Luso Academia

Início » 04 Ensino Superior » 02 Física » 09 Cálculo I

Category Archives: 09 Cálculo I

Análise Matemática – Cálculo Diferencial III

Teorema 65 {Teorema de Cauchy} Sejam { {[a,b]\subset\mathbb{R}}} e { {f}}, { {g}} contínua tal que { {f;g:[a,b]\rightarrow \mathbb{R}}}. Se { {f}} e { {g}} são diferenciáveis em { {]a,b[}} e { {g'}} é diferente de {0} em { {]a,b[}}, então existe { {c \in ]a,b[}} tal que

\displaystyle   \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)} \ \ \ \ \ (66)

Demonstração: Temos { {g(a)\neq g(b)}} uma vez que se fosse { {g(a)=g(b)}}, { {g'}} teria uma raiz em { {]a,b[}}.

Seja

\displaystyle  \lambda=\frac{f(b)-f(a)}{g(b)-g(a)}

e vamos definir { {\varphi}} como sendo { {\varphi:[a,b]\rightarrow\mathbb{R}}}(diferenciável em { {]a,b[}} e contínua em { {[a,b]}}) tal que { {\varphi=f(x)-\lambda g(x)}} { {\forall x \in [a,b]}}. Assim

\displaystyle  \varphi(a)=f(a)-\lambda g(a)=\ldots=\varphi(b)

Aplicando o teorema 63 em { {[a,b]}} existe { {c\in [a,b]}} tal que { {\varphi'=0}}. Isto é

\displaystyle  f'(c)-\lambda g'(c)=0 \Leftrightarrow \lambda=\frac{f'(c)}{g'(c)}

\Box

O Teorema anterior de certa forma é mais um Lema do que propriamente um Teorema. Dizemos isso porque não obstante seja um resultado importante por si próprio ele é bastante útil para provarmos outros teoremas. Para além disso este resultado pode ainda ser interpretado com um algoritmo que nos permite obter aproximações (muito) locais para funções na vizinhança de um dado ponto.

Teorema 66 {Primeira regra de Cauchy} Sejam { {I \subset \mathbb{R}}}, { {c\in I'}} e { {f,g:I\setminus \{c\}\rightarrow \mathbb{R}}} diferenciável. Vamos também assumir que { {g'}} não se anula em { {I\setminus \{c\}}} e que { {\displaystyle \lim _{x\rightarrow c}f(x)=\displaystyle \lim _{x\rightarrow c}g(x)=0}}.

Se { {\displaystyle \lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}}} existe temos que

\displaystyle   \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)} \ \ \ \ \ (67)

Demonstração: Seja { {c\in\mathbb{R}}}. Uma vez que { {f,g}} são contínuas em { {I\setminus \{ c \}}} e { {\displaystyle \lim _{x\rightarrow c}f(x)=\displaystyle \lim _{x\rightarrow c}g(x)=0}} podemos definir { {f(c)=g(c)=0}}. Seja { {x_n: \mathbb{N}\rightarrow I\setminus \{c\}}} tal que { {x_n\rightarrow c^+}}.

Aplicando o Teorema 65 a cada intervalo { {[c,x_n]}} vem que

\displaystyle  \frac{f(x_n)}{g(x_n)}=\frac{f(x_n)-f(c)}{g(x_n)-g(c)}=\frac{f'(u_n)}{g'(u_n)}

Com { {c<u_n<x_n}}.

Então { {u_n\rightarrow c}} pelo Teorema da sucessão enquadrada 17

E

\displaystyle  \lim _{x\rightarrow c}\frac{f'(u_n)}{g'(u_n)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}

pela definição de limite.

Então

\displaystyle  \lim _{x\rightarrow c}\frac{f(x_n)}{g(x_n)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}

Assim pela definição de limite é

\displaystyle   \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c^+}\frac{f'(x)}{g'(x)} \ \ \ \ \ (68)

Analogamente se para { {x_n}} temos

\displaystyle  x_n\rightarrow c^-

Aplicando o Teorema 65 a cada intervalo { {[x_n,c]}} é

\displaystyle  \frac{f(x_n)}{g(x_n)}=\frac{f(x_n)-f(c)}{g(x_n)-g(c)}=\frac{f(c)-f(x_n)}{g(c)-g(x_n)}=\frac{f'(u_n)}{g'(u_n)}

Com { {x_n<u_n<c}}.

Analogamente ao que vimos atrás fica

\displaystyle   \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c^-}\frac{f'(x)}{g'(x)} \ \ \ \ \ (69)

Das equações 68 e 69 vem que

\displaystyle  \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}

Finalmente façamos { {c=+\infty}}. Seja { {x=1/t}}. Temos que { {x\rightarrow \infty \Leftrightarrow t\rightarrow 0^+}}. Pelo que provámos até agora temos

{ {\begin{aligned} \displaystyle \lim _{x\rightarrow +\infty}\frac{f(x)}{g(x)} &= \displaystyle \lim_{t \rightarrow 0^+}\frac{f(1/t)}{g(1/t)}\\ &= \displaystyle\lim_{t \rightarrow 0^+}\frac{(f(1/t))'}{(g(1/t))'}\\ &=\displaystyle \lim_{t \rightarrow 0^+}\frac{-1/t^2f'(1/t)}{-1/t^2g'(1/t)}\\ &=\displaystyle \lim_{t \rightarrow 0^+}\frac{f'(1/t)}{g'(1/t)}\\ &=\displaystyle \lim_{t \rightarrow 0^+}\frac{f'(x)}{g'(x)}\\ \end{aligned}}}

Assim, para este caso também é { {\displaystyle\lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}}}.

O caso { {c=-\infty}} pode ser demonstrado de forma semelhante com a mudança de variável { {x=-1/t}}. \Box

Teorema 67 {Segunda regra de Cauchy} Sejam { {I \subset \mathbb{R}}}, { {c\in I'}} e { {f,g:I\setminus \{c\}\rightarrow \mathbb{R}}} diferenciável. Suponha-se { {g}} não se anula em { {I\setminus \{c\}}} e que { {\displaystyle \lim _{x\rightarrow c}f(x)=\displaystyle \lim _{x\rightarrow c}g(x)=+\infty}}. Então se existir limite { {\displaystyle \lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}}} tem-se

\displaystyle   \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)} \ \ \ \ \ (70)

Demonstração: Deixada como um exercício para o leitor. \Box

Os dois teoremas anteriores são conhecidos por uma variedade de nomes na literatura matemática e são sobejamente utilizados para calcularmos limites. Como sempre daremos alguns exemplos para demonstrar a sua utilidade.

Exemplo 1 As funções { {e^x}} and { {x}} tendem para infinito quando { {x}} tende para infinito. Já sabemos que a função exponencial tende para infinito mais rápido que qualquer polinómio de {x} pelo teorema 45 no artigo Análise Matemática – Limites e Continuidade VI mas utilizando a Segunda regra de Cauchy podemos demonstrar esse resultado de forma mais rápida.

\displaystyle   \lim_{x\rightarrow \infty}\frac{e^x}{x} \ \ \ \ \ (71)

Como sempre um método que consegue demonstrar um mesmo resultado de uma forma mais rápida e eficiente é um método mais poderoso.

{ {\begin{aligned} \displaystyle \lim _{x\rightarrow +\infty}\frac{e^x}{x} &= \displaystyle \lim_{x \rightarrow +\infty}\frac{(e^x)'}{x'}\\ &= \displaystyle \lim _{x\rightarrow +\infty}\frac{e^x}{1}\\ &= \infty \end{aligned}}}

Exemplo 2 As funções { {\cos x-1}} e { {x^2}} tendem para { {0}} quando { {x}} tende para { {0}}. A pergunta que se coloca é qual das funções tende para { {0}} de forma mais rápida?

{ {\begin{aligned} \displaystyle \lim_{x\rightarrow 0}\frac{\cos x-1}{x^2} &= \displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)'}{(x^2)'}\\ &= \displaystyle \lim_{x\rightarrow 0}\frac{-\sin x}{2x}\\ &= \ldots \end{aligned}}}

No final dos cálculos anteriores chegamos mais uma vez a uma indeterminação do tipo { {\displaystyle \lim_{x\rightarrow 0}\frac{f(x)}{g(x)}}} onde { {\displaystyle \lim_{x\rightarrow 0}f(x)=\displaystyle \lim_{x\rightarrow 0}g(x)=0}}.

No entanto ambas a regras de Cauchy podem ser utilizadas mais do que uma vez. Assim sendo vamos utilizar mais uma vez a regra de Cauchy (voltando ao ponto inicial para que não percamos o raciocínio)

{ {\begin{aligned} \displaystyle \lim_{x\rightarrow 0}\frac{\cos x-1}{x^2} &= \displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)'}{(x^2)'}\\ &= \displaystyle \lim_{x\rightarrow 0}\frac{-\sin x}{2x}\\ &= \displaystyle \lim_{x\rightarrow 0}\frac{-\cos x}{2}\\ &= -\dfrac{1}{2} \end{aligned}}}

Como exercício calcule:

\displaystyle  \lim_{x \rightarrow 0} \frac{e^x-1}{1}

Vamos agora demonstrar mais um resultado matemático que é muito importante para a Física, a um nível conceptual pode ser interpretado tanto de forma geométrica como de forma cinemática e que tem o nome de teorema de Lagrange.

Teorema 68 {Teorema de Lagrange} Sejam { {[a,b]\subset\mathbb{R}}} e { {f:[a,b]\rightarrow\mathbb{R}}} contínua. Se { {f}} é diferenciável { {]a,b[}} existe { {c\in ]a,b[}} tal que

\displaystyle   \frac{f(b)-f(a)}{b-a}=f'(c) \ \ \ \ \ (72)

Demonstração: No teorema 65 faça-se { {g(x)=x}} e o resultado segue trivialmente. \Box

Como dissemos anteriormente este teorema pode ser interpretado de uma forma geométrica ou de uma forma cinemática.

Geometricamente podemos dizer que a secante a função { {f(x)}} que passa pelas extremidades de { {[a,b]}} tem um determinado declive e que podemos sempre encontrar uma tangente à função { {f}} no intervalo { {[a,b]}} cujo declive é o mesmo que o da recta secante. Assim podemos dizer que a recta tangente é paralela à recta secante.

A interpretação cinemática diz-nos que se { {x}} representa o tempo e que se { {f(x)}} representa a posição (num movimento unidimensional) então { {f(b)-f(a)}} representa a distância percorrida no intervalo de tempo { {b-a}} com uma velocidade média de

\displaystyle  \frac{f(b)-f(a)}{b-a}

Neste contexto sabemos que { {f'(x)}} é a velocidade instantânea e assim sendo o Teorema 68 diz-nos que existe um instante de tempo { {c}} para o qual a velocidade instantânea é igual à velocidade média em todo o intervalo de tempo.

Exemplo 3 Mostre que { {e^x-1>x\quad \forall x \neq 0}}.

Seja { {f(t)=e^t}}. Vamos assumir que { {x>0}} e aplicar o teorema 68 no intervalo { {[0,x]}}.

{ \displaystyle \frac{e^x-e^0}{x-0}=\left( e^t \right)'_{t=c} }

com { {0<c<x}}.

Então

\displaystyle  \frac{e^x-1}{x}=e^c>1

Vamos agora assumir que { {x<0}} e aplicar mais uma vez o teorema 68 no intervalo { {[x,0]}}.

\displaystyle  \frac{e^0-e^x}{0-x}=\left( e^t \right)'_{t=c}

com { {x<c<0}}.

Então

\displaystyle  \frac{1-e^x}{-x}=e^c<e^0=1\Leftrightarrow 1-e^x<-x\Leftrightarrow e^x-1>x

De notar que não tivemos que inverter o sinal da desigualdade quando multiplicámos por { {-x}} uma vez que { {x<0}} e consequentemente { {-x>0}}.

Vamos agora enunciar dois importantes corolários para o teorema anterior.

Corolário 69 Sejam { {I}} um intervalo em { {\mathbb{R}}} e { {f:I\rightarrow\mathbb{R}}} contínua. Se {{f'}} existe e é identicamente nula no interior de { {I}}, então { {f}} é constante.

Demonstração: Por redução ao absurdo vamos assumir que { {f}} não é constante. Então existe { {a,b \in I}} tal que { {a<b}} e { {f(a)\neq f(b)}}. Uma vez que { {f}} é constante em { {[a,b]}} e diferenciável em { {]a,b[}} pelo teorema 68 vem que

\displaystyle  \frac{f(b)-f(a)}{b-a}=f'(c)

com { {c\in ]a,b[}}.

Assim { {\frac{f(b)-f(a)}{b-a}=0}} o que é absurdo pois tal implicaria que { {f(b)=f(a)}}, que é contrário à nossa hipótese. \Box

Corolário 70 Sejam { {I}} um intervalo em { {\mathbb{R}}} e { {f:I\rightarrow\mathbb{R}}} contínua. Se { {f'}} existe e é positiva (negativa) no interior de { {I}}, então { {f}} é estritamente crescente (decrescente).

Demonstração: Vamos analisar o caso { {f'>0}}. Dado { {a,b \in I}} tais que { {a<b}}. Do teorema 68 vem que

\displaystyle  \frac{f(b)-f(a)}{b-a}=f'(c)>0

com { {c \in ]a,b[}}.

Uma vez que { {b-a>0}} vem que { {f(b)>f(a)}} e { {f}} é estritamente crescente. \Box

Com estes resultados terminamos o capítulo de Cálculo Diferencial no nosso curso de Análise Real. Os nossos próximos artigos teóricos irão debruçar-se sobre a Teoria das Séries Numéricas

Anúncios

Análise Matemática – Cálculo Diferencial II

Teorema 60 {Diferenciabilidade da função composta} Seja { {D, E \in C}}, { {g:D\rightarrow E}}, { {f:E\rightarrow\mathbb{R}}} e { {c\in D\cap D'}}. Se { {g}} é diferenciável em { {c}} e { {f}} é diferenciável em { {g(c)}}, então { {f\circ g}} é diferenciável em { {c}} e é

\displaystyle   (f\circ g)'(c)=f'(g(c))g'(c) \quad\mathrm{se}\quad \varphi=f(t) \quad\mathrm{com}\quad t=g(x) \ \ \ \ \ (58)

\displaystyle   f\circ g)'(x)=f'(g(x))g'(x) \quad\mathrm{se}\quad \varphi=f(g(x)) \ \ \ \ \ (59)

Usando a notação de Leibniz podemos escrever o teorema da seguinte maneira

\displaystyle   \frac{dy}{dx}=\frac{dy}{dt}\cdot\frac{dt}{dx} \ \ \ \ \ (60)

Que é uma forma bastante mais sugestiva de escrever o teorema anterior pois parece sugerir que podemos cortar os termos {dt}.

Demonstração: Seja { {a=g(c)}}. Uma vez que { {f}} é diferenciável em { {a}} pelo teorema 57 vem

\displaystyle f(t)=f(a)+(f'(a)+\varphi (t)(t-a)\quad \forall t \in E

com { {\varphi}} contínua em { {a}}.

Tomando { {g(x)=t}} e { {g(c)=a}} vem que

\displaystyle  f(g(x))=f(g(c))+f'(g(c))+\varphi(g(x))(g(x)-g(c))\quad\forall x \in D

Assim

\displaystyle   \frac{f(g(x))-f(g(c))}{x-c}=(f'(g(c))+\varphi(g(x)))\frac{g(x)-g(c)}{x-c } \ \ \ \ \ (61)

Uma vez que { {g}} é diferenciável em { {c}} sabemos, pelo corolário 59, que {g} também é contínua em { {c}}. Assim { {\varphi (g(x))}} também é contínua em { {c}} (pelo teorema 43).

Assim

\displaystyle  \lim_{x\rightarrow c}\varphi(g(x))=\varphi (g(c))=\varphi(a)=0

Tomando o limite { {x\rightarrow c}} na equação 61 vem

\displaystyle  \lim_{x\rightarrow c}\frac{f(g(x))-f(g(c))}{x-c}=f'(g(c))

Que é equivalente a

\displaystyle  (f \circ g)'(c)=f'(g(c)g'(c)

\Box

Como aplicação do teorema 60 vamos estudar alguns exemplos simples:

  1. { {\left( e^{g(x)} \right)'=?}}

    Ora { {e^{g(x)}=f(g(x))}}. Tomemos { {t=g(x)}}. Assim

    { {\begin{aligned} \left( e^{g(x)} \right)' &= \left(e^t\right)'g'(x)\\ &= e^t g'(x)\\ &= e^{g(x)}g'(x) \end{aligned}}}

    Temos então

    { \displaystyle \left( e^{g(x)} \right)'=g'(x) e^{g(x)})}

  2. Seja { {\alpha\in\mathbb{R}}} e { {x>0}}. Calcule { {\left( x^\alpha \right)'}}.

    { {\begin{aligned} \left( x^\alpha\right)'&=\left( e^{\alpha\log x}\right)'\\ &=(\alpha\log x)'e^{\alpha\log x}\\ &=\dfrac{\alpha}{x}e^{\alpha\log x}\\ &=\dfrac{\alpha}{x}x^\alpha\\ &=\alpha x^{\alpha -1} \end{aligned}}}

    Que é uma generalização para a regra da derivada da potência de expoentes inteiros.

    Assim

    \displaystyle  \left( x^\alpha\right)'= \alpha x^{\alpha -1}\quad \forall\alpha\in\mathbb{R},\forall x>0

  3. { {(\log g(x))'=?}}

    Tal como no primeiro exemplo temos a seguinte estrutura que pretendemos derivar: { {\log g(x)=f(g(x))}} onde { {f(t)=\log t}} e { {t=g(x)}}.

    Assim

    { {\begin{aligned} (\log g(x))'&=(\log t)'g'(x)\\ &= \dfrac{1}{t}g'(x)\\ &=\dfrac{g'(x)}{g(x)} \end{aligned}}}

    Assim para { {g(x)>0}} vem

    \displaystyle  (\log g(x))'=\frac{g'(x)}{g(x)}

Em particular podemos calcular { {(\log |x|)'}}

{ \displaystyle (\log |x|)'=\frac{|x|'}{|x|}=\begin{cases} \dfrac{1}{|x|}\quad x>0\\-\dfrac{1}{|x|}\quad x<0 \end{cases} }

Uma vez que { {-|x|=x}} sempre que { {x<0}} temos sempre

\displaystyle  (\log |x|)'=\frac{1}{x}\quad\forall x\neq 0

Teorema 61 {Diferenciabilidade da função inversa} Seja { {D\subset\mathbb{R}}}, { {f:D\rightarrow\mathbb{R}}} injectiva e { {c\in D\cap D'}}. Se

  • { {f}} é diferenciável em { {c}}
  • { {f'(c)\neq 0}}
  • { {f^{-1}}} é contínua

então { {f^{-1}}} é diferenciável e é

\displaystyle   \left( f^{-1} \right)'(f(c))=\frac{1}{f(c)} \ \ \ \ \ (62)

Na notação de Leibniz é { {y=f(x)}}, { {x=f^{-1}(y)}} e a diferenciabilidade da função inversa expressa-se do seguinte modo

\displaystyle   \frac{dx}{dx}=\frac{1}{\frac{dy}{dx}} \ \ \ \ \ (63)

Demonstração: Omitida. \Box

Tal como no teorema 60 vamos agora analisar um caso de interesse.

Seja { {y=\sin x}} e { {x\in [-\pi /2,\pi /2]}}, então podemos definir { {x=\arcsin y}}.

Ora

  • { {f(x)}} é diferenciável
  • { {f'(x)=\cos x\neq 0}} em { {[-\pi /2,\pi /2]}}
  • { {\arcsin y}} é contínua em { {[-1,1]}} é contínua

Então

{ {\begin{aligned} (\arcsin y)' &= \left( f^{-1}(y) \right)'\\ &=\dfrac{1}{f'(x)}\\ &=\dfrac{1}{\cos x}\\ &=\dfrac{1}{\sqrt{1-\sin^2x}}\\ &=\dfrac{1}{\sqrt{1-y^2}} \end{aligned}}}

Finalmente

\displaystyle  (\arcsin y)'=\frac{1}{\sqrt{1-y^2}} \quad y \in [-1,1]

Escrevendo de uma maneira mais normal

\displaystyle  (\arcsin x)'=\frac{1}{\sqrt{1-x^2}} \quad x \in [-1,1]

Em geral podemos ainda definir derivadas de ordem superior através de uma definição recursiva.

Vamos denotar a derivada de ordem {n} de { {f}} por { {f^{(n)}}} . Em primeiro lugar dizemos que { {f^{(0)}=f}}. Agora para { {f^{(n+1)}}} é

\displaystyle  f^{(n+1)}=\left( f^{(n)} \right)'

Ou seja:

  • { {f'=\dfrac{df}{dx}}}
  • { {f''=\dfrac{d}{dx}\dfrac{df}{dx}=\left( \dfrac{d}{dx} \right)^2 f=\dfrac{d^2}{dx^2}f}}
  • { {f'''=\dfrac{d}{dx}\dfrac{d^2}{dx^2}f=\dfrac{d^3}{dx^3}f}}
  • { {f^{(n)}=\left( \dfrac{d}{dx} \right)^n f=\dfrac{d^n f}{dx^n}}}

Dado a exposição anterior faz sentido introduzir a seguinte definição:

Definição 43 Uma função { {f}} diz-se { {n}} vezes diferenciável em { {c}} se { {f^{(n)}}} existe para todas as ordens até {n} e são finitas.

Já sabemos que uma função diferenciável é contínua mas será que a derivada de uma função diferenciável também é contínua?

A resposta a esta questão é um não e vamos apresentar o seguinte (contra)exemplo como evidência:

\displaystyle  f(x)=\begin{cases} x^2\sin (1/x) \quad &x\neq 0\\ 0 & x=0 \end{cases}

É fácil ver que { {f}} é diferenciável em { {\mathbb{R}}}

\displaystyle  f'(x)=\begin{cases} 2x\sin (1/x)-\cos (1/x) & x\neq 0\\ 0 & x=0 \end{cases}

Mas { {f'}} não é contínua em { {x=0}}. Fica como um exercício para o leitor calcular { {\displaystyle\lim_{x\rightarrow 0^+}f'(x)}} e { {\displaystyle\lim_{x\rightarrow 0^-}f'(x)}}.

Aparentemente a derivada de uma função ou é contínua ou é fortemente descontínua.

Continuando a nossa exposição vemos que faz sentido introduzirmos uma definição que caracteriza as funções de acordo com as propriedades das suas funções derivadas.

Definição 44 Uma função { {f}} diz-se ser de classe { {C^n}} se é { {n}} vezes diferenciável e { {f^{(n)}}} é contínua.

É fácil ver que uma função de classe { {C^{n+1}}} também é uma função de classe { {C^n}}.

Uma função diz-se ser de classe { {c^\infty}} se tem derivadas finitas de todas as ordens (que são necessariamente contínuas).

Se{ {f,g}} são { {n}} vezes diferenciáveis em { {c}} então { {f+g}}, { {fg}}, { {f/g\quad g(c)\neq 0}} também são { {n}} vezes diferenciáveis em { {c}}.

Definição 45 Seja { {D\subset\mathbb{R}}}, { {f:D\rightarrow\mathbb{R}}} e { {c\in D}}. { {c}} é um máximo relativo de { {f}} se

\displaystyle   \exists r>0:x\in V (c,r)\cap D \Rightarrow f(x)<f(c) \ \ \ \ \ (64)

Definição 46 Seja { {D\subset\mathbb{R}}}, { {f:D\rightarrow\mathbb{R}}} e { {c\in D}}. { {c}} é um mínimo relativo de { {f}} se

\displaystyle   \exists r>0:x\in V (c,r)\cap D \Rightarrow f(x)>f(c) \ \ \ \ \ (65)

Teorema 62 {Teorema do extremo interior} Seja { {I\in\mathbb{R}}} e { {c}} um ponto interior de { {I}}. Se { {f}} tem um extremo relativo em { {c}} e { {f'(c)}} existe, então { {f'(c)=0}}

Demonstração: Vamos supor, sem perda de generalidade, que { {f}} tem um máximo relativo em { {c}}. Uma vez que { {c}} é um ponto interior de { {I}} e { {f'(c)}} existe, { {f_+(c)}} e { {f_-(c)}} existem e são iguais.

Por definição é { {f_+'(c)=\displaystyle\lim_{x\rightarrow c^+}\dfrac{f(x)-f(c)}{x-c}}}

Por hipótese temos

\displaystyle  \exists r>0:x\in V (c,r)\cap D \Rightarrow f(x)<f(c)

Assim

\displaystyle  x\in V(c,r)\cap I\quad\mathrm{e}\quad x>c \Rightarrow \frac{f(x)-f(c)}{x-c}\leq 0

Pelo corolário 31 (Análise Matemática – Limites e Continuidade II) vem

\displaystyle  f_+'(c)=\lim_{x\rightarrow c^+}\dfrac{f(x)-f(c)}{x-c}\leq 0

Da mesma forma

\displaystyle  x\in V(c,r)\cap I\quad\mathrm{e}\quad x<c \Rightarrow \frac{f(x)-f(c)}{x-c}\geq 0

Assim

\displaystyle  f_-'(c)=\lim_{x\rightarrow c^-}\dfrac{f(x)-f(c)}{x-c}\geq 0

Uma vez que { {f_+'(c)=f_-'(c)=f'(c)}} temos que ter { {f_+'(c)=f_-'(c)=0}} e consequentemente { {f'(c)=0}}. \Box

Teorema 63 {Teorema de Rolle} Seja { {[a,b]\subset\mathbb{R}}} e { {f}} contínua tal que { {f:[a,b]\rightarrow \mathbb{R}}}. Se { {f}} é diferenciável em { {]a,b[}} e { {f(a)=f(b)}} então existe um ponto { {c\in ]a,b[}} tal que { {f'(c)=0}}.

Demonstração: Uma vez que { {f}} é contínua no intervalo compacto { {[a,b]}} sabemos que tem um máximo e um mínimo em { {[a,b]}} (teorema 55 no artigo Análise Matemática – Limites e Continuidade VII ).

Se para { {c\in ]a,b[}} { {f(c)}} é um máximo ou um mínimo, então pelo teorema 62 { {f'(c)=0}}.

Seja agora { {m}} o mínimo e { {M}} o máximo. Vamos analisar o caso em que a função toma valores extremos ocorrem nas extremidades dos intervalos. Uma vez que por hipótese é { {f(a)=f(b)}} então { {m=M}}. Neste caso { {f}} é constante e é trivial que { {f'(c)=0\quad\forall c\in [a,b]}}. \Box

Corolário 64 Seja { {I\in\mathbb{R}}}, { {f}} contínua tal que { {f:I\rightarrow\mathbb{R}}}. Se { {f}} é diferenciável no interior de { {I}} e { {f'}} não se anula no interior de { {I}}, então { {f}} não tem mais que uma raíz em {I}.

Demonstração: Usando o método de redução ao absurdo vamos assumir que { {f}} tem duas raízes em { {I}} ({ {a}} e { {b}}). Aplicando o teorema 63 em { {[a,b]}} (uma vez que { {f(a)=f(b)}}) existe { {c}} em { {]a,b[}} tal que { {f'(c)=0}}. Assim { {f'}} anula-se no interior de { {I}} o que é contrário à nossa hipótese. \Box

Análise Matemática – Cálculo Diferencial I

— 7. Cálculo Diferencial —

Definição 37

Seja { {D\subset\mathbb{R}}}, { {f:D\rightarrow\mathbb{R}}} e { {c\in D\cap D'}}. { {f}} diz-se diferenciável no ponto { {c}} se o seguinte limite existe

\displaystyle   \displaystyle \lim_{x\rightarrow c}\frac{f(x)-f(c)}{x-c} \ \ \ \ \ (53)

Este limite é representado por { {f'(x)}} e diz-se que é a derivada de { {f}} em { {c}}.

Geometricamente podemos interpretar o valor da derivada no ponto {c} como sendo igual ao declive da recta tangente à curva que passa pelo ponto {c}.

Pensando em termos cinemáticos sabemos que podemos representar a evolução da posição de uma partícula pela função { {x=f(t)}}. Deste modo podemos definir a velocidade média da partícula no intervalo { {[t_0,t]}} por

\displaystyle  v_m(t_0,t)=\frac{f(t)-f(t_0)}{t-t_0}

Se quisermos determinar a velocidade da partícula num dado instante de tempo temos que partir da definição anterior e fazer com que o intervalo de tempo seja o mais pequeno e próximo possível do instante para o qual queremos saber a velocidade. Se { {f}} é uma função bem comportada o limite existe e podemos defini-lo como sendo o valor da velocidade no instante (velocidade instantânea):

\displaystyle  v(t_0)=\lim_{t\rightarrow t_0}v_a(t_0,t)=\lim_{t\rightarrow t_0}\frac{f(t)-f(t_0)}{t-t_0}=f'(t_0)

Assim o conceito de derivada serve para unificar dois conceitos que à partida eram distintos:

  • O conceito de recta tangente a uma curva, que é um conceito puramente geométrico.
  • O conceito de velocidade instantânea, que é um conceito puramente cinemático.

O facto de dois conceitos aparentemente díspares serem unificados por um objecto matemático é uma indicação da importância e profundidade do conceito de derivação.

Definição 38

Seja { {f:D\rightarrow\mathbb{R}}}. Se { {c\in D\cap D_{c^+}'}}, podemos definir a derivada à direita de {f} em { {c}} por

\displaystyle   f_+'(c)=\lim_{x\rightarrow c^+}\frac{f(x)-f(c)}{x-c} \ \ \ \ \ (54)

Definição 39

Seja { {f:D\rightarrow\mathbb{R}}}. Se { {c\in D\cap D_{c^-}'}}, podemos definir a derivada à esquerda de {f} em { {c}} por

\displaystyle   f_-'(c)=\lim_{x\rightarrow c^-}\frac{f(x)-f(c)}{x-c} \ \ \ \ \ (55)

Definição 40

Se { {c\in D_{c^+}\cap D_{c^-}}}, dizemos que { {f'(c)}} existe sse { {f_+'(c)}} e { {f_-'(c)}} existem e são iguais.

Definição 41

Seja { {f:D\rightarrow\mathbb{R}}} diferenciável em { {D}}. A função { {x \in D \rightarrow f'(x)\in\mathbb{R}}} é chamada de função derivada de { {f}} e é representada por { {f'}}.

Definição 42

Fazendo a mudança de variável { {h=x-c}} na Definição 37 podemos definir a derivada de uma função num ponto através da expressão:

\displaystyle   f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} \ \ \ \ \ (56)

Finalmente vamos introduzir a notação de Leibniz para denotar a derivada de {f}:

  • { {\Delta x}} representa o incremento em { {x}}.
  • { {\Delta f = f(x+h)-f(x)}} representa o incremento em { {y}}.

Se os incremento são infinitamente pequenos, ou seja, se os incrementos são infinitesimais podemos representa-los por

  • { {dx}} é o acréscimo infinitesimal em { {x}}.
  • { {df}} é o acréscimo infinitesimal em { {y}}.

Assim podemos escrever a derivada como

\displaystyle  f'(x)=\frac{df}{dx}

Como exemplo vamos calcular a derivada da função { {f(x)=e^x}}.

{ {\begin{aligned} f'(x)&=\lim_{h\rightarrow 0}\dfrac{e^{x+h}-e^x}{h}\\ &=e^x\lim_{h\rightarrow 0}\dfrac{e^h-1}{h}\\ &=e^x \end{aligned}}}

Para { {x\in\mathbb{R}}}.

Como outro exemplo vamos agora calcular a derivada de { {f(x)=\log x}}

{ {\begin{aligned} f'(x)&=\lim_{h\rightarrow 0}\dfrac{\log (x+h)-\log x}{h}\\ &=\lim_{h\rightarrow 0}\dfrac{\log \left(x(1+h/x)\right)-\log x}{h}\\ &=\lim_{h\rightarrow 0}\dfrac{\log (1+h/x)}{h}\\ &=\lim_{h\rightarrow 0}\dfrac{h/x}{h}\\ &=1/x \end{aligned}}}

Para { {x\in\mathbb{R}}}.

Fica como um exercício para o leitor demonstrar as seguintes igualdades:

  • { {(\sin x)'=\cos x}}.
  • { {(\cos x)'=-\sin x}}.
Teorema 57 Seja { {D\subset\mathbb{R}}}, { {f:D\rightarrow\mathbb{R}}} e { {c\in D\cap D'}}. Se { {f}} é diferenciável em { {c}}, existe uma função contínua { {\varphi:D\rightarrow\mathbb{R}}} com um zero em { {c}} tal que:

\displaystyle   f(x)=f(c)+\left( \left( f'(c)+\varphi(x) \right) (x-c) \right)\quad x\in D \ \ \ \ \ (57)

Demonstração:

Definindo { {\varphi (x)}} por:

{ \displaystyle f(x) = \begin{cases} \dfrac{f(x)-f(c)}{x-c}-f'(c) \quad \mathrm{se}\quad x \in D\setminus \{c\}\\ 0 \quad \mathrm{se}\quad x =c \end{cases}}

Uma vez que { {\displaystyle \lim_{x\rightarrow c}\varphi (x)=\lim_{x\rightarrow c} \left(\dfrac{f(x)-f(c)}{x-c}-f'(c)\right)=(f'(c)-f'(c)=0 }}, vem que { {\varphi}} é contínua em { {c}}.

Para completar a nossa demonstração o leitor terá que mostrar que a nossa construção de { {\varphi}} faz com que a igualdade do teorema seja válida. \Box

Corolário 58

Seja { {f=D\rightarrow\mathbb{R}}} diferenciável em { {c}}. Então é { {f(x)=f(c)+f'(c)(x-c)+o(x-c)}} quando { {x\rightarrow c}}

Demonstração:

Seja { {r(x)=\varphi (x)(x-c)}}. Utilizando o Teorema 57 vem que

\displaystyle  f(x)=f(c)+f'(c)(x-c)+r(x)

Uma vez que { {\lim_{x\to c}\varphi (x)=\varphi (c)=0}} vem que { {r(x)=o(x-c)}} quando { {x\rightarrow c}}. \Box

Corolário 59

Seja { {f}} diferenciável em { {c}}. Então { {f}} é contínua em { {c}}

Demonstração:

Do Teorema 57 é

{ {\begin{aligned} \lim_{x\rightarrow c} f(x)&=\lim_{x\rightarrow c}(f(c)+(f'(c)+\varphi (x))(x-c))\\ &=f(c) \end{aligned}}} \Box

Do Corolário 59 segue que todas as funções diferenciáveis são necessariamente contínuas. Será que o recíproco deste Corolário também é uma proposição válida?

A resposta a esta questão é: Não! Como um simples contraexemplo temos a função módulo.

Que é uma função contínua mas não é diferenciável pois no ponto {0} a derivada não existe. Uma maneira simples de ver que a derivada em {0} não existe é notar {f'_+=1} enquanto que {f'_-=-1}.

Dito de uma forma informal vemos que a derivada de uma função num dado ponto não existe sempre que a função tenha forma de um bico nesse ponto.

Um exemplo mais extremo de uma função que é contínua mas não é diferenciável é a função de Weierstrass:

\displaystyle  \sum_{n=0}^\infty a^n\cos\left( b^n\pi x \right)

com { {0<a<1}}, { {b}} um número ímpar positivo, e { {ab>1+3/2\pi}}.

Esta função é contínua em todos os pontos do seu domínio e no entanto não é diferenciável em nenhum ponto do seu domínio. Na nossa linguagem informal, que corresponde a uma intuição geométrica ingénua, podemos dizer que a função de Weierstrass tem bicos em todos os pontos do seu domínio, algo que não é fácil de visualizar.

Análise Matemática – Limites e Continuidade VII

— 6. Propriedades globais de funções contínuas —

Teorema 51 {Teorema do valor intermédio} Seja { {I=[a,b] \in \mathbb{R}}} e { {f: I \rightarrow \mathbb{R}}} contínua. Seja { {u \in \mathbb{R}}} tal que { {\inf(I)<u<\sup(I)}}, então existe { {c \in I}} tal que { {f(c)=u}}.

Demonstração: Omitida. \Box

De uma forma intuitiva podemos dizer que o teorema anterior mostra que se o gráfico de uma função contínua não tem buracos se o domínio dessa função também não tem buracos.

Corolário 52 Seja { {[a,b]}} um intervalo em { {\mathbb{R}}} e { {f:[a,b]\rightarrow\mathbb{R}}} contínua. Vamos admitir que { {f(a)f(b)<0}}. Então { {\exists c \in ]a,b[}} tal que { {f(c)=0}}.

Demonstração: O contradomínio de { {f}} contém valores maiores que { {0}} e valores menores que { {0}}. Logo { {\sup f(I)>0}} e { {\inf f(I)<0}}. Assim { {0}} está estritamente compreendido entre o ínfimo e o supremo do contradomínio de { {f}}. Por hipótese a função não se anula nas extremidades do intervalo, logo o valor { {0}} tem que ocorrer dentro do intervalo. \Box

Corolário 53 Seja { {I\in\mathbb{R}}}, { {f:I\rightarrow\mathbb{\mathbb R}}} uma função contínua. Então { {f(I)}} também é um intervalo.

Demonstração: Seja { {\alpha=\inf(I)}} e { {\beta=\sup(I)}}. Por definição de ínfimo e supremo é { {f(I)\subset [\alpha , \beta]}}. Usando o Teorema 51 vem que { {]a,b[\subset f(I)}}. Assim temos quatro possibilidades para { {f(I)}}:

{f(I)=\begin{cases}{\alpha , \beta} \\ ]\alpha , \beta] \\ [\alpha , \beta[ \\ ]\alpha , \beta[ \end{cases}} \Box

Como uma aplicação dos resultados anteriores vamos olhar para { {P(x)=a_nx^n+\cdots +a_1x+a_0}} com { {n}} ímpar e { {a_n > 0}}. Sabemos que é { {P(x)\sim a_nx^n}} para grandes valores (sejam eles positivos ou negativos) de { {x}}. Temos { {\displaystyle \lim_{x\rightarrow +\infty} P(x)=+\infty}} e { {\displaystyle \lim_{x\rightarrow -\infty} P(x)=-\infty}}.

Uma vez que

  • { {P(x)}} é uma função contínua.
  • O domínio, { {D}} de { {P(x)}} é { {\mathbb{R}}} que é um intervalo.
  • { {\sup(D)=+\infty}} e { {\inf(D)=-\infty}}, o que implica que { {P[\mathbb{R}]=]-\infty, +\infty[}}

Pelo Corolário 52 é { {0\in P[\mathbb{R}]}}. O que implica que todos os polinómios ímpares têm pelo menos um { {0}}.

Teorema 54 {Continuidade da função inversa} Seja { {I}} um intervalo em { {\mathbb{R}}} e { {f:I\rightarrow\mathbb{R}}} uma função contínua e monótona. Então { {f^{-1}}} também é contínua e monótona.

Demonstração: Omitida. \Box

Este teorema tem muitas aplicações importantes e vamos utiliza-lo para definir as funções inversas das funções trigonométricas.

— Arco seno —

No intervalo { {[-\pi/2,\pi/2]}} a função { {\sin x}} é injectiva:

Deste modo podemos definir o inverso da função seno neste domínio. Matematicamente representamos o inverso da função seno por {\arcsin}:

\displaystyle y=\sin x\quad\mathrm{com}\quad x\in [\pi/2,\pi/2]\Leftrightarrow x=\arcsin x

Uma vez que temos { {\sin x:[-\pi/2,\pi/2]\rightarrow[-1,1]}} vem que { {\arcsin x:[-1,1]\rightarrow [-\pi/2,\pi/2]}}. Usando o Teorema 54 { {\arcsin}} é contínua.

A representação gráfica de { {\arcsin x}} é

É evidente pelo gráfico que { {\arcsin x}} é uma função ímpar.

— Arco tangente —

No intervalo { {]-\pi/2,\pi/2[}} a função { {\tan x}} é injectiva:

Deste modo podemos definir o inverso da função tangente neste domínio. Matematicamente representamos o inverso da função tangente por {\arctan}:

\displaystyle y=\tan x\quad\mathrm{com}\quad x\in ]\pi/2,\pi/2[\Leftrightarrow x=\arctan x

Uma vez que { {\tan x:]-\pi/2,\pi/2[\rightarrow]-\infty,+\infty[}} vem que { {\arctan x:]-\infty,+\infty[\rightarrow ]-\pi/2,\pi/2[}}. Usando o Teorema 54 {\arctan} é contínua.

A representação gráfica de {\arctan} é

É evidente pelo gráfico que {\arctan} é uma função ímpar.

— Arco coseno —

No intervalo { {[0,\pi]}} a função { {\cos x}} é injectiva:

Deste modo podemos definir o inverso da função coseno neste domínio. Matematicamente representamos o inverso da função coseno por {\arccos}:

\displaystyle y=\cos x\quad\mathrm{com}\quad x\in [0,\pi]\Leftrightarrow x=\arccos x

Uma vez que { {\cos x:[0,\pi]\rightarrow[-1,1]}} vem que { {\arccos x:[-1,1]\rightarrow [0,\pi]}}. Usando o Teorema 54 {\arccos} é contínua.

A representação gráfica de {\arccos} é

Podemos ainda representar a função arco coseno usando a seguinte equação

\displaystyle \cos=\sin(\pi/2-x)

para escrever

\displaystyle \arccos y=\frac{\pi}{2}-\arcsin y

— 6.4. Funções contínuas e intervalos —

Teorema 55 Seja { {[a,b]\subset \mathbb{R}}} e { {f:[a,b]\rightarrow\mathbb{R}}}. Então { {f}} tem um máximo e um mínimo.

Demonstração: Seja { {E}} o contradomínio de { {f}} e { {s=\sup E}}. Pelo Teorema 17 no artigo Análise Matemática – Sucessões II existe uma sucessão { {y_n}} de pontos em { {E}} tal que { {\lim y_n=s}}.

Uma vez que os termos de { {y_n}} são pontos de { {f}}, para cada { {n}} existe { {x_n\in [a,b]}} tal que { {y_=f(x_n)}}.

Uma vez que { {x_n}} é uma sucessão cujo domínio é um intervalo compacto { {[a,b]}}, pelo Corolário 27 sabemos que existe uma subsucessão { {x_{\alpha n}}} de { {x_n}} que converge para um ponto de { {[a,b]}}.

Seja { {c\in [a,b]}}tal que { {x_n\rightarrow c}}.

Uma vez que { {f}} é contínua em { {c}} vem, pela definição de continuidade, que { {\lim f(x_{\alpha n})=f(c)}}. mas { {f(x_{\alpha n})=y_{\alpha n}}}, que é uma subsucessão de { {y_n}}. Visto que { {y_n\rightarrow s}} também é { {y_{\alpha n}\rightarrow s}}.

Mas { {y_{\alpha n}=f(x_{\alpha n})\rightarrow f(c)}}.

Concluindo vem que { {s=f(c)}}, logo { {s\in E}}. Ou seja { {s=\max E}}.

Para o mínimo podemos construir uma prova análoga que fica como um exercício para o leitor. \Box

Uma mnemónica útil para recordamos o teorema anterior é

Funções contínuas têm um máximo e um mínimo num intervalo compacto.

Teorema 56 Seja { {I}} um intervalo compacto de { {\mathbb{R}}} e { {f:I\rightarrow\mathbb{R}}} contínua. Então { {f(I)}} é um intervalo compacto.

Demonstração: Pelo Corolário 53 { {f(I)}} é um intervalo. Pelo Teorema 55 { {f(I)}} tem um máximo e um mínimo.

Assim { {f(I)}} é da forma { {[\alpha , \beta]}}.

Logo { {f(I)}} é um intervalo limitado e fechado, que é a definição de um intervalo compacto. \Box

O corolário anterior pode ser expressado da seguinte forma (mais uma mnemónica útil):

Uma função contínua transforma intervalos compactos em intervalos compactos.

Análise Matemática – Limites e Continuidade VI

— 5. Exemplos de propriedades para funções contínuas —

Definição 36 Seja {{D \subset \mathbb{R}}}; {{f: D\rightarrow \mathbb{R}}} e {{c \in D'\setminus D}}. Se {{\displaystyle \lim_{x\rightarrow c}f(x)=a\in \mathbb{R}}}, podemos definir o prolongamento por continuidade de {f}, que se representa por {{\tilde{f}}} como:

\displaystyle \tilde{f}(x)=\begin{cases} f(x) \quad x \in D \\ a \quad x=c \end{cases} \ \ \ \ \ (47)

 

Como uma aplicação da definição acima vamos estudar a função {{f(x)= \sin x/x}}. Temos {{D= \mathbb{R}\setminus \{0\}}}. Uma vez que {{\displaystyle\lim_{x \rightarrow 0} \sin x/x=1}} podemos definir {{\tilde{f}}} como

\displaystyle \tilde{f}(x)=\begin{cases} \sin x/x \quad x \neq 0 \\ 1 \quad x=0 \end{cases}

Como segundo exemplo temos {{f(x)=1/x}}. Uma vez que {{\displaystyle\lim_{x\rightarrow 0^+}f(x)=+\infty}} e {{\displaystyle\lim_{x\rightarrow 0^-}f(x)=-\infty}} não podemos definir {{\tilde{f}}} para {{1/x}}. Finalmente temos a função {{f(x)=1/x^2}}. Sabemos que é {{\displaystyle\lim_{x\rightarrow 0^+}f(x)=\displaystyle\lim_{x\rightarrow 0^-}f(x)=+\infty}}. Ainda que os limites sejam iguais não podemos definir {{\tilde{f}}}, visto que a função não é majorada. Em geral podemos dizer que dado {{f: D\rightarrow \mathbb{R}}} e {{c \in D'\setminus D}} {{\tilde{f}}} existe, sse {{\displaystyle\lim_{x \rightarrow c}f(x)}} existe e é finito.

Teorema 42 Seja {{D \subset \mathbb{R}}}; {{f,g: D\rightarrow \mathbb{R}}} e {{c \in D}}. Se {{f}} e {{g}} são funções contínuas, então {{f+g}}, {{fg}} e (se {{g(c)\neq 0}}){{f/g}} também são funções contínuas.

Demonstração: Vamos mostrar que {{fg}} é contínua e deixar os outros casos para o leitor. Seja {{x_n}} uma sucessão de pontos em {{D}} tal que {{x_n \rightarrow c}}. Então {{f(x_n) \rightarrow f(c)}} e {{g(x_n) \rightarrow c}} (dado que {{f}} e {{g}} são funções contínuas). Logo {{f(x_n)g(x_n) \rightarrow f(x)g(x)}} da propriedade {{6}} do Teorema 19. E isto é a nossa definição de uma função contínua. \Box

Seja {{f(x)=5x^2-2x+4}}. Tomemos {{f_1(x)=5}}, {{f_2(x)=-2}} e {{f_3(x)=4}}. Já sabemos que as funções anteriores são funções contínuas. Ora {{f_4(x)=x^2}} e {{f_5(x)=x}} também são funções contínuas. {{f_6(x)=-2x}} é contínua visto ser o produto de {{2}} funções contínuas. Finalmente {{f(x)=5x^2-2x+4}} é contínua visto ser a soma de funções contínuas.

Teorema 43 (Continuidade da Função Composta) Seja {{D, E \subset \mathbb{R}}}, {{g: D\rightarrow E}}, {{f: E \rightarrow \mathbb{R}}} e {{c \in D}}. Se {{g}} é contínua em {{c}} e {{f}} é contínua em {{g(c)}}, então a função composta {{f \circ g (x)=f(g(x)) }} é contínua em {{c}}.

Demonstração: Seja {{x_n}} uma sucessão de pontos em {{D}} com {{x_n \rightarrow c}}. Assim {{\lim g(x_n)=g(c)}}. Se {{f}} é contínua em {{g(c)}} sabemos que {{\lim f(g(x_n))=f(g(c))}}. Isto é {{\lim (f \circ g)(x_n)= (f \circ g)(c)}}. Logo {{f \circ g}} é contínua em {{c}}. \Box

Como uma aplicação do teorema anterior vamos estudar a função {{f(x)=a^x}}. Visto que {{a^x=e^{\log a^x}=e^{x \log a}}}, podemos escrever {{a^x=e^t \circ t=x\log a}}. {{f(t)=e^t}} é contínua e {{g(x)=x \log a}} também é contínua. Assim {{a^x}} também é contínua visto resultar da composição de duas funções contínuas. Pelo mesmo argumento também podemos mostrar que para {{\alpha \in \mathbb{R}}}, {{x^\alpha}} (com {{x \in \mathbb{R}^+}}) é contínua em {{\mathbb{R}^+}}.

Teorema 44 Seja {{D, E \subset \mathbb{R}}}, {{g: D\rightarrow E}}, {{f: E \rightarrow \mathbb{R}}} e {{c \in D'}}. Suponha que {{\displaystyle \lim_{x \rightarrow c}g(x)=a}} e que {{\displaystyle \lim_{t \rightarrow a}f(t)}} existe. Se {{f}} é contínua então {{\displaystyle \lim_{x \rightarrow c}f(g(x))=\lim_{t \rightarrow a}f(t)}}.

Demonstração: Demonstração omitida. \Box

Calcule {{\displaystyle \lim_{x \rightarrow +\infty} \sin (1/x)}}. Podemos escrever {{\sin (1/x)= \sin t \circ (t=1/x)}}. Uma vez que é {{\displaystyle \lim_{x \rightarrow + \infty}(1/x)=0}} vem que, pelo Teorema 44 que, {{\displaystyle \lim_{x \rightarrow +\infty} \sin (1/x)=\displaystyle\lim_{t \rightarrow 0}\sin t =0}}. Em geral podemos dizer que se {{\displaystyle \lim_{x \rightarrow c} g(x)= a \in \mathbb{R}}} vem que {{\displaystyle \lim_{x \rightarrow c} \sin (g(x))=\displaystyle\lim_{t \rightarrow a} \sin t = \sin a}}. Concluindo:

\displaystyle \lim_{x \rightarrow c}\sin (g(x))=\sin (\lim_{x \rightarrow c}g(x))

Vamos admitir que {{\displaystyle \lim_{x \rightarrow c}g(x)=0}} e seja {{\tilde{f}}} a função que torna {{\sin x/x}} contínua em {{x=0}}. Temos {{\sin x =x \tilde{f}(x)}}, logo também é {{\sin g(x) = \tilde{f}(g(x))g(x)}}. Por definição {{\tilde{f}}} é contínua. Logo pelo Teorema 44 {{\displaystyle \lim_{x \rightarrow c^+}f(g(x))=\displaystyle\lim_{t \rightarrow 0}\tilde{f}(t)=1}}. Assim podemos concluir que quando temos {{\displaystyle \lim_{x \rightarrow c}g(x)=0}} vem que

\displaystyle \sin (g(x))\sim g(x)\quad (x \rightarrow c)

Por exemplo {{\sin (x^2-1) \sim (x^2-1)\quad (x \rightarrow 1)}}. Seja {{\displaystyle \lim_{x \rightarrow c}g(x)=a \in \mathbb{R}}}. Pelo Teorema 44 é {{\displaystyle \lim_{x \rightarrow c} e^{g(x)}=\lim_{t \rightarrow a}e^t=e^a}} (com as convenções {{e^{+\infty}=+\infty}} e {{e^{-\infty}=0}}). Logo {{\displaystyle \lim_{x \rightarrow c}e^{g(x)}=e^{\displaystyle\lim_{x \rightarrow c}g(x)}}}. De forma análoga podemos mostrar que {{\displaystyle \lim_{x \rightarrow c} \log g(x)= \log (\lim_{x \rightarrow c}g(x))}} com as convenções {{\displaystyle \lim_{x \rightarrow +\infty} \log g(x)=+\infty}} e {{\displaystyle \lim_{x \rightarrow 0} \log g(x)=-\infty}}). Seja {{a>1}}. Temos {{\displaystyle \lim_{x \rightarrow +\infty}a^x =\displaystyle\lim_{x \rightarrow +\infty}e^{x\log a}=e^{\displaystyle\lim_{x \rightarrow +\infty} x\log a}=+\infty }} (visto {{\log a>0}}). Por outro lado, para {{\alpha > 0}} também é {{\displaystyle \lim_{x \rightarrow +\infty}x^\alpha =\displaystyle\lim_{x \rightarrow +\infty}e^{\alpha \log x}= e^{\displaystyle \lim_{x \rightarrow +\infty}\alpha \log x}=+\infty}}. O que nós queremos saber é qual é o valor de {{\displaystyle \lim_{x \rightarrow +\infty}\dfrac{a^x}{x^\alpha} }}, visto que a resposta a esta pergunta nos dirá qual das funções cresce mais rápido.

Teorema 45 Seja {{ a<1}} e {{\alpha > 0}}. Então

\displaystyle \lim_{x\to\infty}\frac{a^x}{x^\alpha}=+\infty \ \ \ \ \ (48)

  Demonstração: Seja {{b=a^{1/(2\alpha)}}} ({{b>1}}). É {{a=b^{2\alpha}}}. Uma vez que {{a^x=b^{2\alpha x}}}. Para além disso é {{\dfrac{a^x}{x^\alpha}=\dfrac{b^{2\alpha x}}{x^\alpha}=\dfrac{b^{2\alpha x}}{\sqrt{x}^{2\alpha}}}}. que é

\displaystyle \frac{a^x}{x^\alpha}=\left( \frac{b^x}{\sqrt{x}} \right)^{2\alpha} \ \ \ \ \ (49)

  Seja {{[x]}} a parte inteira de {x} e usando a desigualdade de Bernoulli ({{b^m\geq 1+ m(b-1)}}) é {{b^x\geq x^{}[x]\geq 1+[x](b-1)>[x](b-1)>(x-1)(b-1)}}. Assim {{\dfrac{b^x}{\sqrt{x}}>\dfrac{x-1}{\sqrt{x}}(b-1)=\left( \sqrt{x}-1/\sqrt{x}\right)(b-1)}}. Uma vez que {{\displaystyle \lim_{x \rightarrow +\infty}\left( \sqrt{x}-1/\sqrt{x}\right)(b-1)=+\infty}} segue do Teorema 32 que {{\displaystyle\lim_{x \rightarrow \infty} \frac{b^x}{\sqrt{x}}=+\infty}}. Usando 49 e tomando {{t=b^x/\sqrt{x}}} vem que {{\displaystyle\lim_{x \rightarrow \infty}\frac{a^x}{x^\alpha}=\displaystyle\lim_{t \rightarrow +\infty}t^{2\alpha}=+\infty}}. \Box

Podemos sintetizar o conteúdo do teorema anterior na seguinte forma:

A exponencial de base {>1} cresce mais rapidamente que qualquer potência do seu expoente.

Corolário 46 Seja {{\alpha > 0}}, então

\displaystyle \lim_{x \rightarrow +\infty}\frac{x^\alpha}{\log x}=+\infty

Demonstração: Fica com um exercício para o leitor. Lembre-se de fazer a mudança de variável apropriada. \Box

Teorema 47 Seja {{a>1}}, então {{\displaystyle \lim \frac{a^n}{n!}}}=0.

Demonstração: Primeiro relembramos que {{\log n!=n\log n -n + O(\log n)}} que é a aproximação de Stirling. Uma vez que {{\dfrac{\log n}{n} \rightarrow 0}} também é {{\dfrac{O(\log n)}{n} \rightarrow 0}}. e

\displaystyle \dfrac{a^n}{n!}=e^{\log (a^n/n!)}=e^{n\log a - \log n!}

Logo

\displaystyle \lim \dfrac{a^n}{n!}=e^{\lim(n\log a - \log n!)}

Para o argumento da função exponencial é {{\begin{aligned} \lim(n\log a - \log n!) &= \lim n\log a-n\log n+n-O(\log n) \\ &=\lim \left(n\left(\log a -\log n+1 -\dfrac{O(\log n)}{n}\right)\right) \\ &=+\infty\times -\infty=-\infty \end{aligned}}}

O que resulta em {{\displaystyle \lim \frac{a^n}{n!}=e^{-\infty}=0}}. \Box

Lema 48

\displaystyle \lim_{x \rightarrow +\infty}\left( 1+\frac{1}{x}\right)^x=e \ \ \ \ \ (50)

  Demonstração: Demonstração omitida. \Box

Teorema 49

\displaystyle \lim_{x \rightarrow 0}\frac{\log (1+x)}{x}=1 \ \ \ \ \ (51)

  Demonstração: Será demonstrado como um exercício. \Box

Corolário 50

\displaystyle \lim_{x \rightarrow 0}\frac{e^x-1}{x}=1 \ \ \ \ \ (52)

  Demonstração: Deixado como um exercício para o leitor. Faça a mudança de variável {{e^x=t+1}} e use o Teorema 49 \Box

Generalizando os resultados anteriores podemos escrever:

  • {{\sin g(x) \sim g(x) \quad (x \rightarrow c)}} se {{\displaystyle \lim_{x \rightarrow c} g(x)=0}}
  • {{\log (1+g(x)) \sim g(x) \quad (x \rightarrow c)}} se {{\displaystyle \lim_{x \rightarrow c} g(x)=0}}
  • {{e^{g(x)}-1 \sim g(x) \quad (x \rightarrow c)}} se {{\displaystyle \lim_{x \rightarrow c} g(x)=0}}

Análise Matemática – Limites e Continuidade V

A condição {\epsilon\delta}, por si só, é algo que não é fácil de entender pela primeira vez para a maior parte das pessoas. Se a isso adicionarmos a semelhança entre a definição {\epsilon\delta} para limites e a definição {\epsilon\delta} para continuidade pode aumentar a incompreensão deste conceito tão importante nos alunos.

De forma a tentarmos contrariar essa tendência vamos apresentar alguns exemplos da condição {\epsilon\delta}.

— 4.7. {\epsilon\delta} para continuidade —

Vamos iniciar o nosso estudo com um exemplo muito simples.

Seja {f(x)=\alpha} (que é uma função obviamente contínua!).

O ponto de utilizarmos o argumento {\epsilon\delta} para este caso é tornarmos os alunos confortáveis com este tipo de raciocínio. Em termos técnicos o que nós pretendemos fazer é mostrar que independentemente do {\delta} escolhido conseguimos sempre encontrar um {\epsilon} que satisfaz o critério de Heine para a continuidade.

Voltando à nossa função {f(x)=\alpha} vem que {|f(x)-f(c)| < \delta}. Neste caso temos {f(x)=f(c)=\alpha}. Assim

{\begin{aligned} |f(x)-f(c)| &< \delta \\ |\alpha-\alpha| &< \delta \\ |0| &< \delta \\ 0 &< \delta \end{aligned}}

Que é trivialmente válido, uma vez que {\delta > 0} por hipótese. Assim qualquer valor positivo de {\epsilon} satisfaz o critério de Heine para a continuidade e {f(x)=\alpha} é contínua em {c}.

Uma vez que nunca fizemos qualquer assunção relativamente a {c} para além de que {c \in {\mathbb R}} podemos concluir que {f(x)=\alpha} é contínua em todos os pontos do seu domínio.

Vamos agora analisar {f(x)=x} e novamente vamos estudar a continuidade no ponto {c} ({f(c)=c}):

{\begin{aligned} |f(x)-f(c)| &< \delta \\ |x-c| &< \delta \end{aligned}}

A última expressão é exactamente o que queremos: uma expressão da forma {x-c} (a primeira parte do critério {\epsilon\delta}).

Se tomarmos {\epsilon=\delta} fica então {|x-c| < \epsilon} o que completa a nossa demonstração que {f(x)=x} é contínua em {c}.

Mais uma vez não fizemos nenhuma assunção relativamente à natureza de {c} para além de que {c \in {\mathbb R}} e como tal concluímos que {f(x)=x} é contínua no seu domínio.

Vamos agora olhar para funções da forma {f(x)=\alpha x + \beta} e estudar a continuidade de {f(x)} em {c}.

{\begin{aligned} |f(x)-f(c)| &< \delta \\ |\alpha x + \beta-(\alpha c + \beta)| &< \delta \\ |\alpha x -\alpha c| &< \delta \\ |\alpha||x-c| &< \delta \\ |x-c| &< \dfrac{\delta}{|\alpha|} \end{aligned}}

Se tomarmos {\epsilon=|\delta|/ |\alpha|} vem que {|x-c|< \epsilon} e {f(x)=\alpha x + \beta} é contínua em {c}.

Como um exemplo final do critério de Heine para a continuidade vamos olhar para a função {f(x)=\sin x}.

{\begin{aligned} |f(x)-f(c)| &< \delta \\ |\sin x-\sin c| &< \delta \end{aligned}}

Uma vez que queremos algo da forma {|x-c| < g(\delta)} a última expressão não nos é útil.

Neste caso temos que tomar uma alternativa que ainda assim tem o mesmo espírito que temos usado até agora.

Dada à novidade deste método pedimos aos leitores que prestem muita atenção à dedução e que se certifiquem que percebem todos os passos.

{\begin{aligned} |\sin x-\sin c| &= 2\left| \cos\left( \dfrac{x+c}{2}\right)\right| \left| \sin\left( \dfrac{x-c}{2}\right)\right|\\ &< 2\left| \sin\left( \dfrac{x-c}{2}\right)\right| \end{aligned}}

Uma vez que {x \rightarrow c} sabemos que em algum momento {\dfrac{x-c}{2}} vai estar no primeiro quadrante. Assim

{\begin{aligned} 2\left| \sin\left( \dfrac{x-c}{2}\right)\right| &< 2\left|\dfrac{x-c}{2}\right| \\ &= |x-c|\\ &< \epsilon \end{aligned}}

Onde a última desigualdade é válida por hipótese.

Quer isto dizer que se tomarmos {\epsilon=\delta} fica {|x-c|<\epsilon \Rightarrow | \sin x - \sin x | < \delta} que é a condição {\epsilon\delta} para a continuidade.

— 4.8. {\epsilon\delta} para limites —

Nesta subsecção vamos utilizar o mesmo procedimento que utilizámos na subsecção anterior, mas com as devidas adaptações para o caso dos limites.

Seja {f(x)=2}. Queremos mostrar que {\displaystyle \lim_{x \rightarrow 1}f(x)=2}.

{\begin{aligned} |f(x)-2| &< \delta \\ |2-2| &< \delta \\ 0 &< \delta \end{aligned}}

Que é trivialmente válido para qualquer valor de {\delta}, assim {\epsilon} pode ser um número positivo qualquer.

Seja {f(x)=2x+3}. Queremos mostrar que {\displaystyle \lim_{x \rightarrow 1}f(x)=5}.

{\begin{aligned} |f(x)-5| &< \delta \\ |2x+3-5| &< \delta \\ |2x-2| &< \delta \\ 2|x-1| &< \delta \\ |x-1| &< \dfrac{\delta}{2} \end{aligned}}

Com {\epsilon=\delta/2} satisfazemos a condição {\epsilon\delta} para limites.

Como um exemplo final vamos olhar para a função de Dirichlet modificada que foi introduzida em Análise Matemática Limites e Continuidade III.

\displaystyle f(x) = \begin{cases} o \quad x \in \mathbb{Q}\\ x \quad x \in \mathbb{R}\setminus \mathbb{Q} \end{cases}

Nesse artigo demonstrámos que para {a \neq 0} o limite {\displaystyle\lim_{x\rightarrow a}f(x)} não existe e prometemos que num artigo futuro iríamos mostrar que {\displaystyle\lim_{x \rightarrow 0}f(x)=0} usando a condição {\epsilon\delta}:

{\begin{aligned} |f(x)-f(0)| &< \delta \\ |f(x)-0| &< \delta \end{aligned}}

Uma vez que {f(x)=0} ou {f(x)=x} vamos atacar este problema usando estas duas possibilidades.

No primeiro caso é {|0-0|<\delta} que é trivialmente válido e assim {\epsilon} pode ser um número positivo qualquer.

No segundo caso é {|x-0|<\delta}. Tomando {\epsilon=\delta} faz com que se respeite o critério de Heine.

Uma vez que mostramos que {\displaystyle\lim_{x \rightarrow 0}f(x)=0=f(0)} a conclusão é que a função de Dirichlet modificada é somente contínua em {x=0}.

Análise Matemática – Exercícios III

1.

a) Calcule { \displaystyle \sum_{k=p}^{m}(u_{k+1}-u_k)} e {\displaystyle\sum_{k=p}^{m}(u_k - u_{k+1})}

{\displaystyle \sum_{k=p}^{m}(u_{k+1}-u_k)=u_{p+1}-u_{p}+u_{p+2}-u_{p+1}+\ldots +u_{m+1}-u_{m}}

Como podemos ver o primeiro termo cancela o quarto, o terceiro cancela o sexto e assim por diante. Deste modo ficamos somente com o segundo e último termo:

{\displaystyle \sum_{k=p}^{m}(u_{k+1}-u_k) = u_{m+1}-u_p}

{\begin{aligned} \displaystyle \sum_{k=p}^{m}(u_k - u_{k+1})&= - \sum_{k=p}^{m}(u_{k+1}-u_k)\\ &= - (u_{m+1}-u_p)\\ &= u_p-u_{m+1} \end{aligned}}

b) Calcule {\displaystyle \lim \sum_{k=1}^n\dfrac{1}{k(k+1)}} Usando o resultado anterior.

{\displaystyle \lim \sum_{k=1}^n\dfrac{1}{k(k+1)}= \lim \sum_{k=1}^n \left( \frac{1}{k}-\frac{1}{k+1} \right) }

Definindo {u_k=1/k} podemos reescrever a soma anterior como

{\begin{aligned} \displaystyle \lim \sum_{k=1}^n \left( u_k-u_{k+1} \right)&=\lim (u_1 - u_{n+1})\\ &= \lim \left(1-\frac{1}{n+1}\right)\\ &=1 \end{aligned}}

Aparentemente este resultado tem uma história engraçada. Mengoli foi o primeiro a conseguir calcular {\displaystyle \lim \sum_{k=1}^n\dfrac{1}{k(k+1)}=1}. Na altura em que tal aconteceu a investigação em Matemática tinha um cariz ligeiramente diferente do que temos agora. Muitas vezes as pessoas escondiam os seus resultados ou então as derivações dos seus resultados durante anos enquanto atormentavam os seus rivais devido à inépcia destes.

E foi isto que Mengoli fez. Na altura em que ele conseguiu somar esta série a teoria das séries não estava desenvolvida como está hoje em dia, e este resultado que acabamos de demonstrar, sem sermos particularmente brilhantes em Matemática, era algo digno de nota.

Mengoli escreveu cartas a algumas pessoas dizendo que {\displaystyle \lim \sum_{k=1}^n\dfrac{1}{k(k+1)}=1}, sem nunca mostrar como foi que ele chegou a este resultado. Uma vez que os matemáticos a quem ele enviou o resultado não sabiam dos seus métodos tudo o que podiam fazer era somar explicitamente e ver que o resultado da soma era cada vez mais próximo de {1}.

Claro está que eles sabiam que isso não provava nada pois podiam até somar um milhão de termos que ainda assim faltaria somar um infinidade de termos para sabermos o resultado real.

c) Calcule {\displaystyle \sum_{k=0}^{n-1}(2k+1) }

Neste exercício vamos calcular a soma de {n} números primos consecutivos. Este resultado já era conhecido na Grécia Antiga e o valor da sua soma era algo que os matemáticos gregos achavam especialmente apelativo.

{\begin{aligned} \displaystyle \sum_{k=0}^{n-1}(2k+1)&=\sum_{k=0}^{n-1}\left[ (k+1)^2-k^2\right]\\ &= \sum_{k=0}^{n-1}(u_{k+1}-u_k) \end{aligned}}

Com {u_k=k^2}

Usando a fórmula que já nos é familiar por esta altura

{\begin{aligned} \displaystyle \sum_{k=0}^{n-1}(2k+1) &= (n-1+1)^2-0^2\\ &= n^2 \end{aligned}}

Um resultado que realmente tem algo de mágico estético, tal como os gregos diziam!

2.

a) Usando 1.a) e {a^k=a^k\dfrac{a-1}{a-1}\quad (a \neq 1)} calcule {\displaystyle \sum_{k=0}^{n-1} a^k }

{\begin{aligned} \displaystyle \sum_{k=0}^{n-1} a^k &= \displaystyle\sum_{k=0}^{n-1} \left[ a^k\frac{a-1}{a-1}\right]\\ &= \displaystyle \frac{1}{a-1}\sum_{k=0}^{n-1}\left( a^{k+1}-a^k\right)\\ &= \displaystyle\frac{1}{a-1}(a^n-1)\\ &= \displaystyle\frac{a^n-1}{a-1} \end{aligned}}

b) Usando a) estabeleça a desigualdade {a^n-1 \geq n(a-1)} se {a > 0} e {n \in \mathbb{Z}^+} (se bem se lembram usamos esse resultado no artigo Análise Matemática ? Sucessões III

Se {a=1} é {1-1=n(1-1) \Rightarrow 0=0} que é trivialmente válido.

Se {n=1} é {a-1=a-1} que é trivialmente válido.

Para {n \geq 2 } e {a>1} é:

{\begin{aligned} \displaystyle \sum_{k=0}^{n-1}a^k&= 1+a+a^2+\ldots+a^{n-1}\\ &> 1+1+\ldots+1\\ &= n \end{aligned}}

Assim

{\begin{aligned} \dfrac{a^n-1}{a-1} & > n \\ a^n-1 &> n(a-1) \end{aligned}}

Uma vez que {a > 1}

Finalmente, se {0 < a <1 } é

{\begin{aligned} \displaystyle \sum_{k=0}^{n-1}a^k&= 1+a+a^2+\ldots+a^{n-1}\\ &< 1+1+\ldots+1\\ &= n \end{aligned}}

Assim

{\begin{aligned} \dfrac{a^n-1}{a-1} &< n \\ a^n - 1 &> n(a-1) \end{aligned}}

Uma vez que {a < 1}

c) Use b) para calcular {\lim a^n} se {a > 1} e depois conclua que {\lim a^n=0} se {|a| < 1}.

por b) é

{\begin{aligned} a^n &> n(a-1)+1 \\ \lim a^n &\geq \lim \left( n(a-1)+1 \right)= +\infty \end{aligned}}

Logo {\lim a^n = +\infty \quad (a>1)}

Para a segunda parte vamos calcular antes {\lim |a^n|} uma vez que sabemos que { u_n \rightarrow 0 \Leftrightarrow |u_n| \rightarrow 0} pelo artigo Análise Matemática ? Exercícios II

Vamos fazer a mudança de variável {t=1/a}. O que implica {|a|=|1/t|} e

{\begin{aligned} \lim |a^n| &= \lim |1/t|^n\\ &= \dfrac{1}{\lim |t|^n}\\ &= \dfrac{1}{+\infty}\\ &=0 \end{aligned}}

3. Considere as sucessões {u_n=\left( 1+\dfrac{1}{n} \right)^n } e {v_n=\left( 1+\dfrac{1}{n} \right)^{n+1}}

a) Calcule {\dfrac{v_n}{v_{n+1}}} e {\dfrac{u_{n+1}}{u_n}}. Use a desigualdade de Bernoulli para mostrar que {v_n} é estritamente decrescente e que {u_n} é estritamente crescente.

{\begin{aligned} \dfrac{v_n}{v_{n+1}} &= \dfrac{\left( 1+1/n \right)^{n+1}}{\left(1+1/(n+1)\right)^{n+2}}\\ &=\dfrac{\left(\dfrac{n+1}{n}\right)^{n+1}}{\left( \dfrac{n+2}{n+1} \right)^{n+2}}\\ &= \dfrac{n}{n+1}\dfrac{\left(\dfrac{n+1}{n}\right)^{n+2}}{\left( \dfrac{n+2}{n+1} \right)^{n+2}}\\ &=\dfrac{n}{n+1}\left( \dfrac{(n+1)^2}{n(n+2)} \right)^{n+2}\\ &= \dfrac{n}{n+1}\left( \dfrac{n^2+2n+1}{n(n+2)} \right)^{n+2}\\ &=\dfrac{n}{n+1}\left( \dfrac{n(n+2)+1}{n(n+2)} \right)^{n+2}\\ &= \dfrac{n}{n+1}\left( 1+\dfrac{1}{n(n+2)} \right)^{n+2} \end{aligned}}

Após calcularmos {v_n/v_{n+1}} podemos usar a Desigualdade de Bernoulli com {a=1+\dfrac{1}{n(n+2)}} , para vermos que {v_n} é estritamente decrescente.

{\begin{aligned} \dfrac{n}{n+1}\left( 1+\dfrac{1}{n(n+2)} \right)^{n+2} &> \dfrac{n}{n+1}\left(1 + \dfrac{n+2}{n(n+2)} \right)\\ &= \dfrac{n}{n+1}(1+1/n)\\ &= \dfrac{n}{n+1}\dfrac{n+1}{n}\\ &= 1 \end{aligned}}

Assim {v_n} é estritamente decrescente.

Como uma técnica semelhante podemos mostrar que

{ \displaystyle u_{n+1}/u_n=\dfrac{n+1}{n}\left( 1- \dfrac{1}{(n+1)^2}\right)^{n+1}}

E após isso novamente usamos a Desigualdade de Bernoulli para mostrar que {u_{n+1}/u_n>1} o que implica que {u_n} é estritamente crescente.

c) Usando a), b) e {\lim u_n = e} mostre que são válidas as seguintes desigualdades {(1+1/n)^n < e <(1+n)^{n+1}}.

{\begin{aligned} \lim v_n&= \lim(1+1/n)^n(1+1/n)\\ &= e\times 1\\ &= e \end{aligned}}

Já sabemos que {v_n} é decrescente por isso é {v_n<(1+1/n)^{n+1}}

Por outro lado {u_n} é crescente e {\lim u_n=e} por isso {(1+1/n)^n<e}.

Logo {(1+1/n)^n<e<(1+1/n)^{n+1}}

d) Use c) para mostrar que { \displaystyle \frac{1}{n+1}<\log (n+1)-\log n <\frac{1}{n}}.

{ \begin{aligned} (1+1/n)^n &< e \\ n \log \left( \dfrac{n+1}{n} \right) &< 1 \\ \log(n+1) - \log n &< \dfrac{1}{n} \end{aligned} }

E agora para a segunda parte da desigualdade:

{ \begin{aligned} e &< \left(1+\dfrac{1}{n}\right)^{n+1} \\ 1 &< (n+1)\log \left(\dfrac{n+1}{n}\right) \\ \dfrac{1}{n+1} &< \log (n+1) -\log n \end{aligned}}

Em conclusão é { \dfrac{1}{n+1}<\log (n+1)- \log n < \dfrac{1}{n} }

4.

a) Usando 3d) mostre que { \displaystyle 1+\log k < (k+1)\log (k+1)-k\log k < 1+ \log(k+1) }.

Em primeiro lugar é

{ \begin{aligned} \dfrac{1}{k+1} &< \log (k+1) - \log k \\ 1 &< (k+1)\log(k+1) - (k+1)\log k \\ 1+ \log k &< (k+1)\log(k+1)-k \log k \end{aligned}}

Com um raciocínio semelhante também podemos mostrar que {(k+1)\log(k+1)-l\log k < 1+ \log(k+1)}.

Logo é {1+\log k < (k+1)\log(k+1)-k\log k < 1+ \log(k+1)}

b) Some as desigualdades anteriores entre {1 \leq k \leq n-1}.

{\begin{aligned} \displaystyle \sum_{k=1}^{n-1}(1+ \log k) &< \sum_{k=1}^{n-1} ((k+1)\log(k+1)-k \log k)\\ &< \displaystyle \sum_{k=1}^{n-1}(1+\log(k+1)) \end{aligned}}

Ora

{\begin{aligned} \displaystyle \sum_{k=1}^{n-1} (1+ \log k) &= \sum_{k=1}^{n-1}1+\sum_{k=1}^{n-1}\log k\\ &= n-1 +\sum_{k=1}^{n-1}\log k \end{aligned}}

E

{\begin{aligned} \displaystyle \sum_{k=1}^{n-1}\log k &= \log 1 + \log2 +\ldots+\log(n-1)\\ &=\log((n-1)!) \end{aligned}}

E também temos

{\begin{aligned} \displaystyle \sum_{k=1}^{n-1}((k+1)\log(k+1) - k\log k)&= m\log n -\log 1\\ &=n\log n \end{aligned}}

E {\displaystyle \sum_{k=1}^{n-1}(1+\log(k+1))=n-1+\log n!}

Em conclusão é {n-1+\log(n-1)! < n\log n < n-1 \log n!}

c) Conclua as seguintes desigualdades { n \log n -n +1 < \log n! < n \log n -n+1+\log n} e estabeleça a Aproximação de Stirling { \displaystyle \log n! = n\log n -n +r_n} com {e < C_n < en}

{ \begin{aligned} n-1 + \log (n-1)! &< n\log n \\ \log (n-1)! &< n\log n -n+1 \\ \log n! &< n\log n -n +1+\log n \end{aligned}}

Por outro lado

{\begin{aligned} n\log n &< n-1 + \log n! \\ n\log n -n +1 &< \log n! \end{aligned} }

Logo

{\begin{aligned} n\log n -n +1 &< \log n! \\ &< n\log n -n +1 +\log n \end{aligned}}

E daqui temos {1 < \log n! -n\log n+n < 1+\log n}

Definindo {r_n=\log n! -n\log n+n} vem que {\log n! = n\log n-n+r_n} com {1 < r_n < 1+\log n}

5.

Mostre que {\log \left(1+\dfrac{1}{n}\right)\sim \dfrac{1}{n}} e que {\log \left(1+\dfrac{1}{n^2}\right)\sim \dfrac{1}{n^2}}

Sabemos que

{ \begin{aligned} \dfrac{1}{n+1} &< \log(n+1)-\log n < \dfrac{1}{n} \\ \dfrac{1}{n+1} &< \log\left( \dfrac{n+1}{n}\right) < \dfrac{1}{n} \\ \dfrac{1}{n+1} &< \log\left( 1+\dfrac{1}{n}\right) <\dfrac{1}{n} \\ \dfrac{1/(n+1)}{1/n} &< \dfrac{\log (1+1/n)}{1/n}<1 \\ \lim \dfrac{n}{n+1} &\leq \lim \dfrac{\log (1+1/n)}{1/n} \leq \lim 1 \\ 1 &\leq \lim \dfrac{\log (1+1/n)}{1/n} \leq 1 \end{aligned}}

Logo {\lim \dfrac{\log (1+1/n)}{1/n}=1} e isto é equivalente a {\log \left(1+\dfrac{1}{n}\right)\sim \dfrac{1}{n}}.

Seja {u_n = \dfrac{\log (1+1/n)}{1/n}}. Neste caso é {\dfrac{\log (1+1/n^2)}{1/n^2}=u_{n^2}}. Uma vez que {u_{n^2}} é uma subsucessão de {u_n} sabemos que é {\lim u_{n^2}= \lim u_n} e assim também é {\log \left(1+\dfrac{1}{n^2}\right)\sim \dfrac{1}{n^2}}.

6. Mostre que {u_n \sim v_n} e {v_n \sim w_n \Rightarrow u_n \sim w_n }

Por hipótese é {u_n=h_n v_n}, {v_n=t_n w_n} com {h_n,t_n \rightarrow 1}.

Substituindo a segunda igualdade na primeira obtemos {u_n = h_n t_n w_n}.

Seja {s_n = h_n t_n} e {u_n =s_n w_n } com {\lim s_n = \lim h_n \lim t_n =1\times 1=1}.

Logo {u_n \sim w_n}

7. Seja {u_n = O\left(1/n\right)} e{v_n = O (1/ \sqrt{n})}. Mostre que {u_n v_n = o ( 1/n^{4/3})}.

{u_n = h_n 1/n} and {v_n = t_n 1/ \sqrt{n}} com {h_n} e {t_n} sendo sucessões limitadas.

{\begin{aligned} u_n v_n &= \dfrac{h_n}{n} \dfrac{t_n}{\sqrt{n}}\\ &= \dfrac{h_n t_n}{n^{3/2}}\\ &=\dfrac{h_n t_n}{n^{1/6}}\dfrac{1}{n^{4/3}} \end{aligned}}

Seja {s_n = \dfrac{h_n t_n}{n^{1/6}}}. Então {\lim s_n = \lim \dfrac{h_n t_n}{n^{1/6}} = 0} uma vez que {h_n t_n} é limitada.

Logo {u_n v_n = o (1/n^{4/3})}

8.Usando a Aproximação de Stirling mostre que {\log n! = n\log n -n + O(\log n)}

Sabemos que é {\log n! = n\log n -n + +r_n} com { 1< r_n < 1+\log n}. Logo

{\begin{aligned} 0 &<\dfrac{1}{\log n}\\ &< \dfrac{r_n}{\log n}\\ &< \dfrac{1}{\log n} +1\\ &\leq \dfrac{1}{\log 2}+1 \end{aligned}}

Onde usámos o facto que { \dfrac{1}{\log n}+1} é uma função decrescente.

Logo {\dfrac{r_n}{\log n}} é limitada e assim {r_n=O(\log n)} como desejado.

%d bloggers like this: