Início » 03 Ensino Médio » 02 Física
Category Archives: 02 Física
1.1. Exercício sobre Dilatação Térmica (Parte 1)
— 1. Exercício sobre Calor e Temperatura —
— 1.1. Exercício sobre Dilatação Térmica —
Exercício 1 Um quadrado de área interna de Considerando que no final as hastes de alumínio continuam perpendiculares as hastes de aço, determine a área do plano limitado pelas hastes após o aquecimento. NÍVEL DE DIFICULDADE: Regular. |
Resolução 1 .
O problema em questão trata de dilatação térmica dos corpos (expansão dos corpos). É dada uma área Dado que a área limitada é a área de quadrado, então, de acordo a definição da área de um quadrado, temos que: Onde:
Por outro lado, para que as hastes de alumínio e de aço formem ou limitem a área de um quadrado deve-se cumprir a seguinte condição: Então, cada haste de alumínio e/ou de aço possui um comprimento Entretanto, depois de aquecidas as hastes de aço e alumínio, de modo que a variação de temperatura é a mesma em todas as hastes, até a temperatura de Dados: Depois do aquecimento até Então, a nova área limitada pelas hastes de alumínio e aço é dada como sendo o produto dos comprimento finais das hastes, Pela figura acima percebe-se que: Onde: Para determinarmos a área que as hastes de alumínio e aço vão limitar após o aquecimento, substituímos as equações 4 e 5 na equação 3. Obtemos: Determinamos Invertendo a igualdade: Substituindo os dados: Determinemos Para o alumínio: Substituindo os dados: Para o aço: Substituindo os dados: Portanto, a área limitada pelas hastes após o aquecimento é: |
Exercício 2 Uma ponte tem comprimento NÍVEL DE DIFICULDADE: Elementar. |
Resolução 2 . Trata-se do fenómeno de dilatação térmica que um corpo sofre quando é submetido a variações de temperatura. Dados A equação da dilatação térmica de um sólido é: Mas Isolando Substituindo os valores: |
Exercício 3 Na temperatura ambiente ( NÍVEL DE DIFICULDADE: Elementar. |
Resolução 3 .
Trata-se do fenómeno de dilatação térmica numa linha férrea. Para sabermos a temperatura máxima Dados A equação da dilatação linear é: Note que a variação de temperatura em Graus Celcius é igual a variação da temperatura em Kelvins. Para se saber a temperatura máxima considerada pelo projetista é suficiente que, Isolando Substituindo os valores de |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Generalidades do MHS (Parte 4)
Exercício 12 . Uma partícula realiza um MHS de período Determine:
NÍVEL DE DIFICULDADE: Elementar. |
Resolução 12 .
O exercício apresenta um problema simples de MHS. O objectivo é determinar as equações da posição e da velocidade, bem como a posição num instante dado. Para obter as equações da posição e da velocidade, basta encontras as constantes destas equações ( Para obter a aceleração no instante dado, primeiro vamos obter o instante, por análise gráfica, e em seguida vamos substituir este instante na equação da aceleração. Dados
|
Exercício 13 . Uma partícula em MHS oscila com frequência de NÍVEL DE DIFICULDADE: Regular. |
Resolução 13 .
O problema apresenta-nos um MHS onde é conhecida a frequência e a amplitude. Nos é pedido para determinarmos o tempo que a partícula leva para sair de uma posição para outra. A resolução deste problema consiste em escrever a equação do MHS, e para as duas posições, formar duas equações. Em seguida, resolvemos o sistema de equações de acordo com a regra escolhida.\ Para calcularmos esse tempo, primeiro, precisamos saber como a partícula se move ao longo dessa recta. Para isso, temos que escrever a sua equação da posição. Como a escolha do referencial de tempo não tem influência sobre os cálculos, e o problema não oferece referencial de tempo nenhum, consideraremos o instante inicial como sendo nulo: Dados . .
A equação da posição de uma partícula em MHS pode ser dada na forma: Sabemos que Logo ,temos: Resta sabermos o valor de O exercício informa que, no instante inicial Simplificando Como, no instante Logo, temos que: Agora precisamos saber o tempo t que a partícula demora para chegar até Note: Isolando t, obtemos: |
Exercício 14 O diagrama representa a elongação de um corpo em MHS em função do tempo.
NÍVEL DE DIFICULDADE: Regular. |
Resolução 14 . O problema apresenta um gráfico da posição de um MHS e nos pede a amplitude, período e equação da posição deste MHS. A amplitude é lida directamente no gráfico. O período é obtido por interpretação do gráfico, escolhendo dois pontos especiais da oscilação (extremos, posições de equilíbrio, etc.). Com estes dados, após determinação da fase inicial (
|
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Generalidades do MHS (Parte 3)
Exercício 8 .
Um corpo em MHS desloca-se entre as posições extremas
NÍVEL DE DIFICULDADE: Regular. |
Resolução 8
O problema nos apresenta um corpo em MHS. Nos é dada a amplitude deste movimento, através do valor das posições dos extremos. É dado o tempo que o corpo leva a sair de um extremo para o outro. Sabemos que um movimento oscilatório é um movimento de sucessivas aproximações e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:
Esta é a descrição de um ciclo completo. O tempo que a partícula leva a completar o ciclo acima é o período Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS estaéesta duração é de Para sair de um extremo ao outro, a partícula deve fazer dois destes movimentos. Então, o tempo que a partícula leva a sair de um extremo para outro corresponde então a metade do período. Quanto a fase, este problema nos dá informação sobre sentido do movimento e posição da partícula no momento inicial. Como vamos usar a função seno, podemos observar o gráfico generalizado da função seno. – Observamos que a função seno atinge o valor zero (posição de equilíbrio, no MHS) quando No caso em análise, não poderemos adoptar Como o enunciado diz que a partícula está na posição de equilíbrio, mas em movimento retrógrado, então, o ângulo de fase para este momento deve ser O gráfico esboçado do movimento do exercício é o seguinte:
|
Exercício 9 .
Considere o gráfico da oscilação abaixo. Determine a amplitude deste MHS. NÍVEL DE DIFICULDADE: Elementar. |
Resolução 9 .
O problema nos apresenta o gráfico da velocidade de um MHS. Pela ilustração, nota-se que o período de oscilação é Logo, sabemos que a velocidade máxima de um corpo em oscilação é dada por: Sabemos também que: Então, combinado as duas relações, temos: Invertendo a igualdade, temos: |
Exercício 10 .
Um corpo executa um MHS ao longo do eixo x, oscilando em torno da posição de equilíbrio Determine:
NÍVEL DE DIFICULDADE: Regular. |
Resolução 10 .
O período e a amplitude da aceleração (ou aceleração máxima) deste MHS podem ser obtidos no gráfico abaixo: Com isso conclui-se que:
|
Exercício 11 .
Uma partícula realiza um MHS segundo a equação NÍVEL DE DIFICULDADE: Elementar. |
Resolução 11 .
Apesar de parecer complexo, mas o problema é Elementar . Muito elementar mesmo. Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:
Esta é a descrição de um ciclo completo. O tempo que a partícula leva a completar o ciclo acima é o período Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS, esta duração é de Com a descrição acima, percebemos que, para sair de um extremo para a posição de equilíbrio, a partícula leva um tempo igual a um quarto do período. O período pode ser obtido a partir de Sabemos também que: Então: Fazendo multiplicação cruzada, obtemos: Ou: Então: Como o tempo de passagem, do extremos para a posição de equilíbrio é Com isso, percebe-se que, para sair da posição de elongação máxima |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)
— 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —
Exercício 10 A massa de um átomo de Urânio é de NÍVEL DE DIFICULDADE: Regular. |
Resolução 10 .
É um problema cujo método de resolução é muito comum (3 simples). Vamos começar por converter todas as grandezas para as mesmas unidades. Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor( Em seguida, fazemos a relação de proporção. Chamamos de Fazendo a multiplicação cruzada, obtemos: Isolando o x, obtemos: Resolvendo, temos: Em |
Exercício 12 Determine a partir da representação dada, o vector NÍVEL DE DIFICULDADE: Elementar. |
Resolução 12 .
Podemos resolver este exercício utilizando a regra do paralelogramo. Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles. A resolução aqui é feita apenas graficamente. Desta feita, aplicando a regra do paralelogramo, teremos:
|
Exercício 13 Determine a distância entre os corpos A e B na figura:
|
Resolução 13
Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir. Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano. A Relação é: Neste caso, Então, substituindo os valores na relação anterior, teremos: Resolvendo, teremos: Logo, a distância entre os corpos A e B é igual a |
Exercício 14
Sendo . NÍVEL DE DIFICULDADE: Elementar. |
Resolução 14 Para determinarmos o módulo do vector Sendo este vector Substituindo as componentes, obtemos: Efectuando a operação, teremos: Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes. Então, podemos determinar o módulo do vector Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector Resolvendo: Logo, o vector Note: No calculo do módulo de |
Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?
NÍVEL DE DIFICULDADE: Regular. |
Resolução 15
Este exercício é um problema simples de Geometria Analítica. Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações. Consideramos que
Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura. Se Formando um sistema de equações com duas equações obtidas das condições, teremos: Isolando Desfazendo a diferença de quadrado e efectuando as operações, teremos: Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos: ,onde Substituindo os valores e resolvendo, teremos como resultado Substituindo os valores de Logo, temos como solução : s = Ambas as as soluções são aceitáveis e permutadas entre si. Desta feita, dois vectores são: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 2)
Exercício 11 Três espelhos interceptam-se em ângulos rectos.Um feixe de luz atinge o primeiro deles com um ângulo .NÍVEL DE DIFICULDADE: Regular. . |
Resolução 11 .
Redesenhando a figura. Na figura o ponto de intersecção entre o raio incidente e o primeiro espelho espelho chamamos de O raio que se reflecte deste ponto vai incidir no outro ponto do segundo espelho, que chamamos de Raio reflectido do ponto O raio reflectido do ponto O ângulo de incidência e reflexão no ponto O ângulo de incidência e reflexão no ponto O complementar de Marcamos ainda os .s é eficaz conforme indicado na figura. Da figura, no ponto B, analisando entre o espelho e a sua normal, temos: pelo triângulo BHC, pelo teorema da soma dos ângulos internos, temos temos : Subtraindo ambas equações dos passos anteriores, obtemos : Pelo teorema de ângulos internos no triângulo CDG, temos : Pelo teorema de ângulos internos no triângulo ADF, temos : Subtraindo esta última pela equação do passo anterior, obtemos : Como No quadrilátero Substituindo |
Exercício 12 Um feixe de luz emitido por um laser,incide sobre a superfície da água de um aquário,como representado nesta figura :
O fundo desse aquário é espelhado ,a profundidade da agua é de 40 cm e o ângulo de incidência do feixe de luz é de NÍVEL DE DIFICULDADE: Regular. . |
Resolução 12 .
Dados . No problema, a luz incide a partir do ar para a água. Toca na água no ponto A e refracta-se na água. É reflectida no ponto B(no espelho que está no fundo) e retorna à superfície de separação água-ar. No ponto C, faz refracção novamente para o Ar. Para acharmos a distância AC devemos calcular o ângulo que o feixe de luz faz com a normal na água (usando a lei de Snell-Descartes), e combinando estes valores com a profundidade, no triângulo ABC. . Redesenhando a figura,temos : Pela lei de Snell, no ponto A, podemos determinar o ângulo de refração. Temos : Isolando o seno, no membro esquerdo, temos: Se considerarmos o ponto médio do segmento Substituindo valores, obtemos: . |
Exercício 13 Um rapaz em repouso na rua,vê sua imagem reflectida por um espelho plano preso verticalmente na traseira de um autocarro que se afasta com a velocidade escalar constante de NÍVEL DE DIFICULDADE: Regular. . |
Resolução 13 Neste problema temos de analisar não só a velocidade com o espelho se afasta do rapaz, mas também a velocidade com que a sua imagem (que o espelho produz) se afasta dele.
O melhor raciocínio mais simplificado, consiste em estabelecer o espelho como referencial de analise e depois achar a velocidade relativa. A medida que o autocarro se move para a direita, automaticamente o espelho também se move para a direita. como o movimento é relativo, podemos considerar que o autocarro e o espelho estão em repouso e o rapaz ( Se o rapaz, que é o nosso objecto óptico( Vamos estabelecer as equações do movimento no 1ª referencial (com origem no espelho) e depois amos fazer a transformação de Galileu par o 2º Referencial (com origem no rapaz). Veja a figura. Pela lei da reflexão, em qualquer momento: Portanto : Então , neste referencial (Referencial 1), temos: . Se estabelecermos um novo referencial (no rapaz), então este referencial 1 (com origem no espelho) está em movimento em relação ao novo referencial 2 (com origem no rapaz), com velocidade v. A transformação de galileu diz que: Então para o rapaz( que no referencial 1 estava em movimento regressivo com velocidade v) teremos: Neste novo referencial, o rapaz está repouso. . Para o espelho/autocarro( que no referencial 1 estava em repouso na origem) teremos: Neste novo referencial, o espelho/autocarro estão em movimento com velocidade v (conforme enunciado). Para a imagem (que no referencial 1 estava em movimento progressivo com velocidade v) teremos: Neste novo referencial,imagem está em movimento com velocidade 2v . Neste caso, a velocidade da imagem é: |
Exercício 14 Um nativo de uma aldeia pesca em uma lagoa de água transparente. Para isso usa uma lança. Ao observar um peixe, ele atira a sua lança na direcção em que o observa. O jovem está fora da água e o peixe está em 1 m abaixo da superfície. O peixe está a uma distancia horizontal de a)O ângulo b)O ângulo c)A profundidade aparente y,da superfície da água em que o nativo vê o peixe. NÍVEL DE DIFICULDADE: Regular. . |
Resolução 14
Dados Neste problema, temos analise baseadas na refracção da luz. O Peixe está no Ponto O nativo, na beira do rio, vê como se o peixe estivesse no ponto D (que é a imagem virtual do ponto C) formada pela refracção da luz na superfície. O ponto A é o ponto onde ocorre a refracção. O ângulo
|
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Generalidades do MHS (Parte 1)
— 1. Oscilações —
— 1.1. Generalidades do MHS —
Exercício 1 .
A equação de um MHS é dada por Determina o número de ciclos feitos em NÍVEL DE DIFICULDADE: Elementar. |
Resolução 1 .
A equação de um MHS é geralmente dada na forma Comparando, termo a termo, com a equação dada no enunciado, temos que: As unidades dos resultados estão no SI pois o enuanciado assim indica. Para conseguir calcular o número de ciclos feitos em Para o MHS, Logo: Substituindo o valor de Isolando Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por: substituindo valores, obtemos: Em |
.
Exercício 2 Uma partícula realiza um MHS, cuja equação horária é
NÍVEL DE DIFICULDADE: Elementar |
Resolução 2 .
Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.
A tabela será construida atribuindo diversos valores a Lançando os valores num sistema de coordenadas cartesianos Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de |
Exercício 3 .
Uma partícula descreve um MHS segundo a equação
NÍVEL DE DIFICULDADE: Elementar |
Resolução 3 .
Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.
|
Exercício 4 .
Considere o MHS dado no gráfico. Escreva sua equação. |
NÍVEL DE DIFICULDADE: Elementar
Resolução 4 .
O Problema ilustra o gráfico de A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida. A equação do movimento de um MHS é dada na forma Com base na análise, é possível concluir que: A amplitude No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação. Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que: Sabendo que Por fim, substituindo os dados na equação da oscilação ( |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 5)
Exercício 20 Uma chita pode acelerar de |
Resolução 20 .
A conversão de Para a Chita, temos:
Então, usando a fórmula de aceleração média, obtemos: Para o carro,temos:
Então, usando a fórmula de aceleração média, obtemos: . |
Exercício 21 Um móvel fazendo a trajectória rectilínea Determinar:
NÍVEL DE DIFICULDADE: Regular. |
Resolução 21 .
Diante de um problema gráfico (
|
Exercício 22 Uma pessoa caminha |
Resolução 22 .
Para o problema em questão, devemos entender a diferença entre deslocamento e distância percorrida. O deslocamento é o vector que une a posição inicial à posição final de um móvel, sem se importar pelo trajecto do mesmo. O seu modulo equivale a distancia entre a origem e o destino do móvel. A distancia percorrida é o somatório escalar de todo o caminho percorrido pelo móvel, levando em conta a sua trajectoria e eventuais mudanças de direcção. Na figura, observamos que o móvel sai da posição Neste caso o deslocamento será A distancia percorrida será:
.. Note que é a duração de todo o movimento, e como o tempo não recua, então sempre |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)
Exercício 13 .
A velocidade de um móvel é tal que ele percorre . NÍVEL DE DIFICULDADE: Elementar. |
Resolução 13 .
Dados .
Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel. Na forma escalar, temos: Substituindo A posição final |
Exercício 17 .
Um atleta de corrida percorre NÍVEL DE DIFICULDADE: Elementar. |
Resolução 17 .
Dados
Por definição, no MRU, a velocidade é dada por: Isolando o espaço percorrido: Substituindo os dados na fórmula anterior, obtemos: Transformando Fazendo a multiplicação cruzada, obtemos: Logo, o atleta leva |
Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante NÍVEL DE DIFICULDADE: Elementar. |
Resolução 19 .
Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal. A velocidade média será: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação (Parte 2)
— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —
— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —
Exercício 4 Dois trens de pulso de certa radiação electromagnética são criados simultaneamente, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com comprimento de
NÍVEL DE DIFICULDADE: Regular.
|
Resolução 4
|
Exercício 5 Na figura a seguir, dois pulsos electromagnéticos são criados em simultâneo, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com índice de refração NÍVEL DE DIFICULDADE: Regular. . |
Resolução 5 \vspace{0,3cm}
Para não termos de calcular o tempo em cada porção, podemos usar o conceito de caminho óptico. Neste conceito, em vez de se considerar que o índice de refração afecta a velocidade, ele será visto como afectando apenas o percurso. Pelo que, podemos considerar que a luz sempre se propaga com a mesma velocidade Para o pulso 1: Neste caso, o tempo será obtido a seguir: Para o pulso 2: Neste caso, o tempo deste pulso será obtido a seguir: Como a seguir a este trecho, o material é comum aos dois pulsos, então esta diferença mantém-se até o final. Neste caso, diferença de tempos é: Como |
— 1.2. Exercícios sobre Energia e Potência da Radiação —
Exercício 6 Uma onda electromagnética de frente plana de intensidade de Determine a força que a onda exerce sobre esta superfície.NÍVEL DE DIFICULDADE: Elementar. |
Resolução 6 .
Quando uma OEM incide sobre uma superfície totalmente reflectora como o espelho, sua pressão de radiação será: Por definição, a pressão é a força por unidade de área: Então: Substituindo: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação
— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —
— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —
Exercício 1 Uma onda electromagnética com frequência de 65 Hz desloca-se em um material magnético isolante que possui constante dieléctrica relativa é igual à 3,64 e a permeabilidade magnética relativa é igual à 5,18 nessa frequência. o campo eléctrico possui amplitude de
|
Resolução 1
Dados
A relação entre estas e as constantes magnéticas e eléctricas relativa é a seguinte:
Então a velocidade de propagação da onda será:
Sabe-se que: Logo:
|
Exercício 2 A potência irradiada pela antena de uma estação radiofónica é de 4 kW. A 4 km do transmissor foi colocada uma antena de recepção de 65 cm de comprimento. Qual é o valor de pico da f.e.m induzida por esse sinal entre as extremidades da antena receptora.
NÍVEL DE DIFICULDADE: Regular. |
Resolução 2
Dados
O módulo ou amplitude da f.e.m é:
Precisamos antes determinar a amplitude do campo eléctrico Como Isolando A intensidade da OEM é :
Substituindo esta formula na equação 1, temos:
|
Exercício 3 Um condutor de resistência de 150
|
Resolução 3
Dados .
|
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.