Luso Academia

Início » 00 Geral » 1. Introdução à Mecânica (Parte 1)

1. Introdução à Mecânica (Parte 1)

1. Introdução à Mecânica

1.1. Introdução Geral à Física


A Ciência e a Engenharia se baseiam em medições e comparações.


Assim, precisamos de regras para estabelecer de que forma as grandezas devem ser medidas e comparadas, e de experimentos para estabelecer as unidades para essas medições e comparações.


Um dos propósitos da física é elaborar, postar e relacionar modelos em um esforço para descrever, explicar ir para ver a realidade. Esse processo envolve hipóteses, experimentos reprodutíveis e as observações e novas hipóteses.


O resultado final é um conjunto de princípios fundamentais e leis que descrevem os fenómenos do mundo que nos cerca. Estas leis e princípios são aplicáveis tanto ao mundo macroscópico como buracos negros, matéria e energia escura, gravidade, etc como para o mundo microscópico partículas quânticas como leptoquarks e bósões. Quanto ao nosso dia-dia, são incontáveis as questões sobre o nosso mundo que podem ser respondidas com conhecimento básico de física.


Se a agua não tem cor, porque razão a uma distância do mar, a água parece azul?


Como é que os astronautas no espaço flutuam?


Como funciona um CD?

1.2. Medindo grandezas

Ao estudarmos conteúdos relacionados com a Física, muitas vezes, deparamo-nos com a palavra grandeza definindo termos científicos, como velocidade, aceleração, força, tempo etc.


Numa linguagem muito elementar, uma grandeza é tudo aquilo que pode ser medido e possibilita que tenhamos características baseadas em informações numéricas e/ou geométricas. A grandeza é toda a característica de um sistema ou corpo a que possamos associa uma quantidade. Medir uma grandeza física é compara-lá com uma outra da mesma espécie na natureza.


Medimos cada grandeza física em medidas apropriadas, por comparação com padrão. A unidade é um nome particular que atribuímos as medidas dessa grandeza.


Assim por exemplo, o metro (m) é uma unidade da grandeza comprimento. O padrão corresponde a exatamente 1,0 unidade da grandeza, como vamos ver o padrão de comprimento que corresponde exatamente 1,0 m é a distância percorrida pela Luz no vácuo durante uma certa fração de tempo .


Em princípio podemos definir uma unidade e o seu padrão da forma que quisermos, mas é importante que cientistas em diferentes partes do mundo concordem que nossas definições e que, ao mesmo tempo sejam razoáveis e práticas.


Depois de escolher um padrão (neste caso comprimento) precisamos estabelecer procedimentos através dos quais qualquer comprimento seja {r} o raio do átomo de hidrogénio, {a} largura de uma aresta de um cubo ou {d} a distância entre duas estrelas, possa ser expresso em termos da unidade.


Usar uma régua de comprimento aproximadamente igual ao padrão pode ser uma forma de executar medidas de comprimento. Entretanto, muitas das comparações são necessariamente indiretas. Por exemplo, não dá para medir a distâncias entre planetas directamente.


É portanto, impossível usar uma régua, por exemplo, para medir o raio de um átomo ou a distância de uma estrela. Assim o que fazemos é escolher, através de um acordo internacional, um pequeno número de grandezas físicas como comprimento e tempo, e atribuir unidades a elas.


Em seguida, definimos as demais grandezas físicas em termos dessas grandezas fundamentais e de suas unidades (conhecidas, como unidades fundamentais). A velocidade, por exemplo é definida em termos das grandezas fundamentais comprimento e tempo e suas unidades fundamentais.


Portanto as unidades fundamentais de um sistema de unidades dado são as unidades de grandezas físicas de diferentes espécies, escolhidas arbitrariamente para constituição desse sistema. As grandezas físicas que correspondem às mesmas unidades têm o nome de grandezas fundamentais do sistema considerado.


Unidades derivadas são as unidades que se estabelecem sendo deduzidas a partir das outras unidades de um sistema dado, desde que se observem as leis e os princípios físicos a exprimirem as relações mútuas existentes entre as respetivas grandezas físicas.

1.3. O sistema Internacional de Unidade


Na 14ª conferência geral de pesos e medidas, foram selecionadas sete grandezas como fundamentais, as quais constituem a base do sistema internacional de unidade cuja abreviação é S.I. popularmente conhecido como sistema métrico.

A tabela a seguir mostra as unidades das grandezas fundamentais do S.I. que serão usadas nos principais capítulos desta página. Essas unidades foram definidos modo a serem da mesma ordem de grandeza que a escala humana.


Muitas unidades derivadas do SI são definidas em termos dessas unidades fundamentais. Assim, por exemplo, a unidade de trabalho no SI, chama Joule (J) é definido em termos das unidades fundamentais de massa, comprimento e tempo.

\displaystyle 1 \ Joule= \ 1 \ J= \ 1k \cdot \frac{m^2}{s^2}


Além destas, há duas unidades complementares: o radiano e o esterradiano.


1.3.1 Tempo


Do latim tempus, a palavra tempo é a grandeza física que permite medir a duração ou a separação das coisas mutáveis/sujeitas a alterações (ou seja, o período decorrido entre o estado do sistema quando este apresentava um determinado estado e o momento em que esse dito estado regista uma variação perceptível para o observador).


Em física, tempo é a grandeza física diretamente associada ao correto sequenciamento, mediante ordem de ocorrência, dos eventos naturais, estabelecendo assim um passado, um presente e um futuro.


Na física clássica (que abordaremos nesta secção), o tempo transcorre sempre da mesma forma, esteja o móvel se movimentando ou parado em relação a um determinado referencial. Isso significa dizer que o tempo passa igualmente tanto para uma pessoa que se encontra na superfície da Terra, quanto para uma pessoa que se encontra viajando dentro de uma nave espacial. O que em grande rigor não é verdade.


Para a física moderna, o intervalo de tempo para um móvel que se move em altíssima velocidade (próxima à velocidade da luz no vácuo) passa mais lentamente. Podemos dizer que uma hora para uma pessoa que se encontra parada na superfície da Terra pode corresponder a alguns minutos ou segundos para um observador que se move em altíssima velocidade. Na física moderna, esse fato é conhecido como dilatação do tempo. Porém este não é o foco desta secção.


O tempo marcado pelo relógio não é universal, mas sim uma construção histórica. Medir o tempo significa em princípio registrar coincidências. Quando alguém marca um compromisso, digamos às {13:00} horas do presente dia, está informando que ela estará no local combinado quando o ponteiro pequeno do relógio colocado naquele local coincidir com a marca {1} e enquanto o ponteiro grande esteja na inscrição {12}.


Portanto, podemos entender o tempo como uma medida da simultaniedade de eventos.


A unidade usada para o tempo é o segundo s, apesar de poder usar outras unidades como minutos, horas, dia, semana, mês, anos, décadas, séculos ou milénios (de acordo com o contexto)


Podemos definir o segundo de diversas maneiras. Há um conjunto de frequências e comprimentos de onda especifico para radiação de cada átomo associados a cada transição energética sofrida pelos electrões no mesmo, quando este é aquecido. O que se sabe é que essas frequências seguem constantes.


O segundo (s) pode ser definido em termos de uma frequência para característica associada ao átomo de césio. Todos os átomos, depois que absorver energia, emitem luz com frequências e comprimentos de onda característica do elemento específico.


O Segundo é então definido como duração de {9192631770} períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.


1.3.2 Comprimento


Em 20 de Maio de 1875 um tratado internacional conhecido como Convention du Mètre (Convenção do Metro), foi assinado por 17 Estados e estabeleceu a criação do Bureau Internacional de Pesos e Medidas (Bureau International des Poids et mesures – BIPM), um laboratório permanente e centro mundial da metrologia científica e da Conferência Geral de Pesos e Medidas (Conférence Générale des Poids et mesures – CGPM), que em 1889, em sua 1ª edição, definiu o protótipos internacional de metro. Sua base era o metro definido como à décima milionésima parte do quadrante de um meridiano terrestre.

Mais tarde, por razões práticas, essa padrão foi abandonado e o metro veio a ser definido como a distância entre duas linhas finas gravadas perto das extremidades de uma barra de Platina-Vítrio (a barra do metro-padrão), mantida no Bureau internacional de pesos e medidas nas vizinhanças de Osaris.


Réplicas preciosas dessa barra foram enviadas ao laboratórios de padronização em várias partes do mundo. Com o tempo a precisão deste padrão também se mostrou inadequado e outros padrões foram criados para o metro.


Actualmente O metro é determinado usando a rapidez da luz no vácuo que é definida como exatamente 299792458 m/s. O metro, então, é a distância que a luz percorre no vácuo em {1/(299792 458)} segundos. Estas definições fazem com que unidades do tempo e comprimento sejam acessíveis aos laboratórios de todo mundo.


1.3.3 Massa


A massa ({m}) é uma grandeza escalar positiva e invariável, a qual mede a inércia (propriedade dos corpos em permanecerem em movimento acelerado ou retardado) dos corpos, ou seja, a quantidade de matéria presente num corpo.


A unidade da massa no S.I é o quilograma (kg), é definido como a massa de um litro de água a {4 \ ^oC} com volume de {1 \ } (que é igual ao volume de um cubo de {10 \ cm} de lado).


Assim como os padrões de tempo comprimento, o padrão de quilograma mudou ao longo do tempo. O quilograma é agora definido como a massa de um determinado cilindro chamado de corpo-padrão mantido no Bureau Internacional de Pesos e Medidas em Sévres na França.


Assim comparando pesos de diferentes objetos ou tamanho comum com o peso do corpo-padrão,as massas dois objetos podem ser comparadas entre si.


1.4 Prefixos de Unidade

Às vezes torna-se necessário trabalhar com medidas que são muitos menores ou muito maiores do que as unidades padrão do S.I. Nessas situações podemos usar outras unidades, são relacionadas as unidades padrão do S.I por um múltiplo de dez(10).


Os prefixos são usados para designar as diferentes potências de 10, por exemplo, prefixo “quilo” significa {1000} ou { 10^3 }, enquanto o prefixo “micro” significa {0,000001} ou { 10^{-6} }.


A tabela a seguir mostra o prefixo dos mais comuns múltiplos das unidades do S.I. Os prefixos podem ser aplicados a qualquer unidades S.I, por exemplo {0,001} segundo é um milissegundo ( {1 \ ms}), e {1000000 \ Watts} são {1 \ MW} (apesar de ainda não termos definido o Watt).


Alguns prefixos muito usados nas Unidades do S.I são mostrados a seguir:


Sendo assim:

\displaystyle 1,27\cdot 10^9 \ W= \ 1,27 \ GW

\displaystyle 2,35 \cdot 10^{-6} \ s= 2,35 \ \mu s


OBS : alguns grandezas, para dimensões diferentes utiliza outras unidades, tais como a hora para o tempo ({1 \ h} equivale á {3600 \ s}) e o Angstron para o comprimento ({1  \  \r{A}} equivale {10^{-10} \ m}).


1.5 Outros sistemas de unidades


Além do S.I, outros sistemas de unidades são as vezes utilizados. Um deles é o sistema CGS cujas unidades fundamentais são os centímetro para os comprimentos , o grama para massa e o segundo para o tempo.


Sistema CGS de unidades é um sistema de unidades de medidas físicas, ou sistema dimensional, de tipologia LMT (comprimento, massa tempo), cujas unidades-base são o centímetro para o comprimento, o grama para a massa e o segundo para o tempo. Foi adotado em 1881 no Congresso Internacional de Eletricidade.


CGS é, assim, um acrônimo maiúsculo para centímetro–grama–segundo. É o sistema de unidades físicas primordial que precedeu o Sistema Internacional de Unidades (SI), por este sendo substituído.


Outras unidades CGS incluem Dina (para força), Erg (para energia, trabalho, calor, etc.), Gal (para aceleração), Gauss (para campo magnético), Maxwell (para fluxo magnético), Öersted (para intensidade de campo), Phot (para intensidade luminosa), Poise (para viscosidade dinâmica em fluidos), Stilb (para luminância), Stokes (para viscosidade cinemática)e Dina por centímetro cúbico (para peso específico).


1.6 Conversão de Unidades


Como diferentes sistemas de unidades são utilizados, é importante saber como converter uma unidade para outra, em diversos contextos quando quantidades físicas são somadas, subtraídas, multiplicadas ou divididas em uma equação algébrica. A unidade pode ser tratada como qualquer outra quantidade algébrica.


Muitas vezes precisamos alterar as unidades nas quais uma grandeza física está expressa. Isto pode ser feito usando um método conhecido como conversão em cadeia. Nesse método multiplicarmos o valor original por um fator de conversão(uma razão entre unidades e igual à unidade). Assim como 1 min e 60 s correspondem a intervalos de tempo iguais, temos:

\displaystyle \frac{1 \ min}{60 \ s}=1 \Rightarrow \frac{60 \ s}{1 \ min}= 1


Assim, as razões {(1 \ min)/(60 \ s)} e {(60 \ s)/(1 \ min)} podem ser usadas como fatores de conversão. Nota que isso não é o mesmo que escrever {\frac{1}{60}=1} ou {60=1}; cada número e a sua unidade devem ser tratadas conjuntamente.

Exemplo 1 Converter {3 \ min} em segundos.

Neste exemplo, temos:

\displaystyle 3 \ min= \ (3 \ min)\cdot 1= \ 3min \cdot \frac{60 \ s}{1 \ min}= \ 180 \ s \displaystyle 3 \ min= \ 180 \ s

Exemplo 2 Converter {240 \ km} em milhas.

Neste exemplo, temos:

\displaystyle 240 \ km= \ (240 \ km)\cdot 1= \ 240 \ km \cdot \frac{1 \ milhas}{1,6091 \ km}= \ 149 \ milhas

Exemplo 3 Converter {90 \ km/h} em metros por segundo.
Neste exemplo, temos:

\displaystyle 90 \ km/h= \ (90 \ \frac{km}{h})\cdot 1 = \ 90 \ \frac{km}{h} \cdot \frac{1 \ h}{3600 \ s} \cdot \frac{1000 \ km}{1 \ km} \displaystyle = \ 25 \ m/s


Por vezes, podemos fazer a conversão de um modo mais rápido, substituindo cada unidade pela unidade de destino, com o respectivo factor de conversão.

Exemplo 4 Converter {90 \ km/h} para o SI.

Sabemos que a unidade de velocidade no SI é {m/s}, então, temos de converter {km} em {m} e {h} em {s}. Então temos:

\displaystyle 90 \ \frac{km}{h}= \frac{90 \cdot 1000 \ m}{3600 \ s}=25 m/s


Este método também é usado em conversões de unidades com prefixos (múltiplos e submúltiplos).

Exemplo 5 Converter {100 \ kJ/s} para o SI.

Sabemos que a unidade de velocidade no SI é {m/s}, então, temos de converter {kJ} em {J} (substituindo apenas o multiplo quilo) e {s} já está no S.I. Então temos:

\displaystyle 100 \ \frac{kJ}{s}= \ 100 \ \frac{ \cdot {10^{3}} \ J}{s} =100000 \ J/s = \ 100000 \ W


Ainda há a clássica regra de “3 simples”, conhecida pela maioria.

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1 Comentário

  1. manuelaguimaresdossantos diz:

    Preciso dos matérias todos prof Anselmo, são interessante, agradeceria se me enviasses no meu WhatsApp 941785307, obrigado.

    Gostar

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: