Luso Academia

Início » 04 Ensino Superior » 03 Geofísica

Category Archives: 03 Geofísica

Anúncios
Anúncios

Aula 1: Estatística

 

Elementos de Estatística Matemática

Nesta Unidade, serão abordados temas relacionados ao método estatístico. Oferecer exemplos de tabelas e gráficos que podem representar de forma sintética, as informações obtidas através de processos de pesquisa, são objectivos específicos desta unidade que têm o propósito de: Demonstrar a importância da Estatística na vida diária; Mostrar como podemos utilizar de forma correcta;

Introdução à Estatística

A palavra Estatística lembra, a maioria das pessoas, recenseamento; Os censos existem a milhares de anos e constitui um esforço imenso e caro feito pelos governos, com objectivo de conhecer seus habitante, sua condição sócio económica, sua cultura, religião, etc.

Portanto, associar à estatística a censo é perfeitamente correto do ponto de vista histórico, sendo interessante salientar que as palavras ESTATÍSTICA e ESTADO têm a mesma origem latina; “STATUS”.

É possível distinguir duas concepções para a palavra Estatística ; No Plural (Estatísticas) indica qualquer coleção de dados numéricos, reunidos com a finalidade de fornecer informações acerca de uma actividade qualquer.

Assim, por exemplo, as estatísticas demográficas referem-se aos dados numéricos sobre nascimento, falecimento, matrimónio, desquites, etc.

As estatísticas económicas consistem em dados numéricos relacionados com emprego, produção, e com outras actividades ligadas aos vários sectores de vida económica.

No singular (Estatística) indica a actividade humana, especializada, ou um corpo de técnicos ou ainda uma metodológica desenvolvida para a colecta, classificação, a apresentação, a análise e a interpretação de dados quantitativos e a utilização desses dados para tomada de decisões.

Importância da Estatística O mundo esta repleto de problemas. Para resolvermos a maioria deles, necessitamos de informações. Mas que tipo de informação {?} Que quantidade de informação {?} Após obtê-las, que fazer com elas {?}

A Estatística trabalha com essas informações, associando os dados ao trabalho, descobrindo como é, o que colectar, assim capacitando o pesquisador, a obter conclusões a partir dessas informações de tal forma que possam ser entendidas por outras pessoas.

vejamos alguns exemplos:

Exemplo 1 Os Estatísticos do governo conduzem censos de população, morada, produtos, industriais, agricultura, e outros. São feitas compilações sobre vendas, produção, inventário, folha de pagamento e outros dados das industriais e empresas. Essas Estatísticas informam ao administrador como a sua empresa está crescendo, seu incremento em relação a outras empresas e fornece-lhe condições de planear ações futuras. A análise dos dados é muito importante para se fazer um planeamento adequado.
Exemplo 2 Na era da energia nuclear, os estudos estatísticos têm avançado rapidamente e, com seus processos e técnicas, têm contribuído para organização de empresas e utilização dos recursos do mundo moderno.

Em, geral, as pessoas quando se referem ao termo estatística, desconhecem que o aspecto essencial, é o de proporcionar métodos inferenciais, que permitam conclusões que transcendam os dados obtidos inicialmente.

Próximo Capítulo: Grandes áreas da Estatística….

Anúncios

1 – Aula de Matemática Aplicada à Geofísica

Séries Numéricas

— 1. Conceitos Fundamentais —

Definição 1 Uma sucessão de números reais é simplesmente uma sequência infinita de números. Tipicamente utilizamos letras minúsculas para designar sucessões (a,u,v, e assim sucessivamente) e referimo-nos ao n-ésimo termo da sucessão u como {u_n}. como {u_2} designa o segundo termo da sucessão {u}.
Exemplo 1 As seguintes sequências são exemplos de sucessões reais.

  • a) {\{1,2,3,4,5,6,7...\}}
  • b) {\{ 1,4,9,16,25,36...\}} Estas sucessões têm uma regularidade bastante clara. A primeira é a sucessão de números naturais, a Segunda é a Sucessão dos Quadrados Perfeitos.

Teste da Convergencia das Sucessões Uma Sucessão infinita é convergente, se existe o limite da sucessão {a_n}, quando {n \rightarrow } {\infty}.

\displaystyle \lim_{n\rightarrow\infty}a_n = L

onde {L} é um número.

Exemplo 2

\displaystyle \lim_{n\rightarrow\infty}\frac1{2^n} = 0

avaliando para {x=1},

{{ 1, 1^2, 1^3, 1^4,..}} { = 1^n , n = 1, 2, 3,...}

\displaystyle \lim_{n\rightarrow\infty} 1^n = 1

. Portanto, para {x=1} é convergente. avaliando para {x=2}, {{2, 2^2, 2^3, 2^4,...}} { = {2,4,8,16,...} = 2^n}

\displaystyle \lim_{n\rightarrow\infty} 2^n = \infty

. Portanto, para {x=2} é divergente.

Definição 2 Seja {a} uma sucessão chama-se sucessão das somas parciais de {a} à sucessão {S_a} tal que

\displaystyle S(a)_n = a_0+a_1+a_2+...+a_n+... = \sum_{i = 0 }^n a_i

chama-se série a expressão formal que denota a soma de todos os termos de {a},

\displaystyle \sum_{n = 0 }^\infty a_n

e se {\lim S(a)_n}, existir e for finito, dizemos que a série é somável ou convergente e que o seu valor é esse limite. caso contrário diz-se a série é divergente. tal como a definimos, o valor de uma série(também chamado a soma da série)é simplesmente um limite de uma sucessão, a sucessão ds somas parciais doutra sucessão. É precisamente esta definição intuitiva de série como a soma de todos os termos das sucessão: se ao somarmos mais e mais termos o valor da soma se aproxima dum limite, então faz sentido dizer que esse limite é a soma de todos esses valores.

Critérios Para Conferir a Convergência das Séries Numéricas

Definição 3 Critério de Cauchy, Para que a série numérica seja convergente, é necessário e suficiente que para todo {\epsilon>0}, exista {N=N_\epsilon}, tal que para todos os n>1 e p=1,2,…, cumpra-se a desigualdade { \mid S_{n+p} - S_n\mid = \mid u_{n+1} + u_{n+2} + u_{n+3}+...+u_{n+p}\mid<\epsilon} critério necessário de convergência: se a série converge, então

\displaystyle \lim_{n\rightarrow\infty} u_n = 0

. Este critério é necessário, mas não é suficiente. Quer dizer que quando uma série não o cumpre, então a série é divergente. Mas se uma série o cumpre, então não pode-se dizer nada sobre a convergência.

Exemplo 3 Mostre que a série

\displaystyle \sum_{n=1}^\infty\frac{1}{n(n+1)}

converge e ache sua soma. repare que a fracção {\frac{1}{x(x+1)}} pode-se representar também como {\frac{1}{x} - \frac{1}{x+1}}, dai que { S_1 = \frac{1}{1.2} = \frac{1}{1} - \frac{1}{1+1}},

  • { S_2 =\frac{1}{1.2} + \frac{1}{2.3} = \frac{1}{1} - \frac{1}{1+1} + \frac{1}{2} - \frac{1}{2+1} = \frac{1}{1} - \frac{1}{3}},
  • { S_3 = \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=\frac{1}{1}-\frac{1}{1+1}+\frac{1}{2}-\frac{1}{2+1}+\frac{1}{3}-\frac{1}{3+1}=\frac{1}{1}-\frac{1}{4}}, e assim por diante. esta propriedadeda da série

    \displaystyle \sum_{n = 1 }^\infty\frac{1}{n(n+1)}

    chama-se de telescópica. daí que { S_n=1-\frac{1}{n+1}}. portanto,

    \displaystyle \lim_{n\rightarrow\infty}S_n=\lim_{n\rightarrow\infty}(1-\frac{1}{n+1}) = 1

    ; ou seja , a série é convergente e sua soma é igual a 1. Repare-se que neste caso, conferimos que a série é convergente, como consequência de ter determinado sua soma. Como provamos que a série tem soma, então a série é convergente.

Este exemplo é muito especial, porque é relativamente fácil determinar a soma da série

\displaystyle \sum_{n = 1 }^\infty\frac{1}{n(n+1)}

. Nem sempre é possível achar uma expressão para a soma de uma série. Daí que geralmente o mais importante é apenas conferir se a série é ou não é convergente.

 

%d bloggers like this: