Luso Academia

Início » 03 Ensino Médio » 02 Física

Category Archives: 02 Física

1.1. Exercício sobre Dilatação Térmica (Parte 1)

— 1. Exercício sobre Calor e Temperatura —

— 1.1. Exercício sobre Dilatação Térmica —

Exercício 1 Um quadrado de área interna de {2,35 \ m^{2}} foi montado com duas hastes de alumínio {(\alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1} )} e duas hastes de aço {(\alpha_{Aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1})}, todos inicialmente à mesma temperatura de {27 \ ^{o}C}, conforme a figura abaixo. O sistema é, então, submetido a um processo de aquecimento, de forma que a variação de temperatura é a mesma em todas as hastes, até a temperatura final de {100 \ ^{o}{\mathbb C}}.

Considerando que no final as hastes de alumínio continuam perpendiculares as hastes de aço, determine a área do plano limitado pelas hastes após o aquecimento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 1 .

O problema em questão trata de dilatação térmica dos corpos (expansão dos corpos). É dada uma área { A_{o}=2,35 \ m^{2}} limitada por duas hastes de alumínio e duas hastes de aço sob uma temperatura { t_{o}=27\ ^{o}C}.

Dado que a área limitada é a área de quadrado, então, de acordo a definição da área de um quadrado, temos que:

\displaystyle A_{o}=l_{o Aco} \cdot l_{o Al} \ \ \ \ \ (1)

Onde:
{ l_{o Aco}} – Comprimento da haste de aço.

{ l_{o Al}} – Comprimento da haste de alumínio.

Por outro lado, para que as hastes de alumínio e de aço formem ou limitem a área de um quadrado deve-se cumprir a seguinte condição:

\displaystyle l_{o Aco}=l_{o Al}=l_o \ \ \ \ \ (2)

Então, cada haste de alumínio e/ou de aço possui um comprimento { l_{o}} inicialmente.

Entretanto, depois de aquecidas as hastes de aço e alumínio, de modo que a variação de temperatura é a mesma em todas as hastes, até a temperatura de { 100\ ^{o}C}, cada uma das hastes, de alumínio e aço, dilatam e ganham novos comprimento { l_{Al}} e { l_{Aco}} que são diferentes, pois os seus coeficientes de dilatação linear são diferentes, com { \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}} e { \alpha_{Aco}= 1,2 \cdot 10^{-5} \ ^{o}C^{-1}}.

Dados:
{ A_{0}=2,35 \ m^{2}}
{ t_{0}=27\ ^{o}C}
{ \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}}
{ \alpha_{aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1}}
{ t=100 \ ^{o}C}

Depois do aquecimento até { t=100 \ ^{o}C}, as hastes de alumínio ainda permanecem perpendiculares as hastes de aço, conforme enunciado. Logo, como o aumento nos comprimentos nas hastes, temos uma nova área.

Então, a nova área limitada pelas hastes de alumínio e aço é dada como sendo o produto dos comprimento finais das hastes, { l_{Al}} e { l_{Aco}}, de alumínio e aço respectivamente.

\displaystyle A=l_{Al} \cdot l_{Aco} \ \ \ \ \ (3)

Pela figura acima percebe-se que:

\displaystyle l_{Al}=l_{o} + \Delta l_{Al} \ \ \ \ \ (4)

\displaystyle l_{Aco}=l_{o} + \Delta l_{Aco} \ \ \ \ \ (5)

Onde: { \Delta l_{Al}} e { \Delta l_{Aco}} são os aumentos nos comprimentos das hastes, devido o aquecimento, do alumínio e do aço, respectivamente.

Para determinarmos a área que as hastes de alumínio e aço vão limitar após o aquecimento, substituímos as equações 4 e 5 na equação 3. Obtemos:

\displaystyle A= (l_{o}+\Delta l_{Al}) \cdot (l_{o}+ \Delta l_{Aco}) \ \ \ \ \ (6)

Determinamos { l_{o}} pela equação 3:

\displaystyle A_{o}=l_{o} \cdot l_{o} \Rightarrow A_{o}=l^{2}_{o}

Invertendo a igualdade:

\displaystyle l^{2}_{o}=A_{o} \Rightarrow l_{o} = \sqrt{A_{o}}

Substituindo os dados:

\displaystyle l_{o}=\sqrt{2,35}=1,533 \ m

\displaystyle \\ l_{o}=1,533 \ m

Determinemos { \Delta l_{Al}} e { \Delta l_{Aco}} através da relação da dilatação linear.

Para o alumínio:

\displaystyle \Delta l_{Al}=l_{o} \cdot \alpha_{Al} \cdot (t-t_{o}) \ \ \ \ \ (7)

Substituindo os dados:

\displaystyle \Delta l_{Al}=1,533 \cdot 2,4 \cdot 10^{-5} \cdot (100-27)

\displaystyle \Delta l_{Al}=2,685 \cdot 10^{-3} \ m

Para o aço:

\displaystyle \Delta l_{Aco}=l_{Aco} \cdot \alpha_{Aco} \cdot (t-t_{o}) \ \ \ \ \ (8)

Substituindo os dados:

\displaystyle \Delta l_{Aco}=1,533 \cdot 1,2 \cdot 10^{-5}(100-27)

\displaystyle \Delta l_{Aco}=1,343 \cdot 10^{-3} \ m

Portanto, a área limitada pelas hastes após o aquecimento é:

\displaystyle A=(l_{Al}+\Delta l_{Al}) \cdot (l_{Aco}+ \Delta l_{Aco})

\displaystyle A=(1,533+2,685 \cdot 10^{-3}) \cdot (1,533+1,343 \cdot 10^{-3})

\displaystyle A=2,356 \ m^{2}

Exercício 2 Uma ponte tem comprimento {L_1 = 145 \ m} à temperatura de {{26} \ ^oC}. É construída de uma liga metálica especial com o coeficiente de expansão térmica {\alpha = 1 \cdot 10^{-5} \ (^o{\mathbb C}^{-1})}. Calcule o comprimento {L_2} da ponte quando a temperatura for de {{43} \ ^oC}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 2 .

Trata-se do fenómeno de dilatação térmica que um corpo sofre quando é submetido a variações de temperatura.

Dados

{L_1=145 \ m}

{t_1 ={26} \ ^oC}

{\alpha=1 \cdot 10 \ ^{-5} \ ^oC^{-1}}

{L_2 \longrightarrow?}

{t_2 ={43} \ ^oC}

A equação da dilatação térmica de um sólido é:

\displaystyle \Delta L = \alpha L_1\Delta t

Mas {\Delta L=L_2 - L_1 \ } e {\Delta t = t_2 - t_1}.
Substituindo na equação anterior temos:

\displaystyle \Delta L = \alpha L_1\Delta t \Rightarrow L_2 - L_1 = \alpha L_1(t_2 - t_1)

Isolando {L_2}, tem-se:

\displaystyle L_2 = \alpha L_1(t_2 - t_1) + L_1 \Rightarrow L_2 = L_1[\alpha (t_2 - t_1) + 1]

Substituindo os valores:

\displaystyle L_2= 145 \ [1 \cdot 10^{-5} \ (43 - 26) + 1]

\displaystyle L_2 = 145,025 \ m

Exercício 3 Na temperatura ambiente ({26 \ ^oC}) os carris dos caminhos de ferro são montados em unidades de {12 \ m} de comprimento. Entre duas destas unidades fica sempre uma distância de {8,7 \ mm} livre para compensar expansão térmica dos carris. Calcule a temperatura máxima {T}, que considerou o projectista? O coeficiente da expansão térmica do aço utilizado é de {\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Trata-se do fenómeno de dilatação térmica numa linha férrea. Para sabermos a temperatura máxima {T} considerada pelo projectista é suficiente que a variação do comprimento de cada peça seja igual a distância livre entre elas.

Dados

{t_o ={26} \ ^oC}

{l_o = 12\ m}

{d = 8,6\ mm = 8,6\cdot 10^{-3}\ m}

{t \longrightarrow?}

{\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}

A equação da dilatação linear é:

\displaystyle \Delta l = \alpha l_o \Delta T)

\displaystyle \Rightarrow \Delta l = \alpha l_o (t - t_o)\

Note que a variação de temperatura em Graus Celcius é igual a variação da temperatura em Kelvins.

Para se saber a temperatura máxima considerada pelo projetista é suficiente que, {\Delta l = d}. Substituindo na relação anterior, obtemos:

\displaystyle \Delta l = \alpha l_o (t - t_o) \Rightarrow d = \alpha l_o (t - t_o)

Isolando {t}:

\displaystyle t - t_o = \dfrac{d}{\alpha l_o} \Rightarrow t = \dfrac{d}{\alpha l_o} + t_o

Substituindo os valores de {t}, {l_o}, {d} e {\alpha} na equação anterior, obtemos:

\displaystyle t = \dfrac{8,6 \cdot 10^{-3}}{1,1 \cdot 10^{-5} \cdot 12} + 26

\displaystyle t = 91,15 \ ^oC

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 4)

Exercício 12 .
Uma partícula realiza um MHS de período { 8 \ s} e amplitude { 10 \ cm}.
Determine:

  1. A equação da posição.
  2. A equação da velocidade.
  3. A aceleração { 1 \ s} após ela ter passado pelo extremo negativo.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

O exercício apresenta um problema simples de MHS. O objectivo é determinar as equações da posição e da velocidade, bem como a posição num instante dado. Para obter as equações da posição e da velocidade, basta encontras as constantes destas equações ({A}, {\omega} e {\varphi_0}) e substitui-las.

Para obter a aceleração no instante dado, primeiro vamos obter o instante, por análise gráfica, e em seguida vamos substituir este instante na equação da aceleração.

Dados

{A= \ 10 \ cm = \ 0,1 \ m}

{ T= \ 8 \ s}

  1. A equação da posição de uma partícula em MHS pode ser dada na forma:

    \displaystyle x= A sen ( \omega t + \varphi_0)

    Como o enunciado não diz nada sobre a situação da partícula no instante inicial { ( t=0 \ s)}, então podemos considerar que:

    \displaystyle \varphi_0= 0 \ rad

    Sabendo que { T= 8 \ s} e que {\omega =\dfrac{2\pi }{T}}, então:

    \displaystyle \omega =\dfrac{2 \pi}{8} = \dfrac{1}{4} \pi \ rad/s

    Então, substituindo os valores obtidos na equação do MHS, teremos:

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t+0)

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t)

  2. A velocidade de uma partícula é definida como a derivada da sua posição em função do tempo,ou seja:

    \displaystyle v=\dfrac{d}{dt}[0,1 sen (\dfrac{\pi}{4}t)]

    \displaystyle v=0,1 \dfrac{d (\dfrac{\pi}{4}t)}{dt} cos (\dfrac{\pi}{4}t)

    \displaystyle v=0,1 \cdot \dfrac{\pi}{4} \cdot \cos(\dfrac{\pi}{4}t)

    \displaystyle v= 0,079 \cos(\dfrac{\pi}{4}t)

  3. Para saber essa aceleração, primeiro precisamos saber quanto tempo a partícula demora, para chegar até à posição do extremo negativo, partindo da posição de equilíbrio.

    Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

    • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
    • Sai deste 1º extremo para a posição de equilíbrio.
    • Sai da posição de equilíbrio para o outro extremo (2º extremo, no lado oposto).
    • Sai deste 2º extremo para a posição de equilíbrio.

    Esta é a descrição de um ciclo completo.

    O tempo que a partícula leva a completar o ciclo acima é o período ({T}).

    Cada um dos movimentos descritos acima tem a mesma duração, para o MHS. Esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

    Do estudo generalizado da função seno, conhecemos o gráfico genérico da figura a seguir.

    Observamos então que, para atingir o extremo negativo, partindo da posição de equilíbrio, passa 3/4 do ciclo. Neste caso, o tempo que leva a completar este movimento até ao extremo negativo é {3T/4}.

    Neste caso, o instante referido no enunciado (1 segundo após passar pelo extremo negativo) será:

    \displaystyle t= \ \dfrac{3T}{4}+1 = \ \dfrac{3 \cdot 8}{4}+1 = \ 7 \ s

    Agora basta determinarmos a equação da aceleração que por definição,é a derivada da velocidade da partícula.

    \displaystyle a=\dfrac{d}{dt}[0,07 \cos(\dfrac{\pi}{4}t)]

    \displaystyle a=[0,07 \dfrac{d(\dfrac{\pi}{4}t)}{dt} sen (\dfrac{\pi}{4}t)]

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4}t)

    Fazendo { t=7 \ s}, temos:

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4} \cdot 7)

    \displaystyle a=-0,043 \ m/s^2

Exercício 13 .
Uma partícula em MHS oscila com frequência de { 10 \ Hz} entre os pontos {L} e {-L} de uma reta. No instante { t_{0}}, a partícula está no ponto { \dfrac{\sqrt{3}}{2}L} caminhando em direcção a valores inferiores, e atinge o ponto { - \dfrac{\sqrt{2}}{2}L}, no instante t. Determine o tempo gasto neste deslocamento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 13 .

O problema apresenta-nos um MHS onde é conhecida a frequência e a amplitude. Nos é pedido para determinarmos o tempo que a partícula leva para sair de uma posição para outra.

A resolução deste problema consiste em escrever a equação do MHS, e para as duas posições, formar duas equações. Em seguida, resolvemos o sistema de equações de acordo com a regra escolhida.\

Para calcularmos esse tempo, primeiro, precisamos saber como a partícula se move ao longo dessa recta. Para isso, temos que escrever a sua equação da posição.

Como a escolha do referencial de tempo não tem influência sobre os cálculos, e o problema não oferece referencial de tempo nenhum, consideraremos o instante inicial como sendo nulo: {t_0 = \ 0 \ s}.

Dados
{A= \ L}

.
{ t_0=0 } ;{ x_0=\dfrac{\sqrt{3}}{2}L }

.

{ t_1 \Rightarrow ?} ; { x_1=\dfrac{\sqrt{2}}{2}}

{ f=10 \ Hz}

A equação da posição de uma partícula em MHS pode ser dada na forma:

\displaystyle x= A sen(\omega t + \varphi_{0})

Sabemos que {\omega =2 \pi \cdot f }. Logo:

\displaystyle \omega =2 \pi \cdot 10=20 \pi \ rad/s

Logo ,temos:

\displaystyle x=A sen( \omega t + \varphi_{0})

\displaystyle x=L sen( \varphi_0 +20 \pi t)

Resta sabermos o valor de { \varphi_0 }. Apesar de não definir o valor de { \varphi_0 }, mas o problema nos dá informações da posição em certo instante. Logo, isso define o valor de { \varphi_0 }.

O exercício informa que, no instante inicial { t_0(t=0 \ s)}, a partícula se encontrava na posição { x= \dfrac{\sqrt{3}}{2}L}. Colocando na equação da posição, isso quer dizer que:

\displaystyle \dfrac{\sqrt{3}}{2}L= L sen( 20 \pi \cdot 0 + \varphi_0)

Simplificando {L}, obtemos:

\displaystyle \dfrac{\sqrt{3}}{2}= sen( 20 \pi \cdot 0 + \varphi_0)

\displaystyle \Rightarrow sen(\varphi_0)=\dfrac{\sqrt{3}}{2}

\displaystyle \Rightarrow \varphi_0= \ arcsen(\dfrac{\sqrt{3}}{2}) \ ou \ \varphi_0 = 180^o - \ arcsen(\dfrac{\sqrt{3}}{2})

\displaystyle \Rightarrow \varphi_0= 60^o \ ou \ \varphi_0= 120^o

Como, no instante {t_0} a partícula caminhava para posições negativas, ou seja, a sua posição diminuía, então escolhemos o ângulo de {120^o= \ \dfrac{2 \pi}{3} }, pois esse é que conscide a um decrescimento no gráfico da função seno.

Logo, temos que:

\displaystyle x=L sen( 20 \pi t + \dfrac{2 \pi}{3})

Agora precisamos saber o tempo t que a partícula demora para chegar até { x= - \dfrac{\sqrt{2}}{2}L}. Vamos usar a equação da posição:

\displaystyle -\dfrac{\sqrt{2}}{2} L=L sen( 20 \pi t + \dfrac{2 \pi}{3})

\displaystyle \Rightarrow sen (20 \pi t + \dfrac{2 \pi}{3})=-\dfrac{\sqrt{2}}{2}

\displaystyle 20 \pi t + \dfrac{2 \pi}{3} =arcsen(-\dfrac{\sqrt{2}}{2})

Note: {arcsen(-\dfrac{\sqrt{2}}{2})= 225^o \ ou \ 315^o}. Neste caso, como estamos a analisar um movimento oscilatório, e queremos o menor tempo, usaremos o {225^o=\dfrac{5 \pi}{4} rad}.

\displaystyle \Rightarrow 20 \pi t + \dfrac{2 \pi}{3}=\dfrac{5}{4} \pi

Isolando t, obtemos:

\displaystyle t =\dfrac{\dfrac{5 \pi}{4} - \dfrac{2 \pi}{3}}{20 \pi}

\displaystyle t=\dfrac{7}{240}

\displaystyle t=0,029 \ s

Exercício 14 O diagrama representa a elongação de um corpo em MHS em função do tempo.

  1. Determine a amplitude e o período para esse movimento.
  2. Escreva a função elongação, usando função cosseno.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .
O problema apresenta um gráfico da posição de um MHS e nos pede a amplitude, período e equação da posição deste MHS.

A amplitude é lida directamente no gráfico. O período é obtido por interpretação do gráfico, escolhendo dois pontos especiais da oscilação (extremos, posições de equilíbrio, etc.). Com estes dados, após determinação da fase inicial ({\varphi_0}), é possível escrever a equação deste MHS.

  1. Precisamos primeiro recolher os dados a partir do gráfico. Observe a figura:

    No gráfico, observamos claramente que {A= \ 5 \ m}.

    Também podemos notar o tempo que o corpo leva a sair de um extremo ao outro. Ele está num extremo no instante {t= \ 2 \ s} e no outro no instante {t= \ 6 \ s}. Neste caso, o corpo demorou {4\ s} para sair de um extremo ao outro. Sabemos que, num MHS, o tempo que o corpo leva a sair de um extremo para o outro é igual a metade do período. Logo:

    \displaystyle \dfrac{T}{2} = 4\ s

    \displaystyle \Rightarrow T = 4\cdot2

    \displaystyle \Rightarrow T = 8\ s

  2. A função da elongação pode ser dada na forma {x = A .sen (\omega t + \varphi_0)} ou {x = A .cos(\omega t + \varphi_0)}.

    Sabemos que {\omega =2 \pi / T }. Logo:

    \displaystyle \omega =2 \pi / 8= \ \pi / 4 \ rad/s

    Sendo que em {t = 0}, o corpo se encontra na posição de equilíbrio,então, substituindo na equação da posição (o enunciado pede para usarmos função cosseno), obtemos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos(\dfrac{\pi}{4} .0 + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos( \varphi_0)

    \displaystyle \Rightarrow cos( \varphi_0)=0

    \displaystyle \Rightarrow \varphi_0= \ arccos(0) \ ou \ \varphi_0= \ 360^o - \ arccos(0)

    \displaystyle \Rightarrow \varphi_0= 90^o \ ou \ \varphi_0= 270^o

    Considerando que no gráfico dado, na posição inicial e nos instantes imediatamente a seguir, o corpo desce (movimenta-se para o sentido negativo), então, com base no gráfico genérico da função cosseno, escolheremos o valor de {90^o= \dfrac{\pi}{2} rad }.

    Então, substituindo na equação do MHS, temos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle x = 5 .cos(\dfrac{\pi}{4} t + 90^o)

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 3)

 

Exercício 8 .

Um corpo em MHS desloca-se entre as posições extremas { -50 \ cm} e { +50 \ cm} de sua trajectória, gastando 10 segundos para ir de um extremo à outro.
Considerando que, no instante inicial, o móvel estava na posição de equilíbrio e em movimento retrogrado, determine:

  1. O período;
  2. A equação da elongação do movimento;

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

O problema nos apresenta um corpo em MHS. Nos é dada a amplitude deste movimento, através do valor das posições dos extremos. É dado o tempo que o corpo leva a sair de um extremo para o outro.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximações e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremo de volta para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremo (2º Extremo, no lado oposto).
  • Sai deste 2º extremo para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS estaéesta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Para sair de um extremo ao outro, a partícula deve fazer dois destes movimentos. Então, o tempo que a partícula leva a sair de um extremo para outro corresponde então a metade do período.

Quanto a fase, este problema nos dá informação sobre sentido  do movimento e posição da partícula no momento inicial. Como vamos usar a função seno, podemos observar o gráfico generalizado da função seno.

Observamos que a função seno atinge o valor zero (posição de equilíbrio, no MHS) quando {\varphi = 0^o}, {\varphi = 180^o}, {\varphi = 360^o}, etc.

No caso em análise, não poderemos adoptar {\varphi = 0^o}. Porquê? A reposta está no movimento descrito no enunciado. Se repararmos no gráfico genérico da função seno, observamos que, a seguir {\varphi = 0^o} o valor da função começa a subir. Em movimento, isso equivale a um movimento progressivo.

Como o enunciado diz que a partícula está na posição de equilíbrio, mas em movimento retrógrado, então, o ângulo de fase para este momento deve ser {\varphi = 180^o}.

O gráfico esboçado do movimento do exercício é o seguinte:

  1. Se o corpo demora {10 \ s} para ir de um extremo ao outro, então esses { 10 \ s} correspondem à metade do período, ou seja:

    \displaystyle \dfrac{T}{2}=10

    \displaystyle \Rightarrow T=10 \cdot 2

    \displaystyle \Rightarrow T=20 \ s

  2. A equação da elongação (ou equação horária) de um MHS pode ser dada na forma:

    \displaystyle x=A \cos(\varphi_0+ \omega t) \ ou \ x=A sen (\varphi_0+ \omega t)

    O uso de seno ou cosseno é opcional. Usaremos a função seno, conforme descrito na análise.

    Já ficou mostrado que { \varphi_0=180^o}.

    A amplitude do movimento é definida pela coordenada do extremo. Neste caso:

    \displaystyle A= \ 50 \ cm= \ 0,5 \ m

    Com o valor do período, podemos determinar a frequência angular:

    \displaystyle \omega =\dfrac{2 \pi}{T}=\dfrac{2 \pi}{20 }\ rad/s

    \displaystyle \omega = \dfrac{\pi}{10 }\ rad/s

    Então, para equação do movimento, teremos:

    \displaystyle x=A sen (\omega t+ \varphi)

    \displaystyle x=0,5 sen (\dfrac{\pi }{10 }t+ 180^o)

Exercício 9 .

Considere o gráfico da oscilação abaixo. Determine a amplitude deste MHS.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

O problema nos apresenta o gráfico da velocidade de um MHS.

Pela ilustração, nota-se que o período de oscilação é {T=4 \ s } e a velocidade máxima da oscilação é { 5 \ m/s}.

Logo, sabemos que a velocidade máxima de um corpo em oscilação é dada por:

\displaystyle v_{max}=A \omega

Sabemos também que:

\displaystyle \omega =2 \pi /T

Então, combinado as duas relações, temos:

\displaystyle v_{max}=A \cdot \dfrac{2\pi}{T}

\displaystyle \Rightarrow 5=A \cdot \dfrac{2\pi}{4}

\displaystyle \Rightarrow 5=A \cdot \dfrac{\pi}{2}

\displaystyle \Rightarrow 2 \cdot 5= A \pi

Invertendo a igualdade, temos:

\displaystyle A \pi=2 \cdot 5

\displaystyle \Rightarrow A= \dfrac{2 \cdot 5}{\pi}

\displaystyle A=3,2 \ m

Exercício 10 .

Um corpo executa um MHS ao longo do eixo x, oscilando em torno da posição de equilíbrio { x=0 }.
Abaixo está o gráfico de sua aceleração em função do tempo.

Determine:

  1. A frequência do movimento.
  2. A amplitude do movimento.
  3. O módulo da velocidade do corpo em { t=2 \ s }

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

O período e a amplitude da aceleração (ou aceleração máxima) deste MHS podem ser obtidos no gráfico abaixo:

Com isso conclui-se que:

\displaystyle a_{max}=10 \ m/s^2

\displaystyle T=4 \ s

  1. Por definição, a frequência de um MHS é igual ao inverso do seu período, ou seja,{ f=\dfrac{1}{T}}. Logo:

    \displaystyle f=\dfrac{1}{4}=0,25 \ Hz

  2. Com os dados que temos, podemos calcular a amplitude (A ) do movimento partindo da equação da aceleração máxima { a_{max}} do movimento. Sabendo que:

    \displaystyle a_{max}=A \cdot \omega ^2

    \displaystyle \omega = \dfrac{2 \pi}{T}

    Logo:

    \displaystyle a_{max}=A \cdot ( \dfrac{2 \pi}{T})^2

    \displaystyle A= a_{max} \cdot (\dfrac{T}{2\pi})^2

    \displaystyle A=10 \cdot (\dfrac{4}{2\pi})^2

    \displaystyle A=4,053 \ m

  3. Para calcularmos o módulo da velocidade no instante { t=2 \ s}, precisamos saber primeiro a equação da velocidade dessa partícula em MHS. Podemos fazer isso com base nos dados gráficos e nos valores já calculados.
    No instante { t=0}, a aceleração é a { a=-10 \ m/s^2}, logo percebe-se que a partícula iniciou a sua oscilação quando estava no extremo, pois a aceleração de um MHS é máxima nos extremos. O movimento inicia-se no extremo positivo, pois a aceleração é negativa. Uma sinusoide atinge os extremos quando {\varphi = 90^o}, {\varphi = 270^o}, {\varphi = 450^o}, etc. Veja gráfico da função seno.

    Como o nosso caso é o caso em que a partícula se encontra no extremo positivo, então a fase inicial { \varphi_0= \ 90^o= \ \pi /2 \ rad}.

    A equação da aceleração é dada por { a= -A \omega ^2 sen (\varphi_0+ \omega t)} ou então por { a=-A \omega ^2 \cos(\varphi_0+ \omega t)}. Estamos a trabalhar com a função seno.

    Logo temos que:

    \displaystyle a=-A \omega ^2 sen (\omega t + \varphi_0)

    Para um MHS em que a posição é descrita por uma função seno, a velocidade tem a seguinte equação:

    \displaystyle v=A \omega \cos(\omega t + \varphi_0)

    Sabemos também que:

    \displaystyle \omega =2 \pi /T

    Então:

    \displaystyle \omega =2 \pi / 4

    \displaystyle \Rightarrow \omega = \pi / 2

    Sabendo que { A=4,053 \ m }, { \omega =\dfrac{\pi}{2} \ rad/s} ; {\varphi_0= \pi/2}, então, substituindo estes valores na equação da velocidade, teremos:

    \displaystyle v=4,053 \cdot \dfrac{\pi}{2}\cos(\dfrac{\pi}{2} \cdot t+\dfrac{\pi}{2})

    Como foi pedido para determinar a velocidade no instante {t=2 \ s}, então:

    \displaystyle v=4,053 \cdot \dfrac{\pi}{2}\cos(\dfrac{\pi}{2} \cdot 2+\dfrac{\pi}{2})

    \displaystyle \Rightarrow v=-6,37 \ m/s

Exercício 11 .

Uma partícula realiza um MHS segundo a equação { x=0,2 \cos( \pi t /2+\pi /2 )}, no SI. A partir da posição de elongação máxima, determine o menor tempo que está partícula gastará para passar pela posição de equilíbrio.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Apesar de parecer complexo, mas o problema é Elementar . Muito elementar mesmo.
O problema nos apresenta a equação de um MHS e nos pede para determinarmos o menor tempo que a partícula leva a sair da posição de desvio máximo para a posição de equilíbrio.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremo para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremo (2º Extremo, no lado oposto).
  • Sai deste 2º extremo para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS, esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Com a descrição acima, percebemos que, para sair de um extremo para a posição de equilíbrio, a partícula leva um tempo igual a um quarto do período.

O período pode ser obtido a partir de {\omega}. O {\omega} pode ser obtido na equação da oscilação. Olhando na equação, vemos que:

\displaystyle \omega= \dfrac{\pi}{2}

Sabemos também que:

\displaystyle \omega =2 \pi /T

Então:

\displaystyle \dfrac{2 \pi}{T}= \dfrac{\pi}{2}

Fazendo multiplicação cruzada, obtemos:

\displaystyle 2 \pi \cdot 2= \pi \cdot T

Ou:

\displaystyle \pi \cdot T = 2 \pi \cdot 2

Então:

\displaystyle T = \dfrac{2 \pi \cdot 2}{\pi}

\displaystyle \Rightarrow T = \ 4 \ s

Como o tempo de passagem, do extremos para a posição de equilíbrio é {t=T/4}, então:

\displaystyle t=T/4= 4/4

\displaystyle \Rightarrow t= \ 1 \ s

Com isso, percebe-se que, para sair da posição de elongação máxima { x=\pm 0,2} para a posição de equilíbrio { (x=0)}, a partícula demora {1} segundo.

Está a gostar da Abordagem?

Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)

 — 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —

 

Exercício 10 A massa de um átomo de Urânio é de {4,0\cdot10^{-26} \ kg}. Quantos átomos de urânio existem em {8 \ g} de Urânio puro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

É um problema cujo método de resolução é muito comum (3 simples).

Vamos começar por converter todas as grandezas para as mesmas unidades.

Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor({k = 10^3}):

\displaystyle 4,0\cdot10^{-26} \ kg = 4,0 \cdot 10^{-26}\cdot 10^{3} \ g = \ 4,0\cdot10^{-23} \ g

Em seguida, fazemos a relação de proporção.

Chamamos de {x} ao número de átomos que pretendemos calcular. Neste caso:

\displaystyle 1 \ atomo \longrightarrow 4,0\cdot10^{-23} \ g

\displaystyle x \longrightarrow 8,0 \ g

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 4,0 \cdot10^{-23} \ g = 1 \ atomos(u) \cdot 8,0 \ g

Isolando o x, obtemos:

\displaystyle x = \frac{1 \ atomo(u)\cdot 8,0 \ g}{4,0\cdot10^{-23} \ g}

Resolvendo, temos:

\displaystyle x = 2,0\cdot 10^{23} \ atomos

Em {8 \ g} de urânio puro, existem {2,0\cdot 10^{23}} átomos de Urânio.

 

 

Exercício 12 Determine a partir da representação dada, o vector {\vec{c} \ = 3 \ \vec{a} \ + 2 \ \vec{b}} .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

Podemos resolver este exercício utilizando a regra do paralelogramo.

Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles.

A resolução aqui é feita apenas graficamente.

Desta feita, aplicando a regra do paralelogramo, teremos:

  • Em primeiro lugar, vamos traçar os vectores {3 \ \vec{a} } e { 2 \ \vec{b}}. Para tal, vamos na extremidade de {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Na extremidade deste segundo {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Neste caso, teremos o vector {3 \ \vec{a} }. Para o caso do vector { 2 \ \vec{b}}, o procedimento é análogo. Vamos na extremidade de {\vec{b}}, traçar outro vector idênticos à {\vec{b}}.Neste caso, teremos o vector {2 \ \vec{b} }. Veja a figura a seguir.

  • Em seguida, na extremidade do vector {3\vec{a}} traçamos uma imagem do vector {2\vec{b}} e na extremidade do vector {2\vec{b}} traçamos uma imagem do vector {3\vec{a}}.Veja a figura a seguir.

  • Em seguida, traçamos o vector resultante que terá como origem o ponto onde ambas origem dos dois vectores ({3 \vec{a}} e {2 \vec{b}}) se encontravam, e terá como extremidade o ponto de intercessão das extremidades das imagens ({3 \vec{a'}} e {2 \vec{b'}}).

    Então, na figura anterior, obtemos o vector {\vec{c}}.

 

 

Exercício 13 Determine a distância entre os corpos A e B na figura:

Resolução 13

Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir.

Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano.

A Relação é:

\displaystyle d(A;B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Neste caso, {x_A=5; \ y_A=15; \ x_B= 25; \ y_B=5}.

Então, substituindo os valores na relação anterior, teremos:

\displaystyle d(A;B)=\sqrt{(25-5)^2+(5-15)^2}

Resolvendo, teremos:

\displaystyle d(A;B) = \sqrt{(20)^{2} \ + \ (-10)^{2}}

\displaystyle d(A;B) = \ 22,36 \ m

Logo, a distância entre os corpos A e B é igual a {22,36 \ m}.

 

 

Exercício 14

Sendo {\vec{v_{1}} \ = \ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ + \ 4 \vec{e_{z}}} e {\vec{v_{2}} \ = \ 5 \vec{e_{y}} \ - \ 2 \vec{e_{z}}} Determine o módulo de {\vec{v} \ = \ \vec{v_{1}} \ + \ \vec{v_{2}}}

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 14 Para determinarmos o módulo do vector {\vec{v}}, é necessário que se conheça ou que se determine o vector {\vec{v}}

Sendo este vector{(\vec{v})} a soma entre os vectores {\vec{v_{1}}} e {\vec{v_{2}}}, teremos:

\displaystyle \vec{v} \ = \vec{v_{1}} \ + \ \vec{v_{2}}

Substituindo as componentes, obtemos:

\displaystyle \vec{v} \ = (\ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ +?\ 4 \vec{e_{z}}) \ + \ (5 \vec{e_{y}} \ - \ 2 \vec{e_{z}})

Efectuando a operação, teremos:

\displaystyle \vec{v} \ = \ 3 \vec{e_{x}} \ + \ 7 \vec{e_{y}} + \ 2 \vec{e_{z}}

Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes.

Então, podemos determinar o módulo do vector {\vec{v}} a partir da seguinte relação:

\displaystyle |\vec{v}| \ = \ \sqrt{x^{2} \ + \ y^{2} \ + \ z^{2}}

Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector {\vec{v}} , teremos:

\displaystyle |\vec{v}| \ = \ \sqrt{(3)^{2} \ + \ (7)^{2} \ + (2)^{2}}

Resolvendo:

\displaystyle |\vec{v}| \ = \ 7,87

Logo, o vector {\vec{v}} tem o módulo igual a {7,87} unidades.

Note: No calculo do módulo de {\vec{v}} não usamos os vectores {e_{x}, \ e_{y}, \ e \ e_{z}}. Estes vectores são unitários. Só servem para indicar as direcções.

 

Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?

NÍVEL DE DIFICULDADE: Regular.

Resolução 15

Este exercício é um problema simples de Geometria Analítica.

Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações.

Consideramos que {x \ } é o módulo de um dos vectores e {\ y}O módulo de outro vector, então:

  • {x \ + \ y \ = \ 7} De acordo com a primeira condição dada no problema.

Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura.

Se { | \vec{v_{1}}|= \ x}, {|\vec{v_{2}} | = \ y} e o {|\vec{v}|=5}, então, pelo Teorema de Pitágoras, teremos :

{x^{2} \ + \ y^{2} \ = \ (5)^{2}}

Formando um sistema de equações com duas equações obtidas das condições, teremos:

\displaystyle \left\{\begin{array}{cccccc} x & + y & = & 7\\ x^{2} & + & y^{2} & = & 25\\ \end{array}\right.

Isolando {y} na equação 1 substituindo na equação 2, teremos:

\displaystyle \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & y^{2} & = & 25 \end{array}\right. \Rightarrow \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & (7 \ - \ x)^{2} & \ = \ & 25 \end{array}\right.

\displaystyle \Rightarrow x^{2} \ + \ (7 \ - \ x)^{2} \ = \ 25

Desfazendo a diferença de quadrado e efectuando as operações, teremos:

\displaystyle x^{2} \ - \ 7 \ x \ + \ 12 \ = \ 0

Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos:

\displaystyle x_{1,2} \ = \dfrac{-b \pm \ \sqrt{b^{2} \ - \ 4 \ a \ c}}{2 \ a}

,onde {a \ = \ 1} , {b \ = \ - \ 7} e {c \ = \ 12}.

Substituindo os valores e resolvendo, teremos como resultado {x_{1} \ = \ 3} e {x_{2} \ = \ 4}

Substituindo os valores de {x_{1}} e de {x_{2}} na primeira equação do sistema, e calculando os valores correspondentes de {y}, teremos as seguintes valores para {y } : {y_1 \ = \ 4 \ e \ y_2 \ = \ 3}

Logo, temos como solução : s = { \left\{\begin{array}{cccccc} (x = 4, &y = 3)\\ (x = 3, &y = 4) \end{array}\right. }

Ambas as as soluções são aceitáveis e permutadas entre si.

Desta feita, dois vectores são: {4 \ m \ e \ 3 \ m}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 2)

 

Exercício 11 Três espelhos interceptam-se em ângulos rectos.Um feixe de luz atinge o primeiro deles com um ângulo {\theta} (ver figura ao lado) .a)Mostre que quando esse raio é refletido pelos outros dois espelhos e cruza o raio original,o ângulo entre esses dois raios será {\alpha = \ \ 180^{o}-2\theta} e determine o ângulo {\theta} para o qual os dois raios serão perpendiculares quando se cruzam?

.NÍVEL DE DIFICULDADE: Regular.

.

Resolução 11 .

Redesenhando a figura. Na figura o ponto de intersecção entre o raio incidente e o primeiro espelho espelho chamamos de {B}.

O raio que se reflecte deste ponto vai incidir no outro ponto do segundo espelho, que chamamos de {C}.

Raio reflectido do ponto {C} vai incidir no outro ponto do terceiro espelho que chamamos de {D}.

O raio reflectido do ponto {D} vai cruzar-se com o raio incidente num ponto que chamamos {A}.

O ângulo de incidência e reflexão no ponto {C} chamamos de {z}. O complementar de {z} chamamos de {\varphi}.

O ângulo de incidência e reflexão no ponto {D} chamamos de {\beta}. O complementar de {\beta} chamamos de {\Psi}.

O complementar de {\theta} chamas de {\chi}.

Marcamos ainda os .s é eficaz conforme indicado na figura.

Da figura, no ponto B, analisando entre o espelho e a sua normal, temos:

\displaystyle \chi \ + \theta = \ \ 90^{o}

pelo triângulo BHC, pelo teorema da soma dos ângulos internos, temos temos :

\displaystyle \chi \ + \varphi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \chi \ + \varphi = \ \ 90^{o}

Subtraindo ambas equações dos passos anteriores, obtemos :

\displaystyle \varphi = \ \theta

Pelo teorema de ângulos internos no triângulo CDG, temos :

\displaystyle \varphi \ + \Psi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \varphi \ + \Psi = \ \ 90^{o}

Pelo teorema de ângulos internos no triângulo ADF, temos :

\displaystyle y \ + \ 90^{o} \ + \Psi = \ \ 180^{o} \Rightarrow

\displaystyle y \ + \Psi = \ \ 90^{o}

Subtraindo esta última pela equação do passo anterior, obtemos :

\displaystyle y = \ \varphi

Como {\varphi = \ \theta}, obtermos:

\displaystyle y = \ \theta

No quadrilátero {ABCD} temos :

\displaystyle 2y \ + \alpha = \ \ 180^{o} \Rightarrow \alpha = \ \ 180^{o} \ - \ 2y

Substituindo {y = \ \theta}, obtemos:

\displaystyle \alpha = \ 180^{o} \ - \ 2\theta

Exercício 12 Um feixe de luz emitido por um laser,incide sobre a superfície da água de um aquário,como representado nesta figura :

O fundo desse aquário é espelhado ,a profundidade da agua é de 40 cm e o ângulo de incidência do feixe de luz é de {50^{o}}. Qual é a distância entre os pontos A e C da figura?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 12 .

Dados

{n_{agua} = \ \ 1,33}

{h = \overline{BO}= \ \ 40 \ cm}

{\varphi = \ \ 50^{o}}

{ \overline{AC} \rightarrow \ ?}

.

No problema, a luz incide a partir do ar para a água. Toca na água no ponto A e refracta-se na água. É reflectida no ponto B(no espelho que está no fundo) e retorna à superfície de separação água-ar. No ponto C, faz refracção novamente para o Ar.

Para acharmos a distância AC devemos calcular o ângulo que o feixe de luz faz com a normal na água (usando a lei de Snell-Descartes), e combinando estes valores com a profundidade, no triângulo ABC.

.

Redesenhando a figura,temos :

Pela lei de Snell, no ponto A, podemos determinar o ângulo de refração. Temos :

\displaystyle n_{ar} \ sen 50^{o} = \ \ n_{agua} \ . sen \theta

Isolando o seno, no membro esquerdo, temos:

\displaystyle sen \theta = \ \dfrac{n_{ar} \ sen 50^{o}}{n_{agua}} = \ \dfrac{1. \ sen 50^o}{1,33}

\displaystyle \Rightarrow \theta =\ arcsen({ \dfrac{1. \ sen 50^o}{1,33}}) = \ 35,15^{o}

Se considerarmos o ponto médio do segmento {\overline{AB}}, que chamamos de {D}, então o triângulo ABD é rectângulo. O ângulo interno do vértice B é igual a {\theta } e {\overline{AD}=\overline{AC}/2}. Então:

\displaystyle tg \theta= \ \dfrac{\overline{AD}}{\overline{BD}} = \ \dfrac{\dfrac{\overline{AC}}{2}}{h} = \ \dfrac{\overline{AC}}{2h}

\displaystyle \Rightarrow \overline{AC} = \ 2h \ . \ tg \theta

Substituindo valores, obtemos:

\displaystyle \overline{AC} = \ 2 \ . \ 40 \ cm \ . \ tg \ (35,15^o) \Rightarrow \overline{AC} = \ 56,37 \ cm

.

Exercício 13 Um rapaz em repouso na rua,vê sua imagem reflectida por um espelho plano preso verticalmente na traseira de um autocarro que se afasta com a velocidade escalar constante de {20 \ m/s}. Qual é a velocidade de afastamento da imagem em relação ao rapaz?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 13 Neste problema temos de analisar não só a velocidade com o espelho se afasta do rapaz, mas também a velocidade com que a sua imagem (que o espelho produz) se afasta dele.

O melhor raciocínio mais simplificado, consiste em estabelecer o espelho como referencial de analise e depois achar a velocidade relativa.

A medida que o autocarro se move para a direita, automaticamente o espelho também se move para a direita. como o movimento é relativo, podemos considerar que o autocarro e o espelho estão em repouso e o rapaz ({AB}) é que se está a mover no sentido oposto (para a esquerda), com a mesma velocidade.

Se o rapaz, que é o nosso objecto óptico({AB}), se move para esquerda com velocidade v, então a sua imagem formada pelo espelho ({A'B'}) se afasta do espelho para direita com velocidade {v'}.

Vamos estabelecer as equações do movimento no 1ª referencial (com origem no espelho) e depois amos fazer a transformação de Galileu par o 2º Referencial (com origem no rapaz). Veja a figura.

Pela lei da reflexão, em qualquer momento:

\displaystyle \Delta x_{e} = \Delta x_{i}

Portanto :

\displaystyle -v \cdot t = v' \cdot t

\displaystyle \Rightarrow -v = v'

\displaystyle \Rightarrow |v| = |v'|

Então , neste referencial (Referencial 1), temos:

\displaystyle x_{Rap-Ref1}=x_{0Rap} - v. t

\displaystyle x_{Esp-Ref1}=0

\displaystyle x_{Rap-Ref1}=x_{0Rap} + v.t

.

Se estabelecermos um novo referencial (no rapaz), então este referencial 1 (com origem no espelho) está em movimento em relação ao novo referencial 2 (com origem no rapaz), com velocidade v.

A transformação de galileu diz que: {x_{Ref2}=x_{Ref 1} - v. t}.

Então para o rapaz( que no referencial 1 estava em movimento regressivo com velocidade v) teremos:

\displaystyle x_{Rap-Ref2}=x_{Rap-Ref 1} + v. t

\displaystyle x_{Rap-Ref2}=(x_{0Rap}-v.t) + v. t

\displaystyle x_{Rap-Ref2}=x_{0Rap}

Neste novo referencial, o rapaz está repouso.

.

Para o espelho/autocarro( que no referencial 1 estava em repouso na origem) teremos:

\displaystyle x_{Esp-Ref2}=x_{Esp-Ref 1} + v. t

\displaystyle x_{Esp-Ref2}=0 + v. t

\displaystyle x_{Esp-Ref2}= v. t

Neste novo referencial, o espelho/autocarro estão em movimento com velocidade v (conforme enunciado).

Para a imagem (que no referencial 1 estava em movimento progressivo com velocidade v) teremos:

\displaystyle x_{Im-Ref2}=x_{Im-Ref 1} + v. t

\displaystyle x_{Im-Ref2}=(x_{0Im}+v.t) + v. t

\displaystyle x_{Im-Ref2}= x_{0Im} + 2 v t

Neste novo referencial,imagem está em movimento com velocidade 2v .

Neste caso, a velocidade da imagem é:

\displaystyle v_{im}= \ 2.v= \ 2.20=40 \ m/s

Exercício 14 Um nativo de uma aldeia pesca em uma lagoa de água transparente. Para isso usa uma lança. Ao observar um peixe, ele atira a sua lança na direcção em que o observa. O jovem está fora da água e o peixe está em 1 m abaixo da superfície. O peixe está a uma distancia horizontal de {0,9 \ m} do ponto aonde a lança atinge a superfície da água. Para essas condições determine :

a)O ângulo {\alpha},de incidência da luz na superfície da agua-ar.

b)O ângulo {\beta} que a lança faz com a superfície da água quando tenta alcançar o peixe.

c)A profundidade aparente y,da superfície da água em que o nativo vê o peixe.

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 14

Dados

{n_{ar} = \ \ 1}

{n_{agua} = \ \ 1,33}

{\alpha \ - \ ?}

{\beta \ - \ ?}

{y = \ \overline{DE} - \ ?}

Neste problema, temos analise baseadas na refracção da luz. O Peixe está no Ponto O nativo, na beira do rio, vê como se o peixe estivesse no ponto D (que é a imagem virtual do ponto C) formada pela refracção da luz na superfície. O ponto A é o ponto onde ocorre a refracção. O ângulo {\alpha} é o ângulo de incidência da luz que sai do peixe e incide no ponto A. O ângulo {\theta } é o ângulo de refracção da luz no ponto A. ângulo {\beta } é complementar de {\theta}

  1. Para encontramos o ângulo {\alpha}, vamos aplicar a relação para as razões trigonométricas no triângulo rectângulo ABC. Sendo {\overline{AB}} cateto adjacente, {\overline{BC}} cateto oposto e{\overline{AC}} a hipotenusa, teremos:

    \displaystyle tg \alpha = \ \dfrac{\overline{BC}}{\overline{AB}} = \ \dfrac{0,9}{1}

    \displaystyle \Rightarrow \alpha =arctg ( \ \dfrac{0,9}{1})= \ 41,99^{o}

    \displaystyle \alpha = \ 41,99^{o}

  2. Como {\beta} é o complementar de {\theta}, então, acharemos primeiro o {\theta} e com ele acharemos o {\beta}. O {\theta} será obtido pela lei da refracção:

    \displaystyle n_{ar} \ sen \theta = \ \ n_{agua} \ sen \alpha

    Insolando o seno de { \theta }, temos:

    \displaystyle \ sen \theta = \ \ \dfrac{ \ n_{agua} \ . \ sen \alpha}{n_{ar}} = \ \dfrac{ \ 1,33. \ sen(41,99)}{1}

    Neste caso:

    \displaystyle \theta = arcsen ( \dfrac{1,33. \ sen(41,99)}{1})

    \displaystyle \Rightarrow \theta = \ \ 62,85^{o}

    Como {\theta \ + \beta = \ \ 90^{o}}, então:

    \displaystyle \beta = \ \ 90^{o} \ - \theta = \ \ 90^{o} \ - \ 62,85^{o}

    \displaystyle \Rightarrow \beta = \ 27,15^{o}

  3. A profundidade aparente do peixe, neste caso, corresponde ao segmento {\overline{DE}}. Para achar o seu valor, usaremos o triângulo ADE. Para este triângulo, temos:

    \displaystyle tg \beta = \ \dfrac{\overline{DE}}{\overline{AE}} \ \dfrac{y}{x}

    \displaystyle \Rightarrow y = \ x \ tg \ (\beta)

    \displaystyle \Rightarrow y = \ 0,9\ tg \ ( 27,15^{o})

    \displaystyle y = \ 0,46 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 1)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 1 .

A equação de um MHS é dada por { x=0,5 \sin 10 \pi t (SI)}.

Determina o número de ciclos feitos em { 10 \ s } de oscilação.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

A equação de um MHS é geralmente dada na forma { x= A \cdot \sin (\omega \cdot t+\varphi_0 }. .

Comparando, termo a termo, com a equação dada no enunciado, temos que:

\displaystyle A=0,5 \ m

\displaystyle w=10 \ \pi \ rad/s

\displaystyle \varphi_0=0 \ rad

As unidades dos resultados estão no SI pois o enuanciado assim indica.

Para conseguir calcular o número de ciclos feitos em { 10 \ s} precisasse saber quantas oscilações são feitas em {1 \ s} (a frequência da oscilação).

Para o MHS, {\omega} é dado por:

\displaystyle \omega=2 \pi \cdot f

Logo:

\displaystyle \omega=2 \cdot \pi \cdot f

Substituindo o valor de {\omega} dos dados, obtemos:

\displaystyle 10 \pi = 2 \cdot \pi \cdot f

Isolando {f}:

\displaystyle f= \frac{10 \pi}{2 \pi}=5 \ Hz

Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por:

\displaystyle f= \frac{N}{t}

\displaystyle \Rightarrow N= f \cdot t

substituindo valores, obtemos:

\displaystyle N=5 \cdot 10

Em { 10 \ s} de oscilações são realizados 50 ciclos.

.

Exercício 2 Uma partícula realiza um MHS, cuja equação horária é { x=5 \cos (\dfrac{\pi}{4} t } SI.

  1. Determine o período do MHS.
  2. Esboce o gráfico da velocidade em função do tempo.

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.

  1. A equação horária de um MHS pode ser dada na forma { x=A \cos(\omega t+\varphi_0)}.Comparando, termo a termo, com a equação dada no enunciado ({x=5 \cos (\dfrac{\pi}{4} t }), obtemos:

    \displaystyle \omega=\frac{\pi}{4} \ rad/s

    Sabendo que { \omega=\frac{2\pi}{T} },logo:

    \displaystyle T=\frac{2\pi}{\omega}

    Substituindo os dados:

    \displaystyle t= \frac{2\pi}{\pi /4}

    \displaystyle T=8 \ s

  2. Para se esboçar o gráfico da velocidade em função do tempo precisamos construir uma tabela que relaciona as duas grandezas({v} e {t}).Para isso, precisamos escrever a equação da velocidade em função do tempo.
    Sabe-se que a velocidade é dada pela derivada da posição em função do tempo, temos:

    \displaystyle v=\frac{dx}{dt}

    \displaystyle \Rightarrow v=\frac{d}{dt} [5 \cos(\frac{\pi}{4}t)]

    \displaystyle \Rightarrow v= -5 \cdot \frac{\pi}{4} \sin ( \frac{\pi}{4}t)

    \displaystyle v= -1,25\pi \sin (\frac{\pi}t)

A tabela será construida atribuindo diversos valores a {t} e calculando os valores correspondentes de {v}. Escolhemos os valores de {t} de 0, 2, 4, 6, 8 e 10 s.

Lançando os valores num sistema de coordenadas cartesianos {(t;v)} e interpolando os pontos, obtemos um gráfico similar ao da figura abaixo:

Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de {v} em relação a {t} é .

Exercício 3 .

Uma partícula descreve um MHS segundo a equação {x=0,5 \cos( \pi / 3+2 \pi t) }, no SI.Obtenha.

  1. A correspondente equação da velocidade.
  2. O módulo da máxima velocidade atingida por essa partícula.

NÍVEL DE DIFICULDADE: Elementar

Resolução 3 .

Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.

  1. A equação da velocidade de uma partícula em MHS é dada pela derivada da equação da posição em função do tempo, ou seja:

    \displaystyle v(t)=\frac{d}{dt}x

    \displaystyle \Rightarrow v(t)=\frac{d}{dt}[0,5 \cos(\frac{\pi}{3} +2 \pi t)]

    Derivando, obtemos:

    \displaystyle v{t}=-0,5 \cdot 2 \pi \sin( \frac{\pi}{3} +2 \pi t)

    \displaystyle \Rightarrow v_{t}=-\pi \sin(\frac{\pi}{3} +2 \pi t)

  2. A velocidade num MHS é máxima quando { \sin( \varphi_0+ \omega)=1}. Logo:

    \displaystyle v_{max}=\pi \ m/s

Exercício 4 .

Considere o MHS dado no gráfico. Escreva sua equação.

NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

O Problema ilustra o gráfico de {x(t)} de um MHS. Para escrevermos a equação deste MHS, devemos determinar em primeiro lugar os seus parâmetros ({A}, {\omega} e {\varphi_0}). Estes parâmetros são determinados no gráfico.

A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de {t} (valor de equilíbrio é 0), então a amplitude é o maior valor de x a se registar na curva.

O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida.

A equação do movimento de um MHS é dada na forma { x = A \sin (\omega t + \varphi_0)}.

Com base na análise, é possível concluir que:

A amplitude { A=3 \ cm} ou { A=0,03 \ m} .

No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é {90^o=\pi / 2 \ Rad}. Neste caso, para obter a fase inicial, teremos:

\displaystyle \omega t + \varphi_0= \pi/2

\displaystyle \Rightarrow \omega \cdot 0 + \varphi_0= \pi/2

\displaystyle \Rightarrow \ \varphi_0= \pi/2

O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação.

Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que:

\displaystyle T/2= 4 s

\displaystyle \Rightarrow \ T= 4\cdot 2

\displaystyle \Rightarrow \ T= \ 8 \ s

Sabendo que { \Rightarrow=2 \pi /T}, logo:

\displaystyle \omega =2 \pi /8

\displaystyle \Rightarrow \omega = \frac{1}{4} \pi \ rad/s

Por fim, substituindo os dados na equação da oscilação ({ x = A \sin (\omega t + \varphi_0)}), obtemos:

\displaystyle x = 0,03 \sin (\frac{1}{4} \pi t + \dfrac{\pi }{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 5)

Exercício 20 Uma chita pode acelerar de {0} a {96 \ km} em {2 \ s}, enquanto um carro, em média atinge a mesma velocidade final em {4,5 \ s}. Calcular as acelerações média dos dois. NÍVEL DE DIFICULDADE: Elemntar.
Resolução 20 .

A conversão de {96 \ km} para {m/s}, é feita pela regra de 3 simples conforme os exercícios anteriores.

Para a Chita, temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 2 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{2}=13,4 \ m/s^2

Para o carro,temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 4,5 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{4,5} = 5,9 \ m/s^2

.

Exercício 21 Um móvel fazendo a trajectória rectilínea {A-B-C}, tem a velocidade dada no gráfico ao lado.

Determinar:

  1. A velocidade média deste movimento.
  2. A aceleração média do mesmo.

NÍVEL DE DIFICULDADE: Regular.

Resolução 21 .

Diante de um problema gráfico ({v\cdot t}), é válido lembrar que área de baixo da curva determina o espaço total percorrido pelo móvel. No gráfico {v\cdot t}, a inclinação da recta, determina à aceleração.

  1. Para determinar a velocidade média, precisamos conhecer o deslocamento total e o tempo total. O tempo pode ser obtido directamente no gráfico. Para o deslocamento, ele deve ser calculado. Podemos usar dois raciocínios: o calculo da área ou a determinação dos parâmetros cinemáticos deste movimento. Para efeitos de familiarização, dado que temos dois tempos de movimentos ( Um MRUV acelerado de A para B e um MRUV retardado de B para C), vamos usar os dois métodos. Vamos usar a determinação de parâmetros para o movimento de A para B e vamos usar o cálculo de área de B para C. Em qualquer dos casos, os dois métodos são válidos. Cabe a quem resolve escolher.
    1. Determinando a aceleração de {A\longrightarrow B} (Determinação dos parâmetros):

      \displaystyle \left.\begin{array}{cccccccc} t_o = 0 \ s, v_o = 20 \ m/s\\ t= 40 \ s, v = 60 \ m/s\\ \end{array}\right\} \Rightarrow a = \frac{\Delta v}{\Delta t} = \frac{60 - 20}{40 - 0} = 0,5 \ m/s^2

    2. Determinando do correspondente deslocamento {A\longrightarrow B}:

      \displaystyle s = s_o + v_o\cdot t + \frac{1}{2}a\cdot t^2

      \displaystyle s = (20)(40) + \frac{1}{2}(0,5)(40)^2

      \displaystyle s = 1200 \ m

    3. Determinando o espaço percorrido {B\longrightarrow C} (cálculo de área):

      \displaystyle s_{\Delta} = Area = \frac{20\cdot 40}{2} = 600 \ m

    4. Neste caso, o deslocamento total é:

      \displaystyle \Delta s = 1200 + 600 = 1800 \ m

    5. Logo, a velocidade média será:

      \displaystyle v_{med} = \frac{\Delta s}{\Delta t} = \frac{1800}{60} = 30 \ m/s

  2. Aceleração média.

    \displaystyle a_{med} = \frac{v_{final}-v_{0}}{\Delta t} = \frac{0-20}{60} \approx -0,33 \ m/s^2

Exercício 22 Uma pessoa caminha {100 \ m} em {12 \ s} numa certa direcção e depois caminha na direção oposta passando {50 \ m} durante {30 \ s}. Calcule (a) a velocidade média definida pelo caminho percorrido e (b) a velocidade média definida pelo deslocamento. NÍVEL DE DIFICULDADE: Regular.
Resolução 22 .

Para o problema em questão, devemos entender a diferença entre deslocamento e distância percorrida. O deslocamento é o vector que une a posição inicial à posição final de um móvel, sem se importar pelo trajecto do mesmo. O seu modulo equivale a distancia entre a origem e o destino do móvel. A distancia percorrida é o somatório escalar de todo o caminho percorrido pelo móvel, levando em conta a sua trajectoria e eventuais mudanças de direcção.

Na figura, observamos que o móvel sai da posição {x_1}, vai para a posição {x_2} e depois vai (em sentido oposto) para a posição {x_3}. Se tomarmos {x_1=0}, então {x_2=100 \ m} e {x_3=50 m} (recuando 50 m a partir de {x_2}).

Neste caso o deslocamento será {\Delta x= x_3 - x_1 = \ 50 - 0= \ 50m}.

A distancia percorrida será: {d= \ d_1+d_2= \ 100+50= \ 150 \ m}.

  • A velocidade média definida pelo caminho percorrido será:

    \displaystyle v_{med} = \dfrac{d}{\Delta t} = \dfrac{150}{30 + 12}

    \displaystyle v_{med} = 3,75 \ m/s

  • A velocidade média definida pelo deslocamento será:

    \displaystyle v_{med} = \dfrac{\Delta x}{\Delta t} = \dfrac{50}{30+12}

    \displaystyle v_{med} \approx 1,19 \ m/s

.. Note que é a duração de todo o movimento, e como o tempo não recua, então sempre {\Delta t = \ 30+12= \ 42 \ s}. Estes tempos refere-se a intervalos de tempo, por isso somamos. Se fossem instantes de tempo, deveríamos subtrair.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)

Exercício 13 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Dados .

{ v= \dfrac {5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \cdot t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \cdot t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \cdot t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s} é:

\displaystyle x= 5 + 2,5 \cdot 25= 67,5 \ m

\displaystyle x=67,5 \ m

Exercício 17 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 17 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \dfrac {\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \dfrac {\Delta s}{v}

Substituindo os dados na fórmula anterior, obtemos:

\displaystyle \Delta t = \dfrac {10,000 \ m}{1,5 \ m/s} = 6,66 \cdot 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \cdot 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h \rightarrow 3600 \ s \\ x \rightarrow 6,66 \cdot 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 3600 \ s= 1 \ h \cdot 6,66 \cdot 10^3 \ s

\displaystyle \Rightarrow x = \dfrac {1 \ h \cdot 6,66 \cdot 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante {t_1} está {x_1 = 3,0\cdot 10^{12} \ m}, em relação ao sol. Um ano depois, está em {x_2 = 2,1\cdot 10^{12} \ m}. Achar o seu deslocamento e a sua velocidade média.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 19 .

Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal.

\displaystyle Deslocamento

\displaystyle \Delta x = x_1 - x_2

\displaystyle \Delta x = 3,0\cdot 10^{12} - 2,1\cdot 10^{12}

\displaystyle \Delta x = 0,9\cdot 10^{12} \ m

\displaystyle \Delta x = 9,0\cdot 10^{8} \ km

\displaystyle Intervalo \ de \ tempo

\displaystyle \Delta t = 1 \ ano = 365 \ dia

\displaystyle \Delta t = 8760 \ h

A velocidade média será:

\displaystyle v_{med} = \frac{\Delta x}{\Delta t} = \frac{9,0\cdot 10^8 \ km}{8760 \ h}

\displaystyle v_{med} = 1,02\cdot 10^5 \ km/h

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  • Deixe a sua interacção nos comentários deste Post;
  • Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  • Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação (Parte 2)

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 4 Dois trens de pulso de certa radiação electromagnética são criados simultaneamente, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com comprimento de {L_1 = \ 125 \ m} e {L_2 = \ 70 \ m}. O trem de pulso 1 passa pelo material de índice de refração {n_1}. O trem de pulso 2 passa pelo material de índice {n_2}.

  1. Sendo que a parte externa é o ar, e { n_1 = \ 1,5}, qual deverá ser o valor de {n_2} para que os pulsos cheguem ao mesmo tempo na tela.
  2. Qual é a diferença entre o tempo de chegada dos dois pulsos no caso em que {n_2 = \ 1,5}.

NÍVEL DE DIFICULDADE: Regular.

 

Resolução 4

    1. .
  1. Para que os trens de pulsos das ondas cheguem na tela ao mesmo tempo é os caminhos ópticos sejam iguais. Como temos 3 materiais, é necessário apenas comparar o trajecto aonde há diferença de índices de refração. Neste caso, o trem pulso 1 passa pelo material de índice de refração {n_1}. Analisaremos o trajecto de B-E. O trem de pulso 2 passa pelo material de índice {n_2} e depois passa por um percurso de ar, até chegar ao ponto D que está alinhado com o ponto E. Analisaremos o trajecto B-C-D.

    A condição para que cheguem ao mesmo tempo é que os caminhos ópticos sejam iguais. Note que o caminho óptico é defino pela relação:

    \displaystyle \textless AB \textgreater = \int_{A}^{B} n \cdot dl

    Para meios em que { n=const \ \Rightarrow \textless AB \textgreater = \bar{AB} \cdot n }.

    Então:

    \displaystyle \textless AE \textgreater = \textless BD \textgreater \Rightarrow \textless AE \textgreater = \textless BC \textgreater + \textless CD \textgreater

    \displaystyle \Rightarrow \bar{AE} n_1 = \bar{BC} n_2 + \bar{CD} n_{Ar}

    onde: {n_{Ar} = \ 1}. Logo, isolando {n_2}, obtemos:

    \displaystyle n_2= \frac{\bar{AE} n_1 - \bar{CD} n_{Ar}}{ \bar{BC}}= \frac{ L_1 n_1 - (L_1 - L_2 )}{ L_2}

    \displaystyle n_2 = \frac{ 125 \cdot 1,5 - (125 - 50 )}{ 50}=1,89

     

  2. Para este caso, o tempo de passagem no troço em análise será determinada pela equação do MRU, considerando a velocidade de propagação {c} e o caminho óptico..

    Neste caso, para o trem 1:

  3. \displaystyle c= \frac{ \textless AE \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{\bar{AE} n_1}{c}= \frac{125*1,5}{3\cdot10^8}= \frac{125*1,5}{3\cdot10^8}=6,25 \cdot 10^{7} s

    Para o trem 2:

    \displaystyle c= \frac{ \textless BD \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless BC \textgreater + \textless CD \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{L_2 n_2 + (L_1 - L_2) n_{Ar} }{c}= \frac{70 \cdot 1,5 + (150 - 70) \cdot 1}{3 \cdot 10^8} =5,33 \cdot 10^{7} s

    Neste caso, diferença de tempos é:

    \displaystyle |t_2 - t_1 |= | 6,25 \cdot 10^{7} - 5,33 \cdot 10^{7} | = 0,92 \cdot 10^{7} s

    Como a seguir aos pontos D e E o material é comum aos dois trens de pulsos, então esta diferença mantém-se até o final.

Exercício 5 Na figura a seguir, dois pulsos electromagnéticos são criados em simultâneo, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com índice de refração {n_{1} = \ 1,4; \ n_{2} = \ \ 1,7; \ n_{3} = \ \ 1,95; \ n_{4} = \ \ n_{5} = \ \ 1,2; \ n_{6} = \ \ 1; \ n_{7} = \ \ 1,3}.O valor de L é 25 m.Qual pulso chegará primeiro e qual é a diferença entre o tempo de chegada dos dois pulsos?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 5 \vspace{0,3cm}

Para não termos de calcular o tempo em cada porção, podemos usar o conceito de caminho óptico. Neste conceito, em vez de se considerar que o índice de refração afecta a velocidade, ele será visto como afectando apenas o percurso. Pelo que, podemos considerar que a luz sempre se propaga com a mesma velocidade {c}. Neste caso, temos apenas de calcular os dois caminhos ópticos e depois calcular os temos.

Para o pulso 1:

\displaystyle \textless l_1 \textgreater = L \cdot n_1 +L \cdot n_2 + L \cdot n_3 + L \cdot n_4 = \ L \cdot (n_1 + n_2 + n_3 + n_4)

\displaystyle \Rightarrow \textless l_1 \textgreater = \ 25 \cdot (1,4 + 1,7 + 1,95 + 1,2)=156,25 \ m

Neste caso, o tempo será obtido a seguir:

\displaystyle c= \frac{ \textless l_1 \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless l_1 \textgreater }{c}= \frac{156,25}{3\cdot10^8}=5,21 \cdot 10^{7} s

Para o pulso 2:

\displaystyle \textless l_2 \textgreater = 2L \cdot n_5 +L \cdot n_6 + L \cdot n_7 = \ L \cdot (2 n_5 + n_6 + n_7)

\displaystyle \Rightarrow \textless l_2 \textgreater = \ 25 \cdot (2 \cdot 1,2 + 1 + 1,3)=117,5 \ m

Neste caso, o tempo deste pulso será obtido a seguir:

\displaystyle c= \frac{ \textless BD \textgreater }{t_2} \Rightarrow t_2 = \frac{ \textless l_2 \textgreater }{c} = \frac{117,5}{3 \cdot 10^8} =3,92 \cdot 10^{7} s

Como a seguir a este trecho, o material é comum aos dois pulsos, então esta diferença mantém-se até o final.

Neste caso, diferença de tempos é:

\displaystyle |t_2 - t_1 |= | 3,92 \cdot 10^{7} - 5,21 \cdot 10^{7}| = 1.29 \cdot 10^{7} s

Como {t_1 \textgreater t_2 }, significa que o pulso 2 leva menos tempo a percorrer o trecho. Portanto, o pulso 2 chega primeiro.

— 1.2. Exercícios sobre Energia e Potência da Radiação —

Exercício 6 Uma onda electromagnética de frente plana de intensidade de {6 \ W/m^2} inside sobre uma superfície totalmente refletora de {40 \ cm^2} de área, posicionado perpendicularmente à direcção de propagação da onda.

Determine a força que a onda exerce sobre esta superfície.NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Quando uma OEM incide sobre uma superfície totalmente reflectora como o espelho, sua pressão de radiação será:

\displaystyle P_r = \ \frac{2I}{c} \ \ \ \ \ (3)

Por definição, a pressão é a força por unidade de área:

\displaystyle P = \ \frac{F}{A} \ \ \ \ \ (4)

Então:

\displaystyle P_r = \ \frac{2I}{c} \Rightarrow \frac{F}{A} = \ \frac{2I}{c} \Rightarrow F = \ \frac{2AI}{c}

Substituindo:

  • \displaystyle F = \ \frac{2 \cdot 40 \cdot 10^{-4} \cdot 6}{3 \cdot 10^8} = \ 1,6 \cdot 10^{-10} N

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 1 Uma onda electromagnética com frequência de 65 Hz desloca-se em um material magnético isolante que possui constante dieléctrica relativa é igual à 3,64 e a permeabilidade magnética relativa é igual à 5,18 nessa frequência. o campo eléctrico possui amplitude de {7,2 \cdot 10^{-3} \ V/m}.

  1. Calcule a velocidade de propagação da onda?
  2. Qual é o comprimento de onda?
  3. Qual é a amplitude do campo magnético?NÍVEL DE DIFICULDADE: Regular.
Resolução 1

Dados

{f = \ 65 Hz}

{\varepsilon_r = \ 3,64}

{\mu_r = \ 5,18}

{E_0 = \ 7,2 \cdot 10^{-12} \ v/m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\Pi \cdot 10^{-7} \ Wb/Am}

{\textbf{a)}v-? \ \ textbf{b)} \lambda-? \ \textbf{c)}H_0-?}

  • {v-?}Conhecemos a equação duma onda electromagnética que é:

    {\frac{\partial ^2B}{\partial t^2} = \ \frac{1}{\mu \varepsilon} \cdot \frac{\partial ^2B}{\partial x^2}}, onde {\frac{1}{\mu \varepsilon} = \ v^2} é a velocidade de propagação da onda.

\displaystyle v^2 = \ \frac{1}{\mu \ \varepsilon} \Rightarrow v = \ \sqrt{\frac{1}{\mu \varepsilon}}

{\mu} e {\varepsilon} são as constantes magnéticas e eléctricas do meio, respectivamente.

A relação entre estas e as constantes magnéticas e eléctricas relativa é a seguinte:

{\mu = \ \mu_0 \mu_r} e {\varepsilon = \ \varepsilon_0 \varepsilon_r}.

Então a velocidade de propagação da onda será:

{v = \ \frac{1}{\sqrt{\mu \varepsilon}} = \ \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}}}.

Sabe-se que:

\displaystyle c = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \ m/s

Logo:

\displaystyle v = \ \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot c = \ \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \ \frac{3 \cdot 10^8 \ m/s}{\sqrt{5,18 \cdot 3,64}} = \ 0,7 \cdot 10^8 \ m/s

  1. {\lambda-?}A onda electromagnética em questão é uma onda sinusoidal e periódica que pode ser expressa em termos dos seus campos eléctricos e magnéticos da seguinte forma:

    \displaystyle \overrightarrow {E}(x,t) = \ E_0 \cdot \cos(\omega t+ Kx) \overrightarrow{j}

    O comprimento de onde é

    \displaystyle \overrightarrow{B}(x,t) = \ B_0 \cdot \cos(\omega t+ Kx) \overrightarrow{k}

    Para as ondas, a velocidade obedece a relação:

    {v = \ \dfrac{\lambda}{T}}, e sabemos que {T = \ \frac{1}{f}}

    \displaystyle \Rightarrow \lambda = \ \frac{v}{f}

    \displaystyle \Rightarrow \lambda = \ \frac{0,7 \cdot 10^8 \ m/s}{65 \ s^{-1}} = \ 0,011 \cdot 10^8 \ m = \ 1,1 \cdot 10^6 \ m = \ 1100 \ Km

     

  2. {H_0-?}Utilizando a relação das amplitudes dos campos eléctricos e magnéticos na Onda Electromagnética (O.E.M.), temos:
  3. \displaystyle \sqrt{\varepsilon_0 \varepsilon_r} \cdot E_0 = \ \sqrt{\mu_0\mu_r} \cdot H_0

    \displaystyle H_0 = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r} E_0}{\sqrt{\mu}_0 \mu_r} = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r}}{\sqrt{\mu_0 \mu_r}} \cdot E_0

    \displaystyle \Rightarrow H_0 = \ \sqrt{\frac{\varepsilon_0 \varepsilon_r}{\mu_0 \mu_r}} \cdot E_0 = \ \sqrt{\frac{8,85 \cdot 10^{-12} \ \cdot 3,64}{4 \pi \cdot 10^{-7} \cdot 5,18}} \cdot 7,2 \cdot 10^{-3}

    \displaystyle \Rightarrow H_0 = \ 9,43 \cdot 10^{-3} \ A/m

Exercício 2 A potência irradiada pela antena de uma estação radiofónica é de 4 kW. A 4 km do transmissor foi colocada uma antena de recepção de 65 cm de comprimento. Qual é o valor de pico da f.e.m induzida por esse sinal entre as extremidades da antena receptora.

NÍVEL DE DIFICULDADE: Regular.

Resolução 2

Dados

{P = \ 4 \ kW = \ \ 4 \cdot 10^3 \ W }

{l = \ 65 \ cm = \ \ 0,65 \ m}

{r = \ 4Km = \ 4 \cdot 10^3 \ m}

{\varepsilon_{ind}-?} {\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\pi \cdot 10^{-7} \ Wb/Am}

{C = \ 3\cdot 10^8 \ m/s}

{\varepsilon = \ \oint \overrightarrow{E}d\overrightarrow{l}}

O módulo ou amplitude da f.e.m é:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l \ \ \ \ \ (1)

 

Precisamos antes determinar a amplitude do campo eléctrico {(E_0)}. Em seguida poderemos determinar {\varepsilon_ind}. A intensidade da onda é:

\displaystyle I = \ \frac{1}{2}E_0H_0 = \ \frac{1}{2}E_0(\frac{B_0}{\mu,_0}) = \ \frac{E,_0 B_0}{2\mu,_0}

Como {c = \ \frac{E_0}{B_0}\Rightarrow B_0 = \ \frac{E_0}{c}}. Então:

\displaystyle I = \ \frac{E_0 \frac{E_0}{c}}{2 \mu_0}\Rightarrow I = \ \frac{\frac{E_0}{c}}{2\mu_0} = \ \frac{E_0^2}{2c \cdot \mu_0}

Isolando {E_0}, temos:

\displaystyle E_0^2 = \ 2 \mu_0 c I \Rightarrow E_0 = \ \sqrt{2 \mu_0 c I}

A intensidade da OEM é : {I = \ \frac{P}{A} = \ \frac{P}{4 \pi r^2}}, então:

\displaystyle E_0 = \ \sqrt{2 \mu_0 c \frac{P}{4\pi \cdot r^2}} = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \ \ \ \ \ (2)

 

Substituindo esta formula na equação 1, temos:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \cdot l

\displaystyle \Rightarrow \varepsilon_{ind} = \ \frac{l}{r} \sqrt{\frac{ \mu \cdot c\cdot P}{2\pi}} = \frac{0,65 \ m}{4 \cdot 10^3 \ m} \sqrt{\dfrac{4 \pi 10^{-7} \cdot 3 \cdot 10^8 \cdot 4 \cdot 10^3}{2 \pi}}

\displaystyle \Rightarrow \varepsilon_ind = \ 0,0796 \ V

 

Exercício 3 Um condutor de resistência de 150 {\Omega} e conduz uma corrente contínua de 1 A, e emite ondas electromagnéticas, devido o aquecimento. O condutor tem 8 cm de comprimento e 0,9 nm de raio.

  1. Calcule o vector de Poynting na superfície do filamento?.
  2. Encontre as magnitudes dos campos eléctricos e magnéticos na superfície do filamento;.NÍVEL DE DIFICULDADE: Regular.
Resolução 3

Dados {R = \ 150 \Omega}

{i = \ 1A}

{l = \ 8 \ cm}

{r = \ 0,3 \ n m = \ 0,3 \cdot 10^{-3} \ m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4 \pi \cdot 10^{-7} \ Wb/Am}

{c = \ 3 \cdot 10^8 \ m/s}

.
OBS: Para distinguir intensidade da radiação da intensidade de corrente eléctrica, nomeamos {I} para Intensidade da Radiação e {i} para intensidade de corrente eléctrica.

  1. A intensidade duma O.E.M. corresponde ao valor médio do vector de poynting, assim:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| \Rightarrow |\overrightarrow{S}| = \ 2I

    A intensidade duma OEM tem relação com a potência desta onda e com a área:

    \displaystyle I = \ \frac{P}{A}

    Sabemos que a potência pode ser dada por :

    \displaystyle P = \ U \cdot i = \ (i \cdot R)i\Rightarrow P = \ i^2 \cdot R

    Para área, vamos considerar a área lateral. Modelamos o condutor como um cilindro. Então, a área lateral será: {A = \ 2 \pi \cdot r \cdot l}.

    Substituindo estas duas relações na fórmula da intensidade , temos:

    \displaystyle I = \ \frac{P}{A} = \ \frac{i^2 \cdot R}{2 \pi \cdot r \cdot l}

    Substituindo na equação do módulo vector de Poyting, obtemos:

    \displaystyle |\overrightarrow{S}| = \ 2I = \ \frac{2R \cdot i^2}{2 \pi \cdot r \cdot l} = \ \frac{2 \cdot 150 \ \Omega \cdot (1 A)^2}{2 \pi \cdot 0,9 \cdot 10^{-9} \cdot 8 \cdot 10^{-2}} = \ 1989,4 \cdot 10^3 \ W/m^2

     

  2. Sabemos que para as O.E.M.:

    \displaystyle I = \ \frac{1}{2}E_0H_0

    Mas {c = \ \frac{E_0}{B_0} \Rightarrow B_0 = \ \frac{E_0}{c}} e {H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{\mu_0 \cdot C}}

    Então:

    \displaystyle I = \ \frac{1}{2}E_0 \cdot \frac{E_0}{\mu_0 \cdot c} = \ \frac{E_0^2}{2c \cdot \mu_0}

    . Isolando {E_0} nesta equação anterior, obtemos :

    \displaystyle E_0^2 = \ 2c \cdot \mu_0 \cdot I \Rightarrow E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I}

    Já sabemos que a intensidade é:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| = \ \frac{1}{2} \cdot 1989,4 \cdot 10^3 \ W/m^2 = \ 994,7 \cdot 10^3 \ W/m^2

    Logo a amplitude do vector campo magnético será:

    \displaystyle E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I} = \ \sqrt{2 \cdot 3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7} \cdot 994,7 \cdot 10^3}

    \displaystyle E_0 = \ 27,386 \cdot 10^3 \ V/m

    Então, a intensidade do campo magnético é:

    \displaystyle H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{c \cdot \mu_0} = \ \frac{27,386 \cdot 10^3}{3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7}} = 72,64 \ A/m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers like this: