Luso Academia

Início » 00 Geral » 1.2. Exercícios sobre sistema massa-mola (Parte 2)

1.2. Exercícios sobre sistema massa-mola (Parte 2)

Exercício 1 Um móvel executa MHS e obedece a função horária {x = 3 \cdot cos(0,5 \pi t + \pi)}, no SI.
  1. Determine o tempo necessário para que este móvel vá da posição de equilíbrio para a posição de elongação máxima.
  2. Obtenha o valor da aceleração no instante {t = 1 \ s}.

Nível de dificuldade: Regular.

Resolução 1 .
  1. Sabemos que num MHS o tempo que o corpo leva a sair do extremo para a posição de equilíbrio ou vice-versa é igual a um quarto do período {t= \dfrac{T}{4}}. Neste caso, precisamos calcular o período e depois calcular o {t}.
    Na equação obtemos que:

    \displaystyle \omega=0,5 \pi \ rad/s

    Mas sabemos que { \omega= \dfrac{2 \pi}{T}}. Então:

    \displaystyle \omega=0,5 \pi

    \displaystyle \Rightarrow \dfrac{2 \pi}{T}=0,5 \pi

    \displaystyle \Rightarrow \dfrac{2}{T}=0,5

    \displaystyle \Rightarrow 2 = 0,5 T

    \displaystyle \Rightarrow T = \dfrac{2}{0,5}

    \displaystyle \Rightarrow T = 4 \ s

    Neste caso, o tempo é:

    \displaystyle t= \dfrac{T}{4}

    \displaystyle \Rightarrow t = 1 \ s

  2. Precisamos saber primeiro a função da aceleração desse movimento, que é dada pela segunda derivada da posição em função do tempo, ou seja

    \displaystyle a = \dfrac{d^2x}{dt^2}

    Logo:

    \displaystyle a = \dfrac{d}{dt} \Bigg[ \dfrac{d x}{dt} \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg[ \dfrac{d}{dt}[3 \cos(0,5 \pi t + \pi)] \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg [-3 \cdot 0,5 \pi sen (0,5 \pi t + \pi) \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg [-1,5 \cdot \pi sen (0,5 \pi t + \pi) \Bigg]

    \displaystyle a = -1,5 \pi \cdot0,5 \pi \cos(0,5 \pi t + \pi)

    \displaystyle a = -0,75 \pi^2 \cdot \cos(0,5 \pi t + \pi)

    Considerando {t = 1 \ s}, logo:

    \displaystyle a = -0,75 \pi^2 \cdot \cos(0,5 \pi \cdot 1 + \pi)

    \displaystyle a = 0

Exercício 2 Na figura ao lado, dois blocos ({m = 2 \ kg} e {M = 16 \ kg}) e uma mola ({k = 250 \ N/m}) estão dispostos em uma superfície horizontal sem atrito. O sistema oscila em MHS com amplitude de {10 \ cm}. Qual deverá ser o coeficiente de atrito mínimo para que o bloco menor fique na eminência de deslizar sobre o bloco maior ?

Nível de dificuldade: Regular.

Resolução 2 .

Dados:

{m=2 \ kg}

{M=16 \ kg}

{k=250 \ N/m}

{A=10 \ cm = 0,1 \ m}

{ \mu \longrightarrow ? } (eminência de cair).

Para que o bloco menor fique fique em repouso relativo ao bloco maior, deslizando conjuntamente com ele, (na iminência de deslizar sobre bloco maior, mas não deslizando) é necessário que haja uma igualdade entre a força que o bloco maior aplica ao bloco menor (determinada a partir da aceleração) e a força de atrito existente na superfície de contacto entre eles (1ª Lei de Newton).

\displaystyle Diagrama \ do \ corpo \ livre

Como estamos a tratar de um MHS, a força aplicada pelo bloco de baixo ao bloco de cima é:

\displaystyle F_M = m \cdot a_{mhs}

Onde {a_{mhs}} é a aceleração do MHS.

Logo:

\displaystyle F_M = F_a

\displaystyle m \cdot a_{mhs} = \mu \cdot N

Como o bloco {m} não está inclinado nem em relação a horizontal, logo:

\displaystyle N = m \cdot g

Então:

\displaystyle F_M = F_a

\displaystyle \Rightarrow m \cdot a_{mhs} = \mu \cdot m \cdot g

\displaystyle a_{mhs} = \mu \cdot g

Nota: O enunciado não sugere que o bloco deslize, mas sim que ele fique prestes a deslizar. Esta situação só pode ser analisada quando os dois blocos atingem o extremo. Neste ponto a força exercida pela mola é máxima e consequentemente a {a_{mhs}} também é máxima. logo:

\displaystyle a_{mhs} = A \cdot \omega^2

Num sistema massa-mola:

\displaystyle \omega^2 = { \dfrac{k}{m_{sist}}}

Além disso, a frequência angular não depende somente do bloco {m}, mas sim dos dois, pois a mola desloca os dois em conjunto. Então:

\displaystyle \omega^2 = { \dfrac{k}{m + M}}

\displaystyle a_{mhs} = \mu \cdot g

Voltando a igualdade entre as forças, teremos:

\displaystyle A \cdot \omega^2 = \mu \cdot g

\displaystyle A \cdot \dfrac{k}{m + M} = \mu \cdot g

\displaystyle \mu = \dfrac{A \cdot k}{g(m + M)}

\displaystyle \mu = \dfrac{0,1 \cdot 250}{9,8(16 + 2)}

\displaystyle \mu = 0,142

Exercicío 3 Um corpo de {60 \ g}, preso a uma extremidade de uma mola ideal ({k = 3,2 \ N/m}) comprimida de {32 \ cm}, é abandonado do repouso na posição “A” da figura. A partir desse instante o corpo inicia o MHS. Despreze o atrito e adote o ponto de equilíbrio do corpo (ponto O) e sentido para a direita como referencial. Nessas condições, determine a equação da posição e da velocidade desse MHS.

 

Nível de dificuldade: Regular.

Resolução 3 .

 

Dados

{k = 3,2 \ N/m}

{A = 32 \ cm = 0,32 \ m}

{m = 60 \ g = 0,06 \ kg}

O corpo inicialmente se encontra no extremo negativo (de acordo com a figura inicial). Estando neste extremo, de acordo com a situação (mola comprimida) ao ser solto vai movimentar-se para a posição de equilíbrio e continuar a oscilar. Veja o gráfico analítico abaixo:

A equação geral da posição de um MHS é:

\displaystyle x = Asen ( \omega t + \varphi_0)

Considere o gráfico genérico da função {x=sen (\varphi)}.

Para a função {sen} o extremo negativo é atingido para a fase {- \dfrac{ \pi}{2}} ou { \dfrac{3 \pi}{2}}.

Sendo que a oscilação começa a partir do extremo negativo (Ponto A), logo { \varphi_0 = - \dfrac{ \pi}{2}}.

Sabemos que, num sistema corpo-mola:

\displaystyle \omega = \sqrt{ \dfrac{k}{m}}

Então:

\displaystyle \omega = \sqrt{ \dfrac{3,2}{0,06}} = 7,30 rad/s

Logo, substituindo na equação geral, obtemos:

\displaystyle x = 0,32sen \ (7,30 \ t - \dfrac{ \pi}{2}) \ [SI]

A velocidade de um movimento é dada como a derivada da equação da posição, ou seja:

\displaystyle v = \dfrac{dx}{dt}

Logo:

\displaystyle v = \dfrac{d}{dt} \Big[0,32sen \ (7,30 \ t - \dfrac{ \pi}{2}) \Big]

\displaystyle v = 0,32 \cdot 7,30 \cdot \cos \ (7,30 \ t - \dfrac{ \pi}{2})

\displaystyle v = 2,337 \cos \ (7,3 \ t - \dfrac{ \pi}{2}) \ [SI]

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Donativos

Donate Button

Localização

wordpress com stats
%d bloggers like this: