Luso Academia

Início » 03 Ensino Médio » 02 Física

Category Archives: 02 Física

Interacção de corpos carregados. Força Eléctrica. Lei de Coulomb. Princípio de superposição.

— 1.2. Interacção de corpos carregados. Força Eléctrica. Lei de Coulomb —

Os corpos carregados interagem, ou seja, exercem forças um no outro.

A força eléctrica é uma grandeza vectorial com intensidade, direcção e sentido. A direcção coincide com a recta que une as duas cargas, e o sentido é estabelecido pelo sinal das cargas em presença.

As intersecções podem ser atração ou repulsão. As cargas eléctricas de sinais contrários atraem-se (puxam-se simultaneamente, uma em direcção a outra), e cargas eléctricas de um mesmo sinal repelem-se (empurra-se simultaneamente, uma em direcção oposta a outra). Este princípio é denominado Princípio impírico de Du Fay.

As forças eléctricas provocadas por objetos carregados foram medidas quantitativamente por Charles Coulomb a partir de uma balança de torção, da qual ele mesmo inventou.

A força de interacção electrostática entre dois corpos carregados e fixos, é diretamente proporcional ao produto de suas cargas e inversamente proporcional ao quadrado da distância que as separa.

O módulo da força electrostática entre as cargas é igual e é dada por:

\displaystyle F_{12}=F_{21}=k \cdot \frac{|q_1| \cdot |q_2|}{r^2}

Onde:
{ k= \frac{1}{4\pi\varepsilon_{0}}}
{ \varepsilon= \varepsilon_{r} \cdot \varepsilon_{0}}
{ \varepsilon_{0}=8,85 \cdot 10^{-12} \ \ F/m}
{ {\varepsilon} \rightarrow} Permissividade eléctrica do meio;
{ \varepsilon_{r} \rightarrow } Permissividade relativa do meio;
{ r \rightarrow } módulo de distância entre as cargas;
{ q \rightarrow } Carga eléctrica;

Vectorialmente:

\displaystyle \vec{F_{21}}=-\vec{F_{12}}=k \cdot \frac{q_1 \cdot q_2}{r^3} \cdot \vec{r}

Ou

\displaystyle \vec{F_{21}}=-\vec{F_{12}}=k \cdot \frac{q_1 \cdot q_2}{r^2} \cdot \vec{u_r}

Onde:
{\vec{u_r}} é o unitário do vector {\vec{r}}.

— 1.3. Princípio de Sobreposição das forças eléctricas —

A superposição ou sobreposição de efeitos é o efeito de obtido quando um conjunto de elementos causadores do efeito se sobrepõem. É um princípio muito usado na Física, nas mais diversas áreas.

O princípio de sobreposição postula que o efeito criado por um conjunto de causas aplicado num corpo é igual á soma ou superposição dos efeitos que cada das causas iria gerar quando aplicada separadamente sobre esse mesmo corpo.

De acordo com o princípio da supersposição, a força resultante na carga {q_1} será:

\displaystyle \vec{F_1}=\vec{F_{12}}+\vec{F_{13}}+...+\vec{F_{1n}}

A forma de calcular a resultante, vai depender do número de vectores que se sobreposurem.

Exemplo 2

 

Consideremos o sistema de três cargas. Determinemos a expressão para a força resultante na carga {q_3}.

Para tal, devemos representar as forças de interacção entre as cargas, sendo de atracção ou de repulsão, dependendo de as cargas terem mesmos sinais ou sinais opostos. As forças entre {q_1} e {q_2} são de atracção, as forças entre {q_1} e {q_3} são de repulsão e as forças entre {q_2} e {q_3} são de atracção. Assim, representamos as forças neste sistema:

Neste caso, actuarão em {q_3} duas forças ({F_{31}} e {F_{32}}). Então, de acordo com o princípio de sobreposição, a força resultante será:

\displaystyle \vec{F_3}= \vec{F_{31}} + \vec{F_{32}}

Em módulo, sendo uma soma entre dois vectores, podemos usar a fórmula do triângulo (lei dos co-senos). Mas para tal, deveremos antes determinar os ângulos {\alpha} e {\beta}. Após determinação dos ângulos, teremos:

\displaystyle F_3= \sqrt{F_{31}^2 + F_{32}^2+2 \cdot F_{31} F_{32} \cdot \cos (\alpha+\beta)}

Neste caso, o cálculo da resultante pode fazer-se em uma única expressão porque apresenta a soma de apenas dois vectores.

Para um caso em que se sobreponham mais de dois vectores, a resultante deverá ser calculada pelo método de componentes.

Exemplo 3 Consideremos o sistema de quatro cargas abaixo. Determinemos a expressão para a força resultante na carga {q_1}.

 

Para tal, devemos representar as forças de interacção entre as outras cargas com a carga {q_1}, sendo de actracção ou de repulsão, dependendo de as cargas terem mesmos sinais ou sinais opostos. As forças entre {q_1} e {q_2} são de repulsão, as forças entre {q_1} e {q_3} são de atração e as forças entre {q_1} e {q_4} são de repulsão.

Neste caso, actuarão em {q_1} três forças ({F_{12}}, {F_{13}} e {F_{14}}). Então, de acordo com o princípio de sobreposição, a força resultante será:

\displaystyle \vec{F_1}= \vec{F_{12}} + \vec{F_{13}}+ \vec{F_{14}}

Devemos agora notar que pretendemos somar mais de dois vectores ( três no caso), e todos de direcção diferente. Para tal, como {\vec{F_{12}}} e {\vec{F_{14}}} são horizontal e vertical, respectivamente, e {\vec{F_{13}}} é oblíquo, então se projectará o {\vec{F_{13}}} na horizontal e na vertical, obtendo assim {\vec{F_{13x}}} e {\vec{F_{13y}}}. Mas para tal, deveremos antes determinar o ângulo {\alpha}.

Neste caso, teremos:

\displaystyle F_{13x}= F_{13} \cos \alpha

\displaystyle F_{13y}= F_{13} \sin \alpha

Neste caso, calcularemos as componentes do vector resultante em cada eixo:

\displaystyle \ F_{1x}= F_{12}-F_{13x}

\displaystyle \ F_{1y}=F_{14}- F_{13y}

Em seguida, se poderá calcular o vector resultante:

\displaystyle F_1= \sqrt{(F_{1x})^2+(F_{1y})^2}

Está a gostar da Abordagem? Veja também:
Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo; Todas as Categorias (Início).
  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1. Electrostática (Introdução). Carga Eléctrica. Electrização dos corpos.

1.1. Introdução O conhecimento de fenómenos eléctricos e magnéticos vem já da Antiguidade Clássica: na Grécia de Aristóteles, descobriu-se que o âmbar (‘elektron’) atrai penas ou pós e que a pedra de Magnésia atrai pequenos pedaços de ferro; na China desses tempos já o compasso magnético era usado na navegação. Contudo, o estudo sistemático destes fenómenos só viria a ocorrer nos séculos XVIII e XIX: Charles Du Fay (1733) reconhece haver dois tipos de electricidade (‘vítrea’ e ‘resinosa’), mas seria Benjamim Franklin a propor a existência de cargas positivas e negativas. A electrostática é a parte do electromagnetismo que estuda os fenómenos eléctricos resultantes de cargas eléctricas em repouso. A carga eléctrica, é uma propriedade intrínseca da matéria e está associada a existência da matéria. A unidade de medida da grandeza carga eléctrica no Sistema Internacional de Unidades é o Coulomb, representado por C, que recebeu este nome em homenagem ao físico francês Charles Augustin de Coulomb. Não podemos ver a carga eléctrica, mas podemos sentir os seus efeitos. Podemos dizer que a carga eléctrica representa acumulação de electricidade. Nas suas experiências, os cientistas Milikan e Jofre, concluíram que a carga eléctrica é quantizada, isto é, os seus valores apenas podem ser múltiplos inteiros de um mesmo valor mínimo de carga, denominado carga elementar.

\displaystyle q= n \cdot e

Onde: {n \rightarrow } número de partículas. {e \rightarrow } carga elementar (que corresponde a carga de um electrão). A carga eléctrica elementar é a menor quantidade de carga que pode ser encontrada na natureza. A carga eléctrica é uma propriedade fundamental da matéria. As partículas elementares detentoras desta propriedade são o electrão e o protão, ambas constituintes do átomo, localizando-se os protões no núcleo e os electrões em órbitas envolventes do mesmo. Além dos protões, o núcleo dos átomos é também constituído por neutrões, neutros do ponto de vista eléctrico. O modelo atómico simples é ilustrado na figura abaixo, onde os electrões se movem em torno do núcleo do átomo.

Um protão tem uma carga {q_p=+e} e um electrão tem uma carga {q_e=-e}. Um neutrão tem carga eléctrica nula ({q_n=0}).

\displaystyle \vert q_p \vert= \vert q_e \vert= e = 1,602 \cdot 10^{-19} \ C

Um corpo possui carga positiva se tiver na sua constituição defeito de electrões (ou seja, possui mais protões do que electrões) e possui carga negativa se tiver na sua constituição excesso de electrões (ou seja, possui mais electrões do que protões). O átomo, no estado fundamental é electricamente neutro (ou seja, possui o mesmo número de electrões e de protões, logo a sua carga total é nula {q_t=0}). Os átomos neutros contêm o mesmo número de electrões e de protões. Os átomos não neutros são designados por iões. Um átomo torna-se num ião negativo(anião) quando captura electrões numa das suas órbitas, e positivo (catião) quando os perde. Os protões, os electrões e em geral os iões são as entidades responsáveis pelo fenómeno da força eléctrica. A figura abaixo apresenta o modelo de um ião positivo. Claramente se nota na figura que o número de protões no núcleo é diferente e maior que o número de electrões em orbita.

Chamamos de carga pontual a qualquer corpo cujas dimensões do corpo seja muito menor do que as distâncias envolvidas no fenómeno, ou seja, as suas dimensões podem ser desprezadas na análise dos problemas. Em um sistema isolado, a carga total permanece constante. Esta afirmação é conhecida como a Lei de Conservação da Carga eléctrica. Existem, dois tipos de materiais. De acordo com a descoberta de Stephen Gray, as cargas eléctricas podiam ser transmitidas através de determinados materiais, mas permaneciam retidas em outros. Aqueles materiais nos quais as cargas fluíam foram chamados de condutores e aqueles nos quais ficavam retidas de isolantes.
Exemplo 1 Consideremos dois corpos condutores carregados inicialmente com cargas {q_1} e {q_2}. Ao colocarmos elas em contacto, elas trocam carga eléctrica (por serem condutoras). Em função disso, a carga de cada uma delas altera-se. Se deixarmos elas em contacto por tempo suficiente, no final a carga equilibra-se. Mas a carga total conserva-se.

\displaystyle q_1 + q_2= \ q'_1 + q'_2

Sabemos que: { q'_1=q'_2}. Logo:

\displaystyle q_1+q_2=2 \ q'_1

\displaystyle \Rightarrow q'_1= \ \frac{q_1+q_2}{2}

Para se obterem iões, pode se realizar a electrização dos corpos. A electrização são fenómenos em que electrões são transferidos de um corpo para outro devido a uma diferença na quantidade de cargas eléctricas existente os corpos, ou, pela aquisição de energia advinda do atrito entre os corpos. A electrização por atrito (ou fricção) acontece principalmente quando dois ou mais corpos isolantes são friccionados (esfregados) um contra o outro. O processo de esfregar ou friccionar os corpos fornece energia aos electrões desses materiais. Os electrões dos materiais isolantes geralmente encontram-se fortemente atraídos pelos núcleos de seus próprios átomos, por isso, precisam de uma energia extra para saltar de um corpo para outro. Durante a electrização por atrito, um dos corpos perde electrões e o outro ganha . Deste modo, ao final do processo, os dois corpos estarão com cargas de módulo igual, mas de sinais opostos. Nem todos os corpos vão se electrizar quando esfregados. Para se saber quais são os pares de materiais que, quando friccionados, ficam electrizados, é preciso conhecer sua afinidade eléctrica, uma vez que existem materiais que tendem a ganhar electrões, quanto outros tendem a perde-los. A electrização por contacto, diferentemente da electrização por atrito, necessita de pelo menos um dos corpos carregado electricamente. Por exemplo, considere um condutor carregado positivamente e outro condutor neutro. Aproxima-se o condutor positivo do condutor neutro até que ocorra o contacto entre eles. Quando isso acontece, haverá uma transferência de electrões do corpo neutro para o corpo carregado positivamente. Essa transferência irá ocorrer de maneira bem rápida até que ambos os condutores fiquem com o mesmo potencial eléctrico.

Na electrização por atrito (fricção) e por contacto, há obrigatoriamente a necessidade do contacto físico entre os corpos que electriza e o electrizado. Na electrização por indução isso já não é necessário e é por isso que esse processo recebe esse nome de indução. Considere três condutores, um carregado electricamente e ou outros dois neutros e encostados um no outro. Aproxima-se o condutor carregado dos condutores neutros. O condutor carregado será o indutor e os condutores neutros, os induzidos. Durante essa aproximação, observa-se uma separação de cargas nos condutores neutros. Como o indutor é negativo, o induzido mais próximo do indutor ficará carregado positivamente e o induzido mais afastado ficará carregado negativamente. Com o indutor ainda próximo, separam-se os dois condutores que estão juntos. E por fim retira-se o indutor das proximidades dos outros dois corpos. Teremos como resultado os dois condutores que inicialmente eram neutros, agora carregados com cargas de sinais a opostos. Note que em momento algum houve o contacto entre o condutor carregado e os condutores inicialmente neutros.

Está a gostar da Abordagem? Veja também: Exercícios e problemas resolvidos e explicados de Mecânica (Física 1); Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2); Exercícios e problemas resolvidos e explicados de Gravitação (Física 2); Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2); Exercícios e problemas resolvidos e explicados de Fluidos (Física 2); Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3); Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4); Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4); Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias; Exercícios e problemas resolvidos e explicados de Cálculo; Todas as Categorias (Início).
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1. Introdução à Mecânica (Parte 1)

1. Introdução à Mecânica

1.1. Introdução Geral à Física


A Ciência e a Engenharia se baseiam em medições e comparações.


Assim, precisamos de regras para estabelecer de que forma as grandezas devem ser medidas e comparadas, e de experimentos para estabelecer as unidades para essas medições e comparações.


Um dos propósitos da física é elaborar, postar e relacionar modelos em um esforço para descrever, explicar ir para ver a realidade. Esse processo envolve hipóteses, experimentos reprodutíveis e as observações e novas hipóteses.


O resultado final é um conjunto de princípios fundamentais e leis que descrevem os fenómenos do mundo que nos cerca. Estas leis e princípios são aplicáveis tanto ao mundo macroscópico como buracos negros, matéria e energia escura, gravidade, etc como para o mundo microscópico partículas quânticas como leptoquarks e bósões. Quanto ao nosso dia-dia, são incontáveis as questões sobre o nosso mundo que podem ser respondidas com conhecimento básico de física.


Se a agua não tem cor, porque razão a uma distância do mar, a água parece azul?


Como é que os astronautas no espaço flutuam?


Como funciona um CD?

1.2. Medindo grandezas

Ao estudarmos conteúdos relacionados com a Física, muitas vezes, deparamo-nos com a palavra grandeza definindo termos científicos, como velocidade, aceleração, força, tempo etc.


Numa linguagem muito elementar, uma grandeza é tudo aquilo que pode ser medido e possibilita que tenhamos características baseadas em informações numéricas e/ou geométricas. A grandeza é toda a característica de um sistema ou corpo a que possamos associa uma quantidade. Medir uma grandeza física é compara-lá com uma outra da mesma espécie na natureza.


Medimos cada grandeza física em medidas apropriadas, por comparação com padrão. A unidade é um nome particular que atribuímos as medidas dessa grandeza.


Assim por exemplo, o metro (m) é uma unidade da grandeza comprimento. O padrão corresponde a exatamente 1,0 unidade da grandeza, como vamos ver o padrão de comprimento que corresponde exatamente 1,0 m é a distância percorrida pela Luz no vácuo durante uma certa fração de tempo .


Em princípio podemos definir uma unidade e o seu padrão da forma que quisermos, mas é importante que cientistas em diferentes partes do mundo concordem que nossas definições e que, ao mesmo tempo sejam razoáveis e práticas.


Depois de escolher um padrão (neste caso comprimento) precisamos estabelecer procedimentos através dos quais qualquer comprimento seja {r} o raio do átomo de hidrogénio, {a} largura de uma aresta de um cubo ou {d} a distância entre duas estrelas, possa ser expresso em termos da unidade.


Usar uma régua de comprimento aproximadamente igual ao padrão pode ser uma forma de executar medidas de comprimento. Entretanto, muitas das comparações são necessariamente indiretas. Por exemplo, não dá para medir a distâncias entre planetas directamente.


É portanto, impossível usar uma régua, por exemplo, para medir o raio de um átomo ou a distância de uma estrela. Assim o que fazemos é escolher, através de um acordo internacional, um pequeno número de grandezas físicas como comprimento e tempo, e atribuir unidades a elas.


Em seguida, definimos as demais grandezas físicas em termos dessas grandezas fundamentais e de suas unidades (conhecidas, como unidades fundamentais). A velocidade, por exemplo é definida em termos das grandezas fundamentais comprimento e tempo e suas unidades fundamentais.


Portanto as unidades fundamentais de um sistema de unidades dado são as unidades de grandezas físicas de diferentes espécies, escolhidas arbitrariamente para constituição desse sistema. As grandezas físicas que correspondem às mesmas unidades têm o nome de grandezas fundamentais do sistema considerado.


Unidades derivadas são as unidades que se estabelecem sendo deduzidas a partir das outras unidades de um sistema dado, desde que se observem as leis e os princípios físicos a exprimirem as relações mútuas existentes entre as respetivas grandezas físicas.

1.3. O sistema Internacional de Unidade


Na 14ª conferência geral de pesos e medidas, foram selecionadas sete grandezas como fundamentais, as quais constituem a base do sistema internacional de unidade cuja abreviação é S.I. popularmente conhecido como sistema métrico.

A tabela a seguir mostra as unidades das grandezas fundamentais do S.I. que serão usadas nos principais capítulos desta página. Essas unidades foram definidos modo a serem da mesma ordem de grandeza que a escala humana.


Muitas unidades derivadas do SI são definidas em termos dessas unidades fundamentais. Assim, por exemplo, a unidade de trabalho no SI, chama Joule (J) é definido em termos das unidades fundamentais de massa, comprimento e tempo.

\displaystyle 1 \ Joule= \ 1 \ J= \ 1k \cdot \frac{m^2}{s^2}


Além destas, há duas unidades complementares: o radiano e o esterradiano.


1.3.1 Tempo


Do latim tempus, a palavra tempo é a grandeza física que permite medir a duração ou a separação das coisas mutáveis/sujeitas a alterações (ou seja, o período decorrido entre o estado do sistema quando este apresentava um determinado estado e o momento em que esse dito estado regista uma variação perceptível para o observador).


Em física, tempo é a grandeza física diretamente associada ao correto sequenciamento, mediante ordem de ocorrência, dos eventos naturais, estabelecendo assim um passado, um presente e um futuro.


Na física clássica (que abordaremos nesta secção), o tempo transcorre sempre da mesma forma, esteja o móvel se movimentando ou parado em relação a um determinado referencial. Isso significa dizer que o tempo passa igualmente tanto para uma pessoa que se encontra na superfície da Terra, quanto para uma pessoa que se encontra viajando dentro de uma nave espacial. O que em grande rigor não é verdade.


Para a física moderna, o intervalo de tempo para um móvel que se move em altíssima velocidade (próxima à velocidade da luz no vácuo) passa mais lentamente. Podemos dizer que uma hora para uma pessoa que se encontra parada na superfície da Terra pode corresponder a alguns minutos ou segundos para um observador que se move em altíssima velocidade. Na física moderna, esse fato é conhecido como dilatação do tempo. Porém este não é o foco desta secção.


O tempo marcado pelo relógio não é universal, mas sim uma construção histórica. Medir o tempo significa em princípio registrar coincidências. Quando alguém marca um compromisso, digamos às {13:00} horas do presente dia, está informando que ela estará no local combinado quando o ponteiro pequeno do relógio colocado naquele local coincidir com a marca {1} e enquanto o ponteiro grande esteja na inscrição {12}.


Portanto, podemos entender o tempo como uma medida da simultaniedade de eventos.


A unidade usada para o tempo é o segundo s, apesar de poder usar outras unidades como minutos, horas, dia, semana, mês, anos, décadas, séculos ou milénios (de acordo com o contexto)


Podemos definir o segundo de diversas maneiras. Há um conjunto de frequências e comprimentos de onda especifico para radiação de cada átomo associados a cada transição energética sofrida pelos electrões no mesmo, quando este é aquecido. O que se sabe é que essas frequências seguem constantes.


O segundo (s) pode ser definido em termos de uma frequência para característica associada ao átomo de césio. Todos os átomos, depois que absorver energia, emitem luz com frequências e comprimentos de onda característica do elemento específico.


O Segundo é então definido como duração de {9192631770} períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.


1.3.2 Comprimento


Em 20 de Maio de 1875 um tratado internacional conhecido como Convention du Mètre (Convenção do Metro), foi assinado por 17 Estados e estabeleceu a criação do Bureau Internacional de Pesos e Medidas (Bureau International des Poids et mesures – BIPM), um laboratório permanente e centro mundial da metrologia científica e da Conferência Geral de Pesos e Medidas (Conférence Générale des Poids et mesures – CGPM), que em 1889, em sua 1ª edição, definiu o protótipos internacional de metro. Sua base era o metro definido como à décima milionésima parte do quadrante de um meridiano terrestre.

Mais tarde, por razões práticas, essa padrão foi abandonado e o metro veio a ser definido como a distância entre duas linhas finas gravadas perto das extremidades de uma barra de Platina-Vítrio (a barra do metro-padrão), mantida no Bureau internacional de pesos e medidas nas vizinhanças de Osaris.


Réplicas preciosas dessa barra foram enviadas ao laboratórios de padronização em várias partes do mundo. Com o tempo a precisão deste padrão também se mostrou inadequado e outros padrões foram criados para o metro.


Actualmente O metro é determinado usando a rapidez da luz no vácuo que é definida como exatamente 299792458 m/s. O metro, então, é a distância que a luz percorre no vácuo em {1/(299792 458)} segundos. Estas definições fazem com que unidades do tempo e comprimento sejam acessíveis aos laboratórios de todo mundo.


1.3.3 Massa


A massa ({m}) é uma grandeza escalar positiva e invariável, a qual mede a inércia (propriedade dos corpos em permanecerem em movimento acelerado ou retardado) dos corpos, ou seja, a quantidade de matéria presente num corpo.


A unidade da massa no S.I é o quilograma (kg), é definido como a massa de um litro de água a {4 \ ^oC} com volume de {1 \ } (que é igual ao volume de um cubo de {10 \ cm} de lado).


Assim como os padrões de tempo comprimento, o padrão de quilograma mudou ao longo do tempo. O quilograma é agora definido como a massa de um determinado cilindro chamado de corpo-padrão mantido no Bureau Internacional de Pesos e Medidas em Sévres na França.


Assim comparando pesos de diferentes objetos ou tamanho comum com o peso do corpo-padrão,as massas dois objetos podem ser comparadas entre si.


1.4 Prefixos de Unidade

Às vezes torna-se necessário trabalhar com medidas que são muitos menores ou muito maiores do que as unidades padrão do S.I. Nessas situações podemos usar outras unidades, são relacionadas as unidades padrão do S.I por um múltiplo de dez(10).


Os prefixos são usados para designar as diferentes potências de 10, por exemplo, prefixo “quilo” significa {1000} ou { 10^3 }, enquanto o prefixo “micro” significa {0,000001} ou { 10^{-6} }.


A tabela a seguir mostra o prefixo dos mais comuns múltiplos das unidades do S.I. Os prefixos podem ser aplicados a qualquer unidades S.I, por exemplo {0,001} segundo é um milissegundo ( {1 \ ms}), e {1000000 \ Watts} são {1 \ MW} (apesar de ainda não termos definido o Watt).


Alguns prefixos muito usados nas Unidades do S.I são mostrados a seguir:


Sendo assim:

\displaystyle 1,27\cdot 10^9 \ W= \ 1,27 \ GW

\displaystyle 2,35 \cdot 10^{-6} \ s= 2,35 \ \mu s


OBS : alguns grandezas, para dimensões diferentes utiliza outras unidades, tais como a hora para o tempo ({1 \ h} equivale á {3600 \ s}) e o Angstron para o comprimento ({1  \  \r{A}} equivale {10^{-10} \ m}).


1.5 Outros sistemas de unidades


Além do S.I, outros sistemas de unidades são as vezes utilizados. Um deles é o sistema CGS cujas unidades fundamentais são os centímetro para os comprimentos , o grama para massa e o segundo para o tempo.


Sistema CGS de unidades é um sistema de unidades de medidas físicas, ou sistema dimensional, de tipologia LMT (comprimento, massa tempo), cujas unidades-base são o centímetro para o comprimento, o grama para a massa e o segundo para o tempo. Foi adotado em 1881 no Congresso Internacional de Eletricidade.


CGS é, assim, um acrônimo maiúsculo para centímetro–grama–segundo. É o sistema de unidades físicas primordial que precedeu o Sistema Internacional de Unidades (SI), por este sendo substituído.


Outras unidades CGS incluem Dina (para força), Erg (para energia, trabalho, calor, etc.), Gal (para aceleração), Gauss (para campo magnético), Maxwell (para fluxo magnético), Öersted (para intensidade de campo), Phot (para intensidade luminosa), Poise (para viscosidade dinâmica em fluidos), Stilb (para luminância), Stokes (para viscosidade cinemática)e Dina por centímetro cúbico (para peso específico).


1.6 Conversão de Unidades


Como diferentes sistemas de unidades são utilizados, é importante saber como converter uma unidade para outra, em diversos contextos quando quantidades físicas são somadas, subtraídas, multiplicadas ou divididas em uma equação algébrica. A unidade pode ser tratada como qualquer outra quantidade algébrica.


Muitas vezes precisamos alterar as unidades nas quais uma grandeza física está expressa. Isto pode ser feito usando um método conhecido como conversão em cadeia. Nesse método multiplicarmos o valor original por um fator de conversão(uma razão entre unidades e igual à unidade). Assim como 1 min e 60 s correspondem a intervalos de tempo iguais, temos:

\displaystyle \frac{1 \ min}{60 \ s}=1 \Rightarrow \frac{60 \ s}{1 \ min}= 1


Assim, as razões {(1 \ min)/(60 \ s)} e {(60 \ s)/(1 \ min)} podem ser usadas como fatores de conversão. Nota que isso não é o mesmo que escrever {\frac{1}{60}=1} ou {60=1}; cada número e a sua unidade devem ser tratadas conjuntamente.

Exemplo 1 Converter {3 \ min} em segundos.

Neste exemplo, temos:

\displaystyle 3 \ min= \ (3 \ min)\cdot 1= \ 3min \cdot \frac{60 \ s}{1 \ min}= \ 180 \ s \displaystyle 3 \ min= \ 180 \ s

Exemplo 2 Converter {240 \ km} em milhas.

Neste exemplo, temos:

\displaystyle 240 \ km= \ (240 \ km)\cdot 1= \ 240 \ km \cdot \frac{1 \ milhas}{1,6091 \ km}= \ 149 \ milhas

Exemplo 3 Converter {90 \ km/h} em metros por segundo.
Neste exemplo, temos:

\displaystyle 90 \ km/h= \ (90 \ \frac{km}{h})\cdot 1 = \ 90 \ \frac{km}{h} \cdot \frac{1 \ h}{3600 \ s} \cdot \frac{1000 \ km}{1 \ km} \displaystyle = \ 25 \ m/s


Por vezes, podemos fazer a conversão de um modo mais rápido, substituindo cada unidade pela unidade de destino, com o respectivo factor de conversão.

Exemplo 4 Converter {90 \ km/h} para o SI.

Sabemos que a unidade de velocidade no SI é {m/s}, então, temos de converter {km} em {m} e {h} em {s}. Então temos:

\displaystyle 90 \ \frac{km}{h}= \frac{90 \cdot 1000 \ m}{3600 \ s}=25 m/s


Este método também é usado em conversões de unidades com prefixos (múltiplos e submúltiplos).

Exemplo 5 Converter {100 \ kJ/s} para o SI.

Sabemos que a unidade de velocidade no SI é {m/s}, então, temos de converter {kJ} em {J} (substituindo apenas o multiplo quilo) e {s} já está no S.I. Então temos:

\displaystyle 100 \ \frac{kJ}{s}= \ 100 \ \frac{ \cdot {10^{3}} \ J}{s} =100000 \ J/s = \ 100000 \ W


Ainda há a clássica regra de “3 simples”, conhecida pela maioria.

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercício sobre Dilatação Térmica (Parte 1)

— 1. Exercício sobre Calor e Temperatura —

— 1.1. Exercício sobre Dilatação Térmica —

Exercício 1 Um quadrado de área interna de {2,35 \ m^{2}} foi montado com duas hastes de alumínio {(\alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1} )} e duas hastes de aço {(\alpha_{Aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1})}, todos inicialmente à mesma temperatura de {27 \ ^{o}C}, conforme a figura abaixo. O sistema é, então, submetido a um processo de aquecimento, de forma que a variação de temperatura é a mesma em todas as hastes, até a temperatura final de {100 \ ^{o}{\mathbb C}}.

Considerando que no final as hastes de alumínio continuam perpendiculares as hastes de aço, determine a área do plano limitado pelas hastes após o aquecimento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 1 .

O problema em questão trata de dilatação térmica dos corpos (expansão dos corpos). É dada uma área { A_{o}=2,35 \ m^{2}} limitada por duas hastes de alumínio e duas hastes de aço sob uma temperatura { t_{o}=27\ ^{o}C}.

Dado que a área limitada é a área de quadrado, então, de acordo a definição da área de um quadrado, temos que:

\displaystyle A_{o}=l_{o Aco} \cdot l_{o Al} \ \ \ \ \ (1)

Onde:
{ l_{o Aco}} – Comprimento da haste de aço.

{ l_{o Al}} – Comprimento da haste de alumínio.

Por outro lado, para que as hastes de alumínio e de aço formem ou limitem a área de um quadrado deve-se cumprir a seguinte condição:

\displaystyle l_{o Aco}=l_{o Al}=l_o \ \ \ \ \ (2)

Então, cada haste de alumínio e/ou de aço possui um comprimento { l_{o}} inicialmente.

Entretanto, depois de aquecidas as hastes de aço e alumínio, de modo que a variação de temperatura é a mesma em todas as hastes, até a temperatura de { 100\ ^{o}C}, cada uma das hastes, de alumínio e aço, dilatam e ganham novos comprimento { l_{Al}} e { l_{Aco}} que são diferentes, pois os seus coeficientes de dilatação linear são diferentes, com { \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}} e { \alpha_{Aco}= 1,2 \cdot 10^{-5} \ ^{o}C^{-1}}.

Dados:
{ A_{0}=2,35 \ m^{2}}
{ t_{0}=27\ ^{o}C}
{ \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}}
{ \alpha_{aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1}}
{ t=100 \ ^{o}C}

Depois do aquecimento até { t=100 \ ^{o}C}, as hastes de alumínio ainda permanecem perpendiculares as hastes de aço, conforme enunciado. Logo, como o aumento nos comprimentos nas hastes, temos uma nova área.

Então, a nova área limitada pelas hastes de alumínio e aço é dada como sendo o produto dos comprimento finais das hastes, { l_{Al}} e { l_{Aco}}, de alumínio e aço respectivamente.

\displaystyle A=l_{Al} \cdot l_{Aco} \ \ \ \ \ (3)

Pela figura acima percebe-se que:

\displaystyle l_{Al}=l_{o} + \Delta l_{Al} \ \ \ \ \ (4)

\displaystyle l_{Aco}=l_{o} + \Delta l_{Aco} \ \ \ \ \ (5)

Onde: { \Delta l_{Al}} e { \Delta l_{Aco}} são os aumentos nos comprimentos das hastes, devido o aquecimento, do alumínio e do aço, respectivamente.

Para determinarmos a área que as hastes de alumínio e aço vão limitar após o aquecimento, substituímos as equações 4 e 5 na equação 3. Obtemos:

\displaystyle A= (l_{o}+\Delta l_{Al}) \cdot (l_{o}+ \Delta l_{Aco}) \ \ \ \ \ (6)

Determinamos { l_{o}} pela equação 3:

\displaystyle A_{o}=l_{o} \cdot l_{o} \Rightarrow A_{o}=l^{2}_{o}

Invertendo a igualdade:

\displaystyle l^{2}_{o}=A_{o} \Rightarrow l_{o} = \sqrt{A_{o}}

Substituindo os dados:

\displaystyle l_{o}=\sqrt{2,35}=1,533 \ m

\displaystyle \\ l_{o}=1,533 \ m

Determinemos { \Delta l_{Al}} e { \Delta l_{Aco}} através da relação da dilatação linear.

Para o alumínio:

\displaystyle \Delta l_{Al}=l_{o} \cdot \alpha_{Al} \cdot (t-t_{o}) \ \ \ \ \ (7)

Substituindo os dados:

\displaystyle \Delta l_{Al}=1,533 \cdot 2,4 \cdot 10^{-5} \cdot (100-27)

\displaystyle \Delta l_{Al}=2,685 \cdot 10^{-3} \ m

Para o aço:

\displaystyle \Delta l_{Aco}=l_{Aco} \cdot \alpha_{Aco} \cdot (t-t_{o}) \ \ \ \ \ (8)

Substituindo os dados:

\displaystyle \Delta l_{Aco}=1,533 \cdot 1,2 \cdot 10^{-5}(100-27)

\displaystyle \Delta l_{Aco}=1,343 \cdot 10^{-3} \ m

Portanto, a área limitada pelas hastes após o aquecimento é:

\displaystyle A=(l_{Al}+\Delta l_{Al}) \cdot (l_{Aco}+ \Delta l_{Aco})

\displaystyle A=(1,533+2,685 \cdot 10^{-3}) \cdot (1,533+1,343 \cdot 10^{-3})

\displaystyle A=2,356 \ m^{2}

Exercício 2 Uma ponte tem comprimento {L_1 = 145 \ m} à temperatura de {{26} \ ^oC}. É construída de uma liga metálica especial com o coeficiente de expansão térmica {\alpha = 1 \cdot 10^{-5} \ (^o{\mathbb C}^{-1})}. Calcule o comprimento {L_2} da ponte quando a temperatura for de {{43} \ ^oC}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 2 .

Trata-se do fenómeno de dilatação térmica que um corpo sofre quando é submetido a variações de temperatura.

Dados

{L_1=145 \ m}

{t_1 ={26} \ ^oC}

{\alpha=1 \cdot 10 \ ^{-5} \ ^oC^{-1}}

{L_2 \longrightarrow?}

{t_2 ={43} \ ^oC}

A equação da dilatação térmica de um sólido é:

\displaystyle \Delta L = \alpha L_1\Delta t

Mas {\Delta L=L_2 - L_1 \ } e {\Delta t = t_2 - t_1}.
Substituindo na equação anterior temos:

\displaystyle \Delta L = \alpha L_1\Delta t \Rightarrow L_2 - L_1 = \alpha L_1(t_2 - t_1)

Isolando {L_2}, tem-se:

\displaystyle L_2 = \alpha L_1(t_2 - t_1) + L_1 \Rightarrow L_2 = L_1[\alpha (t_2 - t_1) + 1]

Substituindo os valores:

\displaystyle L_2= 145 \ [1 \cdot 10^{-5} \ (43 - 26) + 1]

\displaystyle L_2 = 145,025 \ m

Exercício 3 Na temperatura ambiente ({26 \ ^oC}) os carris dos caminhos de ferro são montados em unidades de {12 \ m} de comprimento. Entre duas destas unidades fica sempre uma distância de {8,7 \ mm} livre para compensar expansão térmica dos carris. Calcule a temperatura máxima {T}, que considerou o projectista? O coeficiente da expansão térmica do aço utilizado é de {\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Trata-se do fenómeno de dilatação térmica numa linha férrea. Para sabermos a temperatura máxima {T} considerada pelo projectista é suficiente que a variação do comprimento de cada peça seja igual a distância livre entre elas.

Dados

{t_o ={26} \ ^oC}

{l_o = 12\ m}

{d = 8,6\ mm = 8,6\cdot 10^{-3}\ m}

{t \longrightarrow?}

{\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}

A equação da dilatação linear é:

\displaystyle \Delta l = \alpha l_o \Delta T)

\displaystyle \Rightarrow \Delta l = \alpha l_o (t - t_o)\

Note que a variação de temperatura em Graus Celcius é igual a variação da temperatura em Kelvins.

Para se saber a temperatura máxima considerada pelo projetista é suficiente que, {\Delta l = d}. Substituindo na relação anterior, obtemos:

\displaystyle \Delta l = \alpha l_o (t - t_o) \Rightarrow d = \alpha l_o (t - t_o)

Isolando {t}:

\displaystyle t - t_o = \dfrac{d}{\alpha l_o} \Rightarrow t = \dfrac{d}{\alpha l_o} + t_o

Substituindo os valores de {t}, {l_o}, {d} e {\alpha} na equação anterior, obtemos:

\displaystyle t = \dfrac{8,6 \cdot 10^{-3}}{1,1 \cdot 10^{-5} \cdot 12} + 26

\displaystyle t = 91,15 \ ^oC

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 4)

Exercício 12 .
Uma partícula realiza um MHS de período { 8 \ s} e amplitude { 10 \ cm}.
Determine:

  1. A equação da posição.
  2. A equação da velocidade.
  3. A aceleração { 1 \ s} após ela ter passado pelo extremo negativo.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

O exercício apresenta um problema simples de MHS. O objectivo é determinar as equações da posição e da velocidade, bem como a posição num instante dado. Para obter as equações da posição e da velocidade, basta encontras as constantes destas equações ({A}, {\omega} e {\varphi_0}) e substitui-las.

Para obter a aceleração no instante dado, primeiro vamos obter o instante, por análise gráfica, e em seguida vamos substituir este instante na equação da aceleração.

Dados

{A= \ 10 \ cm = \ 0,1 \ m}

{ T= \ 8 \ s}

  1. A equação da posição de uma partícula em MHS pode ser dada na forma:

    \displaystyle x= A sen ( \omega t + \varphi_0)

    Como o enunciado não diz nada sobre a situação da partícula no instante inicial { ( t=0 \ s)}, então podemos considerar que:

    \displaystyle \varphi_0= 0 \ rad

    Sabendo que { T= 8 \ s} e que {\omega =\dfrac{2\pi }{T}}, então:

    \displaystyle \omega =\dfrac{2 \pi}{8} = \dfrac{1}{4} \pi \ rad/s

    Então, substituindo os valores obtidos na equação do MHS, teremos:

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t+0)

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t)

  2. A velocidade de uma partícula é definida como a derivada da sua posição em função do tempo,ou seja:

    \displaystyle v=\dfrac{d}{dt}[0,1 sen (\dfrac{\pi}{4}t)]

    \displaystyle v=0,1 \dfrac{d (\dfrac{\pi}{4}t)}{dt} cos (\dfrac{\pi}{4}t)

    \displaystyle v=0,1 \cdot \dfrac{\pi}{4} \cdot \cos(\dfrac{\pi}{4}t)

    \displaystyle v= 0,079 \cos(\dfrac{\pi}{4}t)

  3. Para saber essa aceleração, primeiro precisamos saber quanto tempo a partícula demora, para chegar até à posição do extremo negativo, partindo da posição de equilíbrio.

    Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

    • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
    • Sai deste 1º extremo para a posição de equilíbrio.
    • Sai da posição de equilíbrio para o outro extremo (2º extremo, no lado oposto).
    • Sai deste 2º extremo para a posição de equilíbrio.

    Esta é a descrição de um ciclo completo.

    O tempo que a partícula leva a completar o ciclo acima é o período ({T}).

    Cada um dos movimentos descritos acima tem a mesma duração, para o MHS. Esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

    Do estudo generalizado da função seno, conhecemos o gráfico genérico da figura a seguir.

    Observamos então que, para atingir o extremo negativo, partindo da posição de equilíbrio, passa 3/4 do ciclo. Neste caso, o tempo que leva a completar este movimento até ao extremo negativo é {3T/4}.

    Neste caso, o instante referido no enunciado (1 segundo após passar pelo extremo negativo) será:

    \displaystyle t= \ \dfrac{3T}{4}+1 = \ \dfrac{3 \cdot 8}{4}+1 = \ 7 \ s

    Agora basta determinarmos a equação da aceleração que por definição,é a derivada da velocidade da partícula.

    \displaystyle a=\dfrac{d}{dt}[0,07 \cos(\dfrac{\pi}{4}t)]

    \displaystyle a=[0,07 \dfrac{d(\dfrac{\pi}{4}t)}{dt} sen (\dfrac{\pi}{4}t)]

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4}t)

    Fazendo { t=7 \ s}, temos:

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4} \cdot 7)

    \displaystyle a=-0,043 \ m/s^2

Exercício 13 .
Uma partícula em MHS oscila com frequência de { 10 \ Hz} entre os pontos {L} e {-L} de uma reta. No instante { t_{0}}, a partícula está no ponto { \dfrac{\sqrt{3}}{2}L} caminhando em direcção a valores inferiores, e atinge o ponto { - \dfrac{\sqrt{2}}{2}L}, no instante t. Determine o tempo gasto neste deslocamento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 13 .

O problema apresenta-nos um MHS onde é conhecida a frequência e a amplitude. Nos é pedido para determinarmos o tempo que a partícula leva para sair de uma posição para outra.

A resolução deste problema consiste em escrever a equação do MHS, e para as duas posições, formar duas equações. Em seguida, resolvemos o sistema de equações de acordo com a regra escolhida.\

Para calcularmos esse tempo, primeiro, precisamos saber como a partícula se move ao longo dessa recta. Para isso, temos que escrever a sua equação da posição.

Como a escolha do referencial de tempo não tem influência sobre os cálculos, e o problema não oferece referencial de tempo nenhum, consideraremos o instante inicial como sendo nulo: {t_0 = \ 0 \ s}.

Dados
{A= \ L}

.
{ t_0=0 } ;{ x_0=\dfrac{\sqrt{3}}{2}L }

.

{ t_1 \Rightarrow ?} ; { x_1=\dfrac{\sqrt{2}}{2}}

{ f=10 \ Hz}

A equação da posição de uma partícula em MHS pode ser dada na forma:

\displaystyle x= A sen(\omega t + \varphi_{0})

Sabemos que {\omega =2 \pi \cdot f }. Logo:

\displaystyle \omega =2 \pi \cdot 10=20 \pi \ rad/s

Logo ,temos:

\displaystyle x=A sen( \omega t + \varphi_{0})

\displaystyle x=L sen( \varphi_0 +20 \pi t)

Resta sabermos o valor de { \varphi_0 }. Apesar de não definir o valor de { \varphi_0 }, mas o problema nos dá informações da posição em certo instante. Logo, isso define o valor de { \varphi_0 }.

O exercício informa que, no instante inicial { t_0(t=0 \ s)}, a partícula se encontrava na posição { x= \dfrac{\sqrt{3}}{2}L}. Colocando na equação da posição, isso quer dizer que:

\displaystyle \dfrac{\sqrt{3}}{2}L= L sen( 20 \pi \cdot 0 + \varphi_0)

Simplificando {L}, obtemos:

\displaystyle \dfrac{\sqrt{3}}{2}= sen( 20 \pi \cdot 0 + \varphi_0)

\displaystyle \Rightarrow sen(\varphi_0)=\dfrac{\sqrt{3}}{2}

\displaystyle \Rightarrow \varphi_0= \ arcsen(\dfrac{\sqrt{3}}{2}) \ ou \ \varphi_0 = 180^o - \ arcsen(\dfrac{\sqrt{3}}{2})

\displaystyle \Rightarrow \varphi_0= 60^o \ ou \ \varphi_0= 120^o

Como, no instante {t_0} a partícula caminhava para posições negativas, ou seja, a sua posição diminuía, então escolhemos o ângulo de {120^o= \ \dfrac{2 \pi}{3} }, pois esse é que conscide a um decrescimento no gráfico da função seno.

Logo, temos que:

\displaystyle x=L sen( 20 \pi t + \dfrac{2 \pi}{3})

Agora precisamos saber o tempo t que a partícula demora para chegar até { x= - \dfrac{\sqrt{2}}{2}L}. Vamos usar a equação da posição:

\displaystyle -\dfrac{\sqrt{2}}{2} L=L sen( 20 \pi t + \dfrac{2 \pi}{3})

\displaystyle \Rightarrow sen (20 \pi t + \dfrac{2 \pi}{3})=-\dfrac{\sqrt{2}}{2}

\displaystyle 20 \pi t + \dfrac{2 \pi}{3} =arcsen(-\dfrac{\sqrt{2}}{2})

Note: {arcsen(-\dfrac{\sqrt{2}}{2})= 225^o \ ou \ 315^o}. Neste caso, como estamos a analisar um movimento oscilatório, e queremos o menor tempo, usaremos o {225^o=\dfrac{5 \pi}{4} rad}.

\displaystyle \Rightarrow 20 \pi t + \dfrac{2 \pi}{3}=\dfrac{5}{4} \pi

Isolando t, obtemos:

\displaystyle t =\dfrac{\dfrac{5 \pi}{4} - \dfrac{2 \pi}{3}}{20 \pi}

\displaystyle t=\dfrac{7}{240}

\displaystyle t=0,029 \ s

Exercício 14 O diagrama representa a elongação de um corpo em MHS em função do tempo.

  1. Determine a amplitude e o período para esse movimento.
  2. Escreva a função elongação, usando função cosseno.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .
O problema apresenta um gráfico da posição de um MHS e nos pede a amplitude, período e equação da posição deste MHS.

A amplitude é lida directamente no gráfico. O período é obtido por interpretação do gráfico, escolhendo dois pontos especiais da oscilação (extremos, posições de equilíbrio, etc.). Com estes dados, após determinação da fase inicial ({\varphi_0}), é possível escrever a equação deste MHS.

  1. Precisamos primeiro recolher os dados a partir do gráfico. Observe a figura:

    No gráfico, observamos claramente que {A= \ 5 \ m}.

    Também podemos notar o tempo que o corpo leva a sair de um extremo ao outro. Ele está num extremo no instante {t= \ 2 \ s} e no outro no instante {t= \ 6 \ s}. Neste caso, o corpo demorou {4\ s} para sair de um extremo ao outro. Sabemos que, num MHS, o tempo que o corpo leva a sair de um extremo para o outro é igual a metade do período. Logo:

    \displaystyle \dfrac{T}{2} = 4\ s

    \displaystyle \Rightarrow T = 4\cdot2

    \displaystyle \Rightarrow T = 8\ s

  2. A função da elongação pode ser dada na forma {x = A .sen (\omega t + \varphi_0)} ou {x = A .cos(\omega t + \varphi_0)}.

    Sabemos que {\omega =2 \pi / T }. Logo:

    \displaystyle \omega =2 \pi / 8= \ \pi / 4 \ rad/s

    Sendo que em {t = 0}, o corpo se encontra na posição de equilíbrio,então, substituindo na equação da posição (o enunciado pede para usarmos função cosseno), obtemos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos(\dfrac{\pi}{4} .0 + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos( \varphi_0)

    \displaystyle \Rightarrow cos( \varphi_0)=0

    \displaystyle \Rightarrow \varphi_0= \ arccos(0) \ ou \ \varphi_0= \ 360^o - \ arccos(0)

    \displaystyle \Rightarrow \varphi_0= 90^o \ ou \ \varphi_0= 270^o

    Considerando que no gráfico dado, na posição inicial e nos instantes imediatamente a seguir, o corpo desce (movimenta-se para o sentido negativo), então, com base no gráfico genérico da função cosseno, escolheremos o valor de {90^o= \dfrac{\pi}{2} rad }.

    Então, substituindo na equação do MHS, temos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle x = 5 .cos(\dfrac{\pi}{4} t + 90^o)

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 3)

 

Exercício 8 .

Um corpo em MHS desloca-se entre as posições extremas { -50 \ cm} e { +50 \ cm} de sua trajectória, gastando 10 segundos para ir de um extremo à outro.
Considerando que, no instante inicial, o móvel estava na posição de equilíbrio e em movimento retrogrado, determine:

  1. O período;
  2. A equação da elongação do movimento;

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

O problema nos apresenta um corpo em MHS. Nos é dada a amplitude deste movimento, através do valor das posições dos extremos. É dado o tempo que o corpo leva a sair de um extremo para o outro.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximações e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremo de volta para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremo (2º Extremo, no lado oposto).
  • Sai deste 2º extremo para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS estaéesta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Para sair de um extremo ao outro, a partícula deve fazer dois destes movimentos. Então, o tempo que a partícula leva a sair de um extremo para outro corresponde então a metade do período.

Quanto a fase, este problema nos dá informação sobre sentido  do movimento e posição da partícula no momento inicial. Como vamos usar a função seno, podemos observar o gráfico generalizado da função seno.

Observamos que a função seno atinge o valor zero (posição de equilíbrio, no MHS) quando {\varphi = 0^o}, {\varphi = 180^o}, {\varphi = 360^o}, etc.

No caso em análise, não poderemos adoptar {\varphi = 0^o}. Porquê? A reposta está no movimento descrito no enunciado. Se repararmos no gráfico genérico da função seno, observamos que, a seguir {\varphi = 0^o} o valor da função começa a subir. Em movimento, isso equivale a um movimento progressivo.

Como o enunciado diz que a partícula está na posição de equilíbrio, mas em movimento retrógrado, então, o ângulo de fase para este momento deve ser {\varphi = 180^o}.

O gráfico esboçado do movimento do exercício é o seguinte:

  1. Se o corpo demora {10 \ s} para ir de um extremo ao outro, então esses { 10 \ s} correspondem à metade do período, ou seja:

    \displaystyle \dfrac{T}{2}=10

    \displaystyle \Rightarrow T=10 \cdot 2

    \displaystyle \Rightarrow T=20 \ s

  2. A equação da elongação (ou equação horária) de um MHS pode ser dada na forma:

    \displaystyle x=A \cos(\varphi_0+ \omega t) \ ou \ x=A sen (\varphi_0+ \omega t)

    O uso de seno ou cosseno é opcional. Usaremos a função seno, conforme descrito na análise.

    Já ficou mostrado que { \varphi_0=180^o}.

    A amplitude do movimento é definida pela coordenada do extremo. Neste caso:

    \displaystyle A= \ 50 \ cm= \ 0,5 \ m

    Com o valor do período, podemos determinar a frequência angular:

    \displaystyle \omega =\dfrac{2 \pi}{T}=\dfrac{2 \pi}{20 }\ rad/s

    \displaystyle \omega = \dfrac{\pi}{10 }\ rad/s

    Então, para equação do movimento, teremos:

    \displaystyle x=A sen (\omega t+ \varphi)

    \displaystyle x=0,5 sen (\dfrac{\pi }{10 }t+ 180^o)

Exercício 9 .

Considere o gráfico da oscilação abaixo. Determine a amplitude deste MHS.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

O problema nos apresenta o gráfico da velocidade de um MHS.

Pela ilustração, nota-se que o período de oscilação é {T=4 \ s } e a velocidade máxima da oscilação é { 5 \ m/s}.

Logo, sabemos que a velocidade máxima de um corpo em oscilação é dada por:

\displaystyle v_{max}=A \omega

Sabemos também que:

\displaystyle \omega =2 \pi /T

Então, combinado as duas relações, temos:

\displaystyle v_{max}=A \cdot \dfrac{2\pi}{T}

\displaystyle \Rightarrow 5=A \cdot \dfrac{2\pi}{4}

\displaystyle \Rightarrow 5=A \cdot \dfrac{\pi}{2}

\displaystyle \Rightarrow 2 \cdot 5= A \pi

Invertendo a igualdade, temos:

\displaystyle A \pi=2 \cdot 5

\displaystyle \Rightarrow A= \dfrac{2 \cdot 5}{\pi}

\displaystyle A=3,2 \ m

Exercício 10 .

Um corpo executa um MHS ao longo do eixo x, oscilando em torno da posição de equilíbrio { x=0 }.
Abaixo está o gráfico de sua aceleração em função do tempo.

Determine:

  1. A frequência do movimento.
  2. A amplitude do movimento.
  3. O módulo da velocidade do corpo em { t=2 \ s }

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

O período e a amplitude da aceleração (ou aceleração máxima) deste MHS podem ser obtidos no gráfico abaixo:

Com isso conclui-se que:

\displaystyle a_{max}=10 \ m/s^2

\displaystyle T=4 \ s

  1. Por definição, a frequência de um MHS é igual ao inverso do seu período, ou seja,{ f=\dfrac{1}{T}}. Logo:

    \displaystyle f=\dfrac{1}{4}=0,25 \ Hz

  2. Com os dados que temos, podemos calcular a amplitude (A ) do movimento partindo da equação da aceleração máxima { a_{max}} do movimento. Sabendo que:

    \displaystyle a_{max}=A \cdot \omega ^2

    \displaystyle \omega = \dfrac{2 \pi}{T}

    Logo:

    \displaystyle a_{max}=A \cdot ( \dfrac{2 \pi}{T})^2

    \displaystyle A= a_{max} \cdot (\dfrac{T}{2\pi})^2

    \displaystyle A=10 \cdot (\dfrac{4}{2\pi})^2

    \displaystyle A=4,053 \ m

  3. Para calcularmos o módulo da velocidade no instante { t=2 \ s}, precisamos saber primeiro a equação da velocidade dessa partícula em MHS. Podemos fazer isso com base nos dados gráficos e nos valores já calculados.
    No instante { t=0}, a aceleração é a { a=-10 \ m/s^2}, logo percebe-se que a partícula iniciou a sua oscilação quando estava no extremo, pois a aceleração de um MHS é máxima nos extremos. O movimento inicia-se no extremo positivo, pois a aceleração é negativa. Uma sinusoide atinge os extremos quando {\varphi = 90^o}, {\varphi = 270^o}, {\varphi = 450^o}, etc. Veja gráfico da função seno.

    Como o nosso caso é o caso em que a partícula se encontra no extremo positivo, então a fase inicial { \varphi_0= \ 90^o= \ \pi /2 \ rad}.

    A equação da aceleração é dada por { a= -A \omega ^2 sen (\varphi_0+ \omega t)} ou então por { a=-A \omega ^2 \cos(\varphi_0+ \omega t)}. Estamos a trabalhar com a função seno.

    Logo temos que:

    \displaystyle a=-A \omega ^2 sen (\omega t + \varphi_0)

    Para um MHS em que a posição é descrita por uma função seno, a velocidade tem a seguinte equação:

    \displaystyle v=A \omega \cos(\omega t + \varphi_0)

    Sabemos também que:

    \displaystyle \omega =2 \pi /T

    Então:

    \displaystyle \omega =2 \pi / 4

    \displaystyle \Rightarrow \omega = \pi / 2

    Sabendo que { A=4,053 \ m }, { \omega =\dfrac{\pi}{2} \ rad/s} ; {\varphi_0= \pi/2}, então, substituindo estes valores na equação da velocidade, teremos:

    \displaystyle v=4,053 \cdot \dfrac{\pi}{2}\cos(\dfrac{\pi}{2} \cdot t+\dfrac{\pi}{2})

    Como foi pedido para determinar a velocidade no instante {t=2 \ s}, então:

    \displaystyle v=4,053 \cdot \dfrac{\pi}{2}\cos(\dfrac{\pi}{2} \cdot 2+\dfrac{\pi}{2})

    \displaystyle \Rightarrow v=-6,37 \ m/s

Exercício 11 .

Uma partícula realiza um MHS segundo a equação { x=0,2 \cos( \pi t /2+\pi /2 )}, no SI. A partir da posição de elongação máxima, determine o menor tempo que está partícula gastará para passar pela posição de equilíbrio.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Apesar de parecer complexo, mas o problema é Elementar . Muito elementar mesmo.
O problema nos apresenta a equação de um MHS e nos pede para determinarmos o menor tempo que a partícula leva a sair da posição de desvio máximo para a posição de equilíbrio.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremo para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremo (2º Extremo, no lado oposto).
  • Sai deste 2º extremo para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS, esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Com a descrição acima, percebemos que, para sair de um extremo para a posição de equilíbrio, a partícula leva um tempo igual a um quarto do período.

O período pode ser obtido a partir de {\omega}. O {\omega} pode ser obtido na equação da oscilação. Olhando na equação, vemos que:

\displaystyle \omega= \dfrac{\pi}{2}

Sabemos também que:

\displaystyle \omega =2 \pi /T

Então:

\displaystyle \dfrac{2 \pi}{T}= \dfrac{\pi}{2}

Fazendo multiplicação cruzada, obtemos:

\displaystyle 2 \pi \cdot 2= \pi \cdot T

Ou:

\displaystyle \pi \cdot T = 2 \pi \cdot 2

Então:

\displaystyle T = \dfrac{2 \pi \cdot 2}{\pi}

\displaystyle \Rightarrow T = \ 4 \ s

Como o tempo de passagem, do extremos para a posição de equilíbrio é {t=T/4}, então:

\displaystyle t=T/4= 4/4

\displaystyle \Rightarrow t= \ 1 \ s

Com isso, percebe-se que, para sair da posição de elongação máxima { x=\pm 0,2} para a posição de equilíbrio { (x=0)}, a partícula demora {1} segundo.

Está a gostar da Abordagem?

Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)

 — 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —

 

Exercício 10 A massa de um átomo de Urânio é de {4,0\cdot10^{-26} \ kg}. Quantos átomos de urânio existem em {8 \ g} de Urânio puro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

É um problema cujo método de resolução é muito comum (3 simples).

Vamos começar por converter todas as grandezas para as mesmas unidades.

Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor({k = 10^3}):

\displaystyle 4,0\cdot10^{-26} \ kg = 4,0 \cdot 10^{-26}\cdot 10^{3} \ g = \ 4,0\cdot10^{-23} \ g

Em seguida, fazemos a relação de proporção.

Chamamos de {x} ao número de átomos que pretendemos calcular. Neste caso:

\displaystyle 1 \ atomo \longrightarrow 4,0\cdot10^{-23} \ g

\displaystyle x \longrightarrow 8,0 \ g

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 4,0 \cdot10^{-23} \ g = 1 \ atomos(u) \cdot 8,0 \ g

Isolando o x, obtemos:

\displaystyle x = \frac{1 \ atomo(u)\cdot 8,0 \ g}{4,0\cdot10^{-23} \ g}

Resolvendo, temos:

\displaystyle x = 2,0\cdot 10^{23} \ atomos

Em {8 \ g} de urânio puro, existem {2,0\cdot 10^{23}} átomos de Urânio.

 

 

Exercício 12 Determine a partir da representação dada, o vector {\vec{c} \ = 3 \ \vec{a} \ + 2 \ \vec{b}} .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

Podemos resolver este exercício utilizando a regra do paralelogramo.

Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles.

A resolução aqui é feita apenas graficamente.

Desta feita, aplicando a regra do paralelogramo, teremos:

  • Em primeiro lugar, vamos traçar os vectores {3 \ \vec{a} } e { 2 \ \vec{b}}. Para tal, vamos na extremidade de {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Na extremidade deste segundo {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Neste caso, teremos o vector {3 \ \vec{a} }. Para o caso do vector { 2 \ \vec{b}}, o procedimento é análogo. Vamos na extremidade de {\vec{b}}, traçar outro vector idênticos à {\vec{b}}.Neste caso, teremos o vector {2 \ \vec{b} }. Veja a figura a seguir.

  • Em seguida, na extremidade do vector {3\vec{a}} traçamos uma imagem do vector {2\vec{b}} e na extremidade do vector {2\vec{b}} traçamos uma imagem do vector {3\vec{a}}.Veja a figura a seguir.

  • Em seguida, traçamos o vector resultante que terá como origem o ponto onde ambas origem dos dois vectores ({3 \vec{a}} e {2 \vec{b}}) se encontravam, e terá como extremidade o ponto de intercessão das extremidades das imagens ({3 \vec{a'}} e {2 \vec{b'}}).

    Então, na figura anterior, obtemos o vector {\vec{c}}.

 

 

Exercício 13 Determine a distância entre os corpos A e B na figura:

Resolução 13

Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir.

Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano.

A Relação é:

\displaystyle d(A;B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Neste caso, {x_A=5; \ y_A=15; \ x_B= 25; \ y_B=5}.

Então, substituindo os valores na relação anterior, teremos:

\displaystyle d(A;B)=\sqrt{(25-5)^2+(5-15)^2}

Resolvendo, teremos:

\displaystyle d(A;B) = \sqrt{(20)^{2} \ + \ (-10)^{2}}

\displaystyle d(A;B) = \ 22,36 \ m

Logo, a distância entre os corpos A e B é igual a {22,36 \ m}.

 

 

Exercício 14

Sendo {\vec{v_{1}} \ = \ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ + \ 4 \vec{e_{z}}} e {\vec{v_{2}} \ = \ 5 \vec{e_{y}} \ - \ 2 \vec{e_{z}}} Determine o módulo de {\vec{v} \ = \ \vec{v_{1}} \ + \ \vec{v_{2}}}

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 14 Para determinarmos o módulo do vector {\vec{v}}, é necessário que se conheça ou que se determine o vector {\vec{v}}

Sendo este vector{(\vec{v})} a soma entre os vectores {\vec{v_{1}}} e {\vec{v_{2}}}, teremos:

\displaystyle \vec{v} \ = \vec{v_{1}} \ + \ \vec{v_{2}}

Substituindo as componentes, obtemos:

\displaystyle \vec{v} \ = (\ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ +?\ 4 \vec{e_{z}}) \ + \ (5 \vec{e_{y}} \ - \ 2 \vec{e_{z}})

Efectuando a operação, teremos:

\displaystyle \vec{v} \ = \ 3 \vec{e_{x}} \ + \ 7 \vec{e_{y}} + \ 2 \vec{e_{z}}

Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes.

Então, podemos determinar o módulo do vector {\vec{v}} a partir da seguinte relação:

\displaystyle |\vec{v}| \ = \ \sqrt{x^{2} \ + \ y^{2} \ + \ z^{2}}

Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector {\vec{v}} , teremos:

\displaystyle |\vec{v}| \ = \ \sqrt{(3)^{2} \ + \ (7)^{2} \ + (2)^{2}}

Resolvendo:

\displaystyle |\vec{v}| \ = \ 7,87

Logo, o vector {\vec{v}} tem o módulo igual a {7,87} unidades.

Note: No calculo do módulo de {\vec{v}} não usamos os vectores {e_{x}, \ e_{y}, \ e \ e_{z}}. Estes vectores são unitários. Só servem para indicar as direcções.

 

Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?

NÍVEL DE DIFICULDADE: Regular.

Resolução 15

Este exercício é um problema simples de Geometria Analítica.

Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações.

Consideramos que {x \ } é o módulo de um dos vectores e {\ y}O módulo de outro vector, então:

  • {x \ + \ y \ = \ 7} De acordo com a primeira condição dada no problema.

Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura.

Se { | \vec{v_{1}}|= \ x}, {|\vec{v_{2}} | = \ y} e o {|\vec{v}|=5}, então, pelo Teorema de Pitágoras, teremos :

{x^{2} \ + \ y^{2} \ = \ (5)^{2}}

Formando um sistema de equações com duas equações obtidas das condições, teremos:

\displaystyle \left\{\begin{array}{cccccc} x & + y & = & 7\\ x^{2} & + & y^{2} & = & 25\\ \end{array}\right.

Isolando {y} na equação 1 substituindo na equação 2, teremos:

\displaystyle \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & y^{2} & = & 25 \end{array}\right. \Rightarrow \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & (7 \ - \ x)^{2} & \ = \ & 25 \end{array}\right.

\displaystyle \Rightarrow x^{2} \ + \ (7 \ - \ x)^{2} \ = \ 25

Desfazendo a diferença de quadrado e efectuando as operações, teremos:

\displaystyle x^{2} \ - \ 7 \ x \ + \ 12 \ = \ 0

Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos:

\displaystyle x_{1,2} \ = \dfrac{-b \pm \ \sqrt{b^{2} \ - \ 4 \ a \ c}}{2 \ a}

,onde {a \ = \ 1} , {b \ = \ - \ 7} e {c \ = \ 12}.

Substituindo os valores e resolvendo, teremos como resultado {x_{1} \ = \ 3} e {x_{2} \ = \ 4}

Substituindo os valores de {x_{1}} e de {x_{2}} na primeira equação do sistema, e calculando os valores correspondentes de {y}, teremos as seguintes valores para {y } : {y_1 \ = \ 4 \ e \ y_2 \ = \ 3}

Logo, temos como solução : s = { \left\{\begin{array}{cccccc} (x = 4, &y = 3)\\ (x = 3, &y = 4) \end{array}\right. }

Ambas as as soluções são aceitáveis e permutadas entre si.

Desta feita, dois vectores são: {4 \ m \ e \ 3 \ m}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 2)

 

Exercício 11 Três espelhos interceptam-se em ângulos rectos.Um feixe de luz atinge o primeiro deles com um ângulo {\theta} (ver figura ao lado) .a)Mostre que quando esse raio é refletido pelos outros dois espelhos e cruza o raio original,o ângulo entre esses dois raios será {\alpha = \ \ 180^{o}-2\theta} e determine o ângulo {\theta} para o qual os dois raios serão perpendiculares quando se cruzam?

.NÍVEL DE DIFICULDADE: Regular.

.

Resolução 11 .

Redesenhando a figura. Na figura o ponto de intersecção entre o raio incidente e o primeiro espelho espelho chamamos de {B}.

O raio que se reflecte deste ponto vai incidir no outro ponto do segundo espelho, que chamamos de {C}.

Raio reflectido do ponto {C} vai incidir no outro ponto do terceiro espelho que chamamos de {D}.

O raio reflectido do ponto {D} vai cruzar-se com o raio incidente num ponto que chamamos {A}.

O ângulo de incidência e reflexão no ponto {C} chamamos de {z}. O complementar de {z} chamamos de {\varphi}.

O ângulo de incidência e reflexão no ponto {D} chamamos de {\beta}. O complementar de {\beta} chamamos de {\Psi}.

O complementar de {\theta} chamas de {\chi}.

Marcamos ainda os .s é eficaz conforme indicado na figura.

Da figura, no ponto B, analisando entre o espelho e a sua normal, temos:

\displaystyle \chi \ + \theta = \ \ 90^{o}

pelo triângulo BHC, pelo teorema da soma dos ângulos internos, temos temos :

\displaystyle \chi \ + \varphi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \chi \ + \varphi = \ \ 90^{o}

Subtraindo ambas equações dos passos anteriores, obtemos :

\displaystyle \varphi = \ \theta

Pelo teorema de ângulos internos no triângulo CDG, temos :

\displaystyle \varphi \ + \Psi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \varphi \ + \Psi = \ \ 90^{o}

Pelo teorema de ângulos internos no triângulo ADF, temos :

\displaystyle y \ + \ 90^{o} \ + \Psi = \ \ 180^{o} \Rightarrow

\displaystyle y \ + \Psi = \ \ 90^{o}

Subtraindo esta última pela equação do passo anterior, obtemos :

\displaystyle y = \ \varphi

Como {\varphi = \ \theta}, obtermos:

\displaystyle y = \ \theta

No quadrilátero {ABCD} temos :

\displaystyle 2y \ + \alpha = \ \ 180^{o} \Rightarrow \alpha = \ \ 180^{o} \ - \ 2y

Substituindo {y = \ \theta}, obtemos:

\displaystyle \alpha = \ 180^{o} \ - \ 2\theta

Exercício 12 Um feixe de luz emitido por um laser,incide sobre a superfície da água de um aquário,como representado nesta figura :

O fundo desse aquário é espelhado ,a profundidade da agua é de 40 cm e o ângulo de incidência do feixe de luz é de {50^{o}}. Qual é a distância entre os pontos A e C da figura?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 12 .

Dados

{n_{agua} = \ \ 1,33}

{h = \overline{BO}= \ \ 40 \ cm}

{\varphi = \ \ 50^{o}}

{ \overline{AC} \rightarrow \ ?}

.

No problema, a luz incide a partir do ar para a água. Toca na água no ponto A e refracta-se na água. É reflectida no ponto B(no espelho que está no fundo) e retorna à superfície de separação água-ar. No ponto C, faz refracção novamente para o Ar.

Para acharmos a distância AC devemos calcular o ângulo que o feixe de luz faz com a normal na água (usando a lei de Snell-Descartes), e combinando estes valores com a profundidade, no triângulo ABC.

.

Redesenhando a figura,temos :

Pela lei de Snell, no ponto A, podemos determinar o ângulo de refração. Temos :

\displaystyle n_{ar} \ sen 50^{o} = \ \ n_{agua} \ . sen \theta

Isolando o seno, no membro esquerdo, temos:

\displaystyle sen \theta = \ \dfrac{n_{ar} \ sen 50^{o}}{n_{agua}} = \ \dfrac{1. \ sen 50^o}{1,33}

\displaystyle \Rightarrow \theta =\ arcsen({ \dfrac{1. \ sen 50^o}{1,33}}) = \ 35,15^{o}

Se considerarmos o ponto médio do segmento {\overline{AB}}, que chamamos de {D}, então o triângulo ABD é rectângulo. O ângulo interno do vértice B é igual a {\theta } e {\overline{AD}=\overline{AC}/2}. Então:

\displaystyle tg \theta= \ \dfrac{\overline{AD}}{\overline{BD}} = \ \dfrac{\dfrac{\overline{AC}}{2}}{h} = \ \dfrac{\overline{AC}}{2h}

\displaystyle \Rightarrow \overline{AC} = \ 2h \ . \ tg \theta

Substituindo valores, obtemos:

\displaystyle \overline{AC} = \ 2 \ . \ 40 \ cm \ . \ tg \ (35,15^o) \Rightarrow \overline{AC} = \ 56,37 \ cm

.

Exercício 13 Um rapaz em repouso na rua,vê sua imagem reflectida por um espelho plano preso verticalmente na traseira de um autocarro que se afasta com a velocidade escalar constante de {20 \ m/s}. Qual é a velocidade de afastamento da imagem em relação ao rapaz?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 13 Neste problema temos de analisar não só a velocidade com o espelho se afasta do rapaz, mas também a velocidade com que a sua imagem (que o espelho produz) se afasta dele.

O melhor raciocínio mais simplificado, consiste em estabelecer o espelho como referencial de analise e depois achar a velocidade relativa.

A medida que o autocarro se move para a direita, automaticamente o espelho também se move para a direita. como o movimento é relativo, podemos considerar que o autocarro e o espelho estão em repouso e o rapaz ({AB}) é que se está a mover no sentido oposto (para a esquerda), com a mesma velocidade.

Se o rapaz, que é o nosso objecto óptico({AB}), se move para esquerda com velocidade v, então a sua imagem formada pelo espelho ({A'B'}) se afasta do espelho para direita com velocidade {v'}.

Vamos estabelecer as equações do movimento no 1ª referencial (com origem no espelho) e depois amos fazer a transformação de Galileu par o 2º Referencial (com origem no rapaz). Veja a figura.

Pela lei da reflexão, em qualquer momento:

\displaystyle \Delta x_{e} = \Delta x_{i}

Portanto :

\displaystyle -v \cdot t = v' \cdot t

\displaystyle \Rightarrow -v = v'

\displaystyle \Rightarrow |v| = |v'|

Então , neste referencial (Referencial 1), temos:

\displaystyle x_{Rap-Ref1}=x_{0Rap} - v. t

\displaystyle x_{Esp-Ref1}=0

\displaystyle x_{Rap-Ref1}=x_{0Rap} + v.t

.

Se estabelecermos um novo referencial (no rapaz), então este referencial 1 (com origem no espelho) está em movimento em relação ao novo referencial 2 (com origem no rapaz), com velocidade v.

A transformação de galileu diz que: {x_{Ref2}=x_{Ref 1} - v. t}.

Então para o rapaz( que no referencial 1 estava em movimento regressivo com velocidade v) teremos:

\displaystyle x_{Rap-Ref2}=x_{Rap-Ref 1} + v. t

\displaystyle x_{Rap-Ref2}=(x_{0Rap}-v.t) + v. t

\displaystyle x_{Rap-Ref2}=x_{0Rap}

Neste novo referencial, o rapaz está repouso.

.

Para o espelho/autocarro( que no referencial 1 estava em repouso na origem) teremos:

\displaystyle x_{Esp-Ref2}=x_{Esp-Ref 1} + v. t

\displaystyle x_{Esp-Ref2}=0 + v. t

\displaystyle x_{Esp-Ref2}= v. t

Neste novo referencial, o espelho/autocarro estão em movimento com velocidade v (conforme enunciado).

Para a imagem (que no referencial 1 estava em movimento progressivo com velocidade v) teremos:

\displaystyle x_{Im-Ref2}=x_{Im-Ref 1} + v. t

\displaystyle x_{Im-Ref2}=(x_{0Im}+v.t) + v. t

\displaystyle x_{Im-Ref2}= x_{0Im} + 2 v t

Neste novo referencial,imagem está em movimento com velocidade 2v .

Neste caso, a velocidade da imagem é:

\displaystyle v_{im}= \ 2.v= \ 2.20=40 \ m/s

Exercício 14 Um nativo de uma aldeia pesca em uma lagoa de água transparente. Para isso usa uma lança. Ao observar um peixe, ele atira a sua lança na direcção em que o observa. O jovem está fora da água e o peixe está em 1 m abaixo da superfície. O peixe está a uma distancia horizontal de {0,9 \ m} do ponto aonde a lança atinge a superfície da água. Para essas condições determine :

a)O ângulo {\alpha},de incidência da luz na superfície da agua-ar.

b)O ângulo {\beta} que a lança faz com a superfície da água quando tenta alcançar o peixe.

c)A profundidade aparente y,da superfície da água em que o nativo vê o peixe.

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 14

Dados

{n_{ar} = \ \ 1}

{n_{agua} = \ \ 1,33}

{\alpha \ - \ ?}

{\beta \ - \ ?}

{y = \ \overline{DE} - \ ?}

Neste problema, temos analise baseadas na refracção da luz. O Peixe está no Ponto O nativo, na beira do rio, vê como se o peixe estivesse no ponto D (que é a imagem virtual do ponto C) formada pela refracção da luz na superfície. O ponto A é o ponto onde ocorre a refracção. O ângulo {\alpha} é o ângulo de incidência da luz que sai do peixe e incide no ponto A. O ângulo {\theta } é o ângulo de refracção da luz no ponto A. ângulo {\beta } é complementar de {\theta}

  1. Para encontramos o ângulo {\alpha}, vamos aplicar a relação para as razões trigonométricas no triângulo rectângulo ABC. Sendo {\overline{AB}} cateto adjacente, {\overline{BC}} cateto oposto e{\overline{AC}} a hipotenusa, teremos:

    \displaystyle tg \alpha = \ \dfrac{\overline{BC}}{\overline{AB}} = \ \dfrac{0,9}{1}

    \displaystyle \Rightarrow \alpha =arctg ( \ \dfrac{0,9}{1})= \ 41,99^{o}

    \displaystyle \alpha = \ 41,99^{o}

  2. Como {\beta} é o complementar de {\theta}, então, acharemos primeiro o {\theta} e com ele acharemos o {\beta}. O {\theta} será obtido pela lei da refracção:

    \displaystyle n_{ar} \ sen \theta = \ \ n_{agua} \ sen \alpha

    Insolando o seno de { \theta }, temos:

    \displaystyle \ sen \theta = \ \ \dfrac{ \ n_{agua} \ . \ sen \alpha}{n_{ar}} = \ \dfrac{ \ 1,33. \ sen(41,99)}{1}

    Neste caso:

    \displaystyle \theta = arcsen ( \dfrac{1,33. \ sen(41,99)}{1})

    \displaystyle \Rightarrow \theta = \ \ 62,85^{o}

    Como {\theta \ + \beta = \ \ 90^{o}}, então:

    \displaystyle \beta = \ \ 90^{o} \ - \theta = \ \ 90^{o} \ - \ 62,85^{o}

    \displaystyle \Rightarrow \beta = \ 27,15^{o}

  3. A profundidade aparente do peixe, neste caso, corresponde ao segmento {\overline{DE}}. Para achar o seu valor, usaremos o triângulo ADE. Para este triângulo, temos:

    \displaystyle tg \beta = \ \dfrac{\overline{DE}}{\overline{AE}} \ \dfrac{y}{x}

    \displaystyle \Rightarrow y = \ x \ tg \ (\beta)

    \displaystyle \Rightarrow y = \ 0,9\ tg \ ( 27,15^{o})

    \displaystyle y = \ 0,46 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 1)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 1 .

A equação de um MHS é dada por { x=0,5 \sin 10 \pi t (SI)}.

Determina o número de ciclos feitos em { 10 \ s } de oscilação.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

A equação de um MHS é geralmente dada na forma { x= A \cdot \sin (\omega \cdot t+\varphi_0 }. .

Comparando, termo a termo, com a equação dada no enunciado, temos que:

\displaystyle A=0,5 \ m

\displaystyle w=10 \ \pi \ rad/s

\displaystyle \varphi_0=0 \ rad

As unidades dos resultados estão no SI pois o enuanciado assim indica.

Para conseguir calcular o número de ciclos feitos em { 10 \ s} precisasse saber quantas oscilações são feitas em {1 \ s} (a frequência da oscilação).

Para o MHS, {\omega} é dado por:

\displaystyle \omega=2 \pi \cdot f

Logo:

\displaystyle \omega=2 \cdot \pi \cdot f

Substituindo o valor de {\omega} dos dados, obtemos:

\displaystyle 10 \pi = 2 \cdot \pi \cdot f

Isolando {f}:

\displaystyle f= \frac{10 \pi}{2 \pi}=5 \ Hz

Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por:

\displaystyle f= \frac{N}{t}

\displaystyle \Rightarrow N= f \cdot t

substituindo valores, obtemos:

\displaystyle N=5 \cdot 10

Em { 10 \ s} de oscilações são realizados 50 ciclos.

.

Exercício 2 Uma partícula realiza um MHS, cuja equação horária é { x=5 \cos (\dfrac{\pi}{4} t } SI.

  1. Determine o período do MHS.
  2. Esboce o gráfico da velocidade em função do tempo.

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.

  1. A equação horária de um MHS pode ser dada na forma { x=A \cos(\omega t+\varphi_0)}.Comparando, termo a termo, com a equação dada no enunciado ({x=5 \cos (\dfrac{\pi}{4} t }), obtemos:

    \displaystyle \omega=\frac{\pi}{4} \ rad/s

    Sabendo que { \omega=\frac{2\pi}{T} },logo:

    \displaystyle T=\frac{2\pi}{\omega}

    Substituindo os dados:

    \displaystyle t= \frac{2\pi}{\pi /4}

    \displaystyle T=8 \ s

  2. Para se esboçar o gráfico da velocidade em função do tempo precisamos construir uma tabela que relaciona as duas grandezas({v} e {t}).Para isso, precisamos escrever a equação da velocidade em função do tempo.
    Sabe-se que a velocidade é dada pela derivada da posição em função do tempo, temos:

    \displaystyle v=\frac{dx}{dt}

    \displaystyle \Rightarrow v=\frac{d}{dt} [5 \cos(\frac{\pi}{4}t)]

    \displaystyle \Rightarrow v= -5 \cdot \frac{\pi}{4} \sin ( \frac{\pi}{4}t)

    \displaystyle v= -1,25\pi \sin (\frac{\pi}t)

A tabela será construida atribuindo diversos valores a {t} e calculando os valores correspondentes de {v}. Escolhemos os valores de {t} de 0, 2, 4, 6, 8 e 10 s.

Lançando os valores num sistema de coordenadas cartesianos {(t;v)} e interpolando os pontos, obtemos um gráfico similar ao da figura abaixo:

Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de {v} em relação a {t} é .

Exercício 3 .

Uma partícula descreve um MHS segundo a equação {x=0,5 \cos( \pi / 3+2 \pi t) }, no SI.Obtenha.

  1. A correspondente equação da velocidade.
  2. O módulo da máxima velocidade atingida por essa partícula.

NÍVEL DE DIFICULDADE: Elementar

Resolução 3 .

Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.

  1. A equação da velocidade de uma partícula em MHS é dada pela derivada da equação da posição em função do tempo, ou seja:

    \displaystyle v(t)=\frac{d}{dt}x

    \displaystyle \Rightarrow v(t)=\frac{d}{dt}[0,5 \cos(\frac{\pi}{3} +2 \pi t)]

    Derivando, obtemos:

    \displaystyle v{t}=-0,5 \cdot 2 \pi \sin( \frac{\pi}{3} +2 \pi t)

    \displaystyle \Rightarrow v_{t}=-\pi \sin(\frac{\pi}{3} +2 \pi t)

  2. A velocidade num MHS é máxima quando { \sin( \varphi_0+ \omega)=1}. Logo:

    \displaystyle v_{max}=\pi \ m/s

Exercício 4 .

Considere o MHS dado no gráfico. Escreva sua equação.

NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

O Problema ilustra o gráfico de {x(t)} de um MHS. Para escrevermos a equação deste MHS, devemos determinar em primeiro lugar os seus parâmetros ({A}, {\omega} e {\varphi_0}). Estes parâmetros são determinados no gráfico.

A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de {t} (valor de equilíbrio é 0), então a amplitude é o maior valor de x a se registar na curva.

O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida.

A equação do movimento de um MHS é dada na forma { x = A \sin (\omega t + \varphi_0)}.

Com base na análise, é possível concluir que:

A amplitude { A=3 \ cm} ou { A=0,03 \ m} .

No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é {90^o=\pi / 2 \ Rad}. Neste caso, para obter a fase inicial, teremos:

\displaystyle \omega t + \varphi_0= \pi/2

\displaystyle \Rightarrow \omega \cdot 0 + \varphi_0= \pi/2

\displaystyle \Rightarrow \ \varphi_0= \pi/2

O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação.

Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que:

\displaystyle T/2= 4 s

\displaystyle \Rightarrow \ T= 4\cdot 2

\displaystyle \Rightarrow \ T= \ 8 \ s

Sabendo que { \Rightarrow=2 \pi /T}, logo:

\displaystyle \omega =2 \pi /8

\displaystyle \Rightarrow \omega = \frac{1}{4} \pi \ rad/s

Por fim, substituindo os dados na equação da oscilação ({ x = A \sin (\omega t + \varphi_0)}), obtemos:

\displaystyle x = 0,03 \sin (\frac{1}{4} \pi t + \dfrac{\pi }{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 5)

Exercício 20 Uma chita pode acelerar de {0} a {96 \ km} em {2 \ s}, enquanto um carro, em média atinge a mesma velocidade final em {4,5 \ s}. Calcular as acelerações média dos dois. NÍVEL DE DIFICULDADE: Elemntar.
Resolução 20 .

A conversão de {96 \ km} para {m/s}, é feita pela regra de 3 simples conforme os exercícios anteriores.

Para a Chita, temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 2 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{2}=13,4 \ m/s^2

Para o carro,temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 4,5 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{4,5} = 5,9 \ m/s^2

.

Exercício 21 Um móvel fazendo a trajectória rectilínea {A-B-C}, tem a velocidade dada no gráfico ao lado.

Determinar:

  1. A velocidade média deste movimento.
  2. A aceleração média do mesmo.

NÍVEL DE DIFICULDADE: Regular.

Resolução 21 .

Diante de um problema gráfico ({v\cdot t}), é válido lembrar que área de baixo da curva determina o espaço total percorrido pelo móvel. No gráfico {v\cdot t}, a inclinação da recta, determina à aceleração.

  1. Para determinar a velocidade média, precisamos conhecer o deslocamento total e o tempo total. O tempo pode ser obtido directamente no gráfico. Para o deslocamento, ele deve ser calculado. Podemos usar dois raciocínios: o calculo da área ou a determinação dos parâmetros cinemáticos deste movimento. Para efeitos de familiarização, dado que temos dois tempos de movimentos ( Um MRUV acelerado de A para B e um MRUV retardado de B para C), vamos usar os dois métodos. Vamos usar a determinação de parâmetros para o movimento de A para B e vamos usar o cálculo de área de B para C. Em qualquer dos casos, os dois métodos são válidos. Cabe a quem resolve escolher.
    1. Determinando a aceleração de {A\longrightarrow B} (Determinação dos parâmetros):

      \displaystyle \left.\begin{array}{cccccccc} t_o = 0 \ s, v_o = 20 \ m/s\\ t= 40 \ s, v = 60 \ m/s\\ \end{array}\right\} \Rightarrow a = \frac{\Delta v}{\Delta t} = \frac{60 - 20}{40 - 0} = 0,5 \ m/s^2

    2. Determinando do correspondente deslocamento {A\longrightarrow B}:

      \displaystyle s = s_o + v_o\cdot t + \frac{1}{2}a\cdot t^2

      \displaystyle s = (20)(40) + \frac{1}{2}(0,5)(40)^2

      \displaystyle s = 1200 \ m

    3. Determinando o espaço percorrido {B\longrightarrow C} (cálculo de área):

      \displaystyle s_{\Delta} = Area = \frac{20\cdot 40}{2} = 600 \ m

    4. Neste caso, o deslocamento total é:

      \displaystyle \Delta s = 1200 + 600 = 1800 \ m

    5. Logo, a velocidade média será:

      \displaystyle v_{med} = \frac{\Delta s}{\Delta t} = \frac{1800}{60} = 30 \ m/s

  2. Aceleração média.

    \displaystyle a_{med} = \frac{v_{final}-v_{0}}{\Delta t} = \frac{0-20}{60} \approx -0,33 \ m/s^2

Exercício 22 Uma pessoa caminha {100 \ m} em {12 \ s} numa certa direcção e depois caminha na direção oposta passando {50 \ m} durante {30 \ s}. Calcule (a) a velocidade média definida pelo caminho percorrido e (b) a velocidade média definida pelo deslocamento. NÍVEL DE DIFICULDADE: Regular.
Resolução 22 .

Para o problema em questão, devemos entender a diferença entre deslocamento e distância percorrida. O deslocamento é o vector que une a posição inicial à posição final de um móvel, sem se importar pelo trajecto do mesmo. O seu modulo equivale a distancia entre a origem e o destino do móvel. A distancia percorrida é o somatório escalar de todo o caminho percorrido pelo móvel, levando em conta a sua trajectoria e eventuais mudanças de direcção.

Na figura, observamos que o móvel sai da posição {x_1}, vai para a posição {x_2} e depois vai (em sentido oposto) para a posição {x_3}. Se tomarmos {x_1=0}, então {x_2=100 \ m} e {x_3=50 m} (recuando 50 m a partir de {x_2}).

Neste caso o deslocamento será {\Delta x= x_3 - x_1 = \ 50 - 0= \ 50m}.

A distancia percorrida será: {d= \ d_1+d_2= \ 100+50= \ 150 \ m}.

  • A velocidade média definida pelo caminho percorrido será:

    \displaystyle v_{med} = \dfrac{d}{\Delta t} = \dfrac{150}{30 + 12}

    \displaystyle v_{med} = 3,75 \ m/s

  • A velocidade média definida pelo deslocamento será:

    \displaystyle v_{med} = \dfrac{\Delta x}{\Delta t} = \dfrac{50}{30+12}

    \displaystyle v_{med} \approx 1,19 \ m/s

.. Note que é a duração de todo o movimento, e como o tempo não recua, então sempre {\Delta t = \ 30+12= \ 42 \ s}. Estes tempos refere-se a intervalos de tempo, por isso somamos. Se fossem instantes de tempo, deveríamos subtrair.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

%d bloggers gostam disto: