio da prioridade do registo transparece que o direito inscrito em primeiro lugar prevalece, por ordem da respectiva data, isto é, na ocorrência de inscrições de direitos incompatíveis incidentais sobre um mesmo prédio, prevalece o direito que foi inscrito em primeiro lugar, descartando qualquer título que tenha originado o segundo registo. Art. 9.º do CRP.

*Princípio do trato sucessivo: o princípio do trato sucessivo é o princípio primordial do registo predial, no qual propõe-se reflectir toda a história jurídica do prédio, desde a sua inscrição, titulação, alienação ou oneração. Art. 13.º, n.º1 do CRP.

O registo predial tem por objectivo os factos jurídicos que permitem a segurança do comércio jurídico imobiliário, cuja identificação de direitos relativos a ónus da prova constituem o objecto do registo. A sua finalidade baseia-se igualmente em dar publicidade aos direitos inerentes às coisas imóveis.

Que não nos pareça desajustado dizer que, quanto aos efeitos de inscrição o sistema português e o sistema angolano enquadram-se no sistema de inoponibilidade (sistema francês), que é caracterizado pelo registo de documentos ou registo declarativo. Este tipo de sistema consiste no facto do surgimento do direito real não estar intrínseco ao registo, mas sim, com o surgimento do título (documento que representa um valor imobiliário).

Nota: para a explanação desta matéria aplicou-se o direito comparado entre a doutrina portuguesa e a legislação angolana que assemelham-se à determinadas situações jurídicas.

Fonte bibliográfica:

ATAÍDE, Rui Paulo de, estudo de registo predial, noções fundamentais, efeitos substantivos do registo predial, Lisboa, AAFDL, 2018.

1.1. Exercício sobre Dilatação Térmica (Parte 1)

— 1. Exercício sobre Calor e Temperatura —

— 1.1. Exercício sobre Dilatação Térmica —

Exercício 1 Um quadrado de área interna de {2,35 \ m^{2}} foi montado com duas hastes de alumínio {(\alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1} )} e duas hastes de aço {(\alpha_{Aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1})}, todos inicialmente à mesma temperatura de {27 \ ^{o}C}, conforme a figura abaixo. O sistema é, então, submetido a um processo de aquecimento, de forma que a variação de temperatura é a mesma em todas as hastes, até a temperatura final de {100 \ ^{o}{\mathbb C}}.

Considerando que no final as hastes de alumínio continuam perpendiculares as hastes de aço, determine a área do plano limitado pelas hastes após o aquecimento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 1 .

O problema em questão trata de dilatação térmica dos corpos (expansão dos corpos). É dada uma área { A_{o}=2,35 \ m^{2}} limitada por duas hastes de alumínio e duas hastes de aço sob uma temperatura { t_{o}=27\ ^{o}C}.

Dado que a área limitada é a área de quadrado, então, de acordo a definição da área de um quadrado, temos que:

\displaystyle A_{o}=l_{o Aco} \cdot l_{o Al} \ \ \ \ \ (1)

Onde:
{ l_{o Aco}} – Comprimento da haste de aço.

{ l_{o Al}} – Comprimento da haste de alumínio.

Por outro lado, para que as hastes de alumínio e de aço formem ou limitem a área de um quadrado deve-se cumprir a seguinte condição:

\displaystyle l_{o Aco}=l_{o Al}=l_o \ \ \ \ \ (2)

Então, cada haste de alumínio e/ou de aço possui um comprimento { l_{o}} inicialmente.

Entretanto, depois de aquecidas as hastes de aço e alumínio, de modo que a variação de temperatura é a mesma em todas as hastes, até a temperatura de { 100\ ^{o}C}, cada uma das hastes, de alumínio e aço, dilatam e ganham novos comprimento { l_{Al}} e { l_{Aco}} que são diferentes, pois os seus coeficientes de dilatação linear são diferentes, com { \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}} e { \alpha_{Aco}= 1,2 \cdot 10^{-5} \ ^{o}C^{-1}}.

Dados:
{ A_{0}=2,35 \ m^{2}}
{ t_{0}=27\ ^{o}C}
{ \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}}
{ \alpha_{aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1}}
{ t=100 \ ^{o}C}

Depois do aquecimento até { t=100 \ ^{o}C}, as hastes de alumínio ainda permanecem perpendiculares as hastes de aço, conforme enunciado. Logo, como o aumento nos comprimentos nas hastes, temos uma nova área.

Então, a nova área limitada pelas hastes de alumínio e aço é dada como sendo o produto dos comprimento finais das hastes, { l_{Al}} e { l_{Aco}}, de alumínio e aço respectivamente.

\displaystyle A=l_{Al} \cdot l_{Aco} \ \ \ \ \ (3)

Pela figura acima percebe-se que:

\displaystyle l_{Al}=l_{o} + \Delta l_{Al} \ \ \ \ \ (4)

\displaystyle l_{Aco}=l_{o} + \Delta l_{Aco} \ \ \ \ \ (5)

Onde: { \Delta l_{Al}} e { \Delta l_{Aco}} são os aumentos nos comprimentos das hastes, devido o aquecimento, do alumínio e do aço, respectivamente.

Para determinarmos a área que as hastes de alumínio e aço vão limitar após o aquecimento, substituímos as equações 4 e 5 na equação 3. Obtemos:

\displaystyle A= (l_{o}+\Delta l_{Al}) \cdot (l_{o}+ \Delta l_{Aco}) \ \ \ \ \ (6)

Determinamos { l_{o}} pela equação 3:

\displaystyle A_{o}=l_{o} \cdot l_{o} \Rightarrow A_{o}=l^{2}_{o}

Invertendo a igualdade:

\displaystyle l^{2}_{o}=A_{o} \Rightarrow l_{o} = \sqrt{A_{o}}

Substituindo os dados:

\displaystyle l_{o}=\sqrt{2,35}=1,533 \ m

\displaystyle \\ l_{o}=1,533 \ m

Determinemos { \Delta l_{Al}} e { \Delta l_{Aco}} através da relação da dilatação linear.

Para o alumínio:

\displaystyle \Delta l_{Al}=l_{o} \cdot \alpha_{Al} \cdot (t-t_{o}) \ \ \ \ \ (7)

Substituindo os dados:

\displaystyle \Delta l_{Al}=1,533 \cdot 2,4 \cdot 10^{-5} \cdot (100-27)

\displaystyle \Delta l_{Al}=2,685 \cdot 10^{-3} \ m

Para o aço:

\displaystyle \Delta l_{Aco}=l_{Aco} \cdot \alpha_{Aco} \cdot (t-t_{o}) \ \ \ \ \ (8)

Substituindo os dados:

\displaystyle \Delta l_{Aco}=1,533 \cdot 1,2 \cdot 10^{-5}(100-27)

\displaystyle \Delta l_{Aco}=1,343 \cdot 10^{-3} \ m

Portanto, a área limitada pelas hastes após o aquecimento é:

\displaystyle A=(l_{Al}+\Delta l_{Al}) \cdot (l_{Aco}+ \Delta l_{Aco})

\displaystyle A=(1,533+2,685 \cdot 10^{-3}) \cdot (1,533+1,343 \cdot 10^{-3})

\displaystyle A=2,356 \ m^{2}

Exercício 2 Uma ponte tem comprimento {L_1 = 145 \ m} à temperatura de {{26} \ ^oC}. É construída de uma liga metálica especial com o coeficiente de expansão térmica {\alpha = 1 \cdot 10^{-5} \ (^o{\mathbb C}^{-1})}. Calcule o comprimento {L_2} da ponte quando a temperatura for de {{43} \ ^oC}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 2 .

Trata-se do fenómeno de dilatação térmica que um corpo sofre quando é submetido a variações de temperatura.

Dados

{L_1=145 \ m}

{t_1 ={26} \ ^oC}

{\alpha=1 \cdot 10 \ ^{-5} \ ^oC^{-1}}

{L_2 \longrightarrow?}

{t_2 ={43} \ ^oC}

A equação da dilatação térmica de um sólido é:

\displaystyle \Delta L = \alpha L_1\Delta t

Mas {\Delta L=L_2 - L_1 \ } e {\Delta t = t_2 - t_1}.
Substituindo na equação anterior temos:

\displaystyle \Delta L = \alpha L_1\Delta t \Rightarrow L_2 - L_1 = \alpha L_1(t_2 - t_1)

Isolando {L_2}, tem-se:

\displaystyle L_2 = \alpha L_1(t_2 - t_1) + L_1 \Rightarrow L_2 = L_1[\alpha (t_2 - t_1) + 1]

Substituindo os valores:

\displaystyle L_2= 145 \ [1 \cdot 10^{-5} \ (43 - 26) + 1]

\displaystyle L_2 = 145,025 \ m

Exercício 3 Na temperatura ambiente ({26 \ ^oC}) os carris dos caminhos de ferro são montados em unidades de {12 \ m} de comprimento. Entre duas destas unidades fica sempre uma distância de {8,7 \ mm} livre para compensar expansão térmica dos carris. Calcule a temperatura máxima {T}, que considerou o projectista? O coeficiente da expansão térmica do aço utilizado é de {\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Trata-se do fenómeno de dilatação térmica numa linha férrea. Para sabermos a temperatura máxima {T} considerada pelo projectista é suficiente que a variação do comprimento de cada peça seja igual a distância livre entre elas.

Dados

{t_o ={26} \ ^oC}

{l_o = 12\ m}

{d = 8,6\ mm = 8,6\cdot 10^{-3}\ m}

{t \longrightarrow?}

{\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}

A equação da dilatação linear é:

\displaystyle \Delta l = \alpha l_o \Delta T)

\displaystyle \Rightarrow \Delta l = \alpha l_o (t - t_o)\

Note que a variação de temperatura em Graus Celcius é igual a variação da temperatura em Kelvins.

Para se saber a temperatura máxima considerada pelo projetista é suficiente que, {\Delta l = d}. Substituindo na relação anterior, obtemos:

\displaystyle \Delta l = \alpha l_o (t - t_o) \Rightarrow d = \alpha l_o (t - t_o)

Isolando {t}:

\displaystyle t - t_o = \dfrac{d}{\alpha l_o} \Rightarrow t = \dfrac{d}{\alpha l_o} + t_o

Substituindo os valores de {t}, {l_o}, {d} e {\alpha} na equação anterior, obtemos:

\displaystyle t = \dfrac{8,6 \cdot 10^{-3}}{1,1 \cdot 10^{-5} \cdot 12} + 26

\displaystyle t = 91,15 \ ^oC

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers like this: