Início » Posts tagged 'física'
Tag Archives: física
1. Introdução à Mecânica (Parte 1)
1. Introdução à Mecânica
1.1. Introdução Geral à Física
A Ciência e a Engenharia se baseiam em medições e comparações.
Assim, precisamos de regras para estabelecer de que forma as grandezas devem ser medidas e comparadas, e de experimentos para estabelecer as unidades para essas medições e comparações.
Um dos propósitos da física é elaborar, postar e relacionar modelos em um esforço para descrever, explicar ir para ver a realidade. Esse processo envolve hipóteses, experimentos reprodutíveis e as observações e novas hipóteses.
O resultado final é um conjunto de princípios fundamentais e leis que descrevem os fenómenos do mundo que nos cerca. Estas leis e princípios são aplicáveis tanto ao mundo macroscópico como buracos negros, matéria e energia escura, gravidade, etc como para o mundo microscópico partículas quânticas como leptoquarks e bósões. Quanto ao nosso dia-dia, são incontáveis as questões sobre o nosso mundo que podem ser respondidas com conhecimento básico de física.
Se a agua não tem cor, porque razão a uma distância do mar, a água parece azul?
Como é que os astronautas no espaço flutuam?
Como funciona um CD?
1.2. Medindo grandezas
Ao estudarmos conteúdos relacionados com a Física, muitas vezes, deparamo-nos com a palavra grandeza definindo termos científicos, como velocidade, aceleração, força, tempo etc.
Numa linguagem muito elementar, uma grandeza é tudo aquilo que pode ser medido e possibilita que tenhamos características baseadas em informações numéricas e/ou geométricas. A grandeza é toda a característica de um sistema ou corpo a que possamos associa uma quantidade. Medir uma grandeza física é compara-lá com uma outra da mesma espécie na natureza.
Medimos cada grandeza física em medidas apropriadas, por comparação com padrão. A unidade é um nome particular que atribuímos as medidas dessa grandeza.
Assim por exemplo, o metro (m) é uma unidade da grandeza comprimento. O padrão corresponde a exatamente 1,0 unidade da grandeza, como vamos ver o padrão de comprimento que corresponde exatamente 1,0 m é a distância percorrida pela Luz no vácuo durante uma certa fração de tempo .
Em princípio podemos definir uma unidade e o seu padrão da forma que quisermos, mas é importante que cientistas em diferentes partes do mundo concordem que nossas definições e que, ao mesmo tempo sejam razoáveis e práticas.
Depois de escolher um padrão (neste caso comprimento) precisamos estabelecer procedimentos através dos quais qualquer comprimento seja o raio do átomo de hidrogénio,
largura de uma aresta de um cubo ou
a distância entre duas estrelas, possa ser expresso em termos da unidade.
Usar uma régua de comprimento aproximadamente igual ao padrão pode ser uma forma de executar medidas de comprimento. Entretanto, muitas das comparações são necessariamente indiretas. Por exemplo, não dá para medir a distâncias entre planetas directamente.
É portanto, impossível usar uma régua, por exemplo, para medir o raio de um átomo ou a distância de uma estrela. Assim o que fazemos é escolher, através de um acordo internacional, um pequeno número de grandezas físicas como comprimento e tempo, e atribuir unidades a elas.
Em seguida, definimos as demais grandezas físicas em termos dessas grandezas fundamentais e de suas unidades (conhecidas, como unidades fundamentais). A velocidade, por exemplo é definida em termos das grandezas fundamentais comprimento e tempo e suas unidades fundamentais.
Portanto as unidades fundamentais de um sistema de unidades dado são as unidades de grandezas físicas de diferentes espécies, escolhidas arbitrariamente para constituição desse sistema. As grandezas físicas que correspondem às mesmas unidades têm o nome de grandezas fundamentais do sistema considerado.
Unidades derivadas são as unidades que se estabelecem sendo deduzidas a partir das outras unidades de um sistema dado, desde que se observem as leis e os princípios físicos a exprimirem as relações mútuas existentes entre as respetivas grandezas físicas.
1.3. O sistema Internacional de Unidade
Na 14ª conferência geral de pesos e medidas, foram selecionadas sete grandezas como fundamentais, as quais constituem a base do sistema internacional de unidade cuja abreviação é S.I. popularmente conhecido como sistema métrico.
A tabela a seguir mostra as unidades das grandezas fundamentais do S.I. que serão usadas nos principais capítulos desta página. Essas unidades foram definidos modo a serem da mesma ordem de grandeza que a escala humana.

Muitas unidades derivadas do SI são definidas em termos dessas unidades fundamentais. Assim, por exemplo, a unidade de trabalho no SI, chama Joule (J) é definido em termos das unidades fundamentais de massa, comprimento e tempo.
Além destas, há duas unidades complementares: o radiano e o esterradiano.

1.3.1 Tempo
Do latim tempus, a palavra tempo é a grandeza física que permite medir a duração ou a separação das coisas mutáveis/sujeitas a alterações (ou seja, o período decorrido entre o estado do sistema quando este apresentava um determinado estado e o momento em que esse dito estado regista uma variação perceptível para o observador).
Em física, tempo é a grandeza física diretamente associada ao correto sequenciamento, mediante ordem de ocorrência, dos eventos naturais, estabelecendo assim um passado, um presente e um futuro.
Na física clássica (que abordaremos nesta secção), o tempo transcorre sempre da mesma forma, esteja o móvel se movimentando ou parado em relação a um determinado referencial. Isso significa dizer que o tempo passa igualmente tanto para uma pessoa que se encontra na superfície da Terra, quanto para uma pessoa que se encontra viajando dentro de uma nave espacial. O que em grande rigor não é verdade.
Para a física moderna, o intervalo de tempo para um móvel que se move em altíssima velocidade (próxima à velocidade da luz no vácuo) passa mais lentamente. Podemos dizer que uma hora para uma pessoa que se encontra parada na superfície da Terra pode corresponder a alguns minutos ou segundos para um observador que se move em altíssima velocidade. Na física moderna, esse fato é conhecido como dilatação do tempo. Porém este não é o foco desta secção.
O tempo marcado pelo relógio não é universal, mas sim uma construção histórica. Medir o tempo significa em princípio registrar coincidências. Quando alguém marca um compromisso, digamos às horas do presente dia, está informando que ela estará no local combinado quando o ponteiro pequeno do relógio colocado naquele local coincidir com a marca
e enquanto o ponteiro grande esteja na inscrição
.
Portanto, podemos entender o tempo como uma medida da simultaniedade de eventos.
A unidade usada para o tempo é o segundo s, apesar de poder usar outras unidades como minutos, horas, dia, semana, mês, anos, décadas, séculos ou milénios (de acordo com o contexto)
Podemos definir o segundo de diversas maneiras. Há um conjunto de frequências e comprimentos de onda especifico para radiação de cada átomo associados a cada transição energética sofrida pelos electrões no mesmo, quando este é aquecido. O que se sabe é que essas frequências seguem constantes.
O segundo (s) pode ser definido em termos de uma frequência para característica associada ao átomo de césio. Todos os átomos, depois que absorver energia, emitem luz com frequências e comprimentos de onda característica do elemento específico.
O Segundo é então definido como duração de períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.
1.3.2 Comprimento
Em 20 de Maio de 1875 um tratado internacional conhecido como Convention du Mètre (Convenção do Metro), foi assinado por 17 Estados e estabeleceu a criação do Bureau Internacional de Pesos e Medidas (Bureau International des Poids et mesures – BIPM), um laboratório permanente e centro mundial da metrologia científica e da Conferência Geral de Pesos e Medidas (Conférence Générale des Poids et mesures – CGPM), que em 1889, em sua 1ª edição, definiu o protótipos internacional de metro. Sua base era o metro definido como à décima milionésima parte do quadrante de um meridiano terrestre.
Mais tarde, por razões práticas, essa padrão foi abandonado e o metro veio a ser definido como a distância entre duas linhas finas gravadas perto das extremidades de uma barra de Platina-Vítrio (a barra do metro-padrão), mantida no Bureau internacional de pesos e medidas nas vizinhanças de Osaris.
Réplicas preciosas dessa barra foram enviadas ao laboratórios de padronização em várias partes do mundo. Com o tempo a precisão deste padrão também se mostrou inadequado e outros padrões foram criados para o metro.
Actualmente O metro é determinado usando a rapidez da luz no vácuo que é definida como exatamente 299792458 m/s. O metro, então, é a distância que a luz percorre no vácuo em segundos. Estas definições fazem com que unidades do tempo e comprimento sejam acessíveis aos laboratórios de todo mundo.
1.3.3 Massa
A massa () é uma grandeza escalar positiva e invariável, a qual mede a inércia (propriedade dos corpos em permanecerem em movimento acelerado ou retardado) dos corpos, ou seja, a quantidade de matéria presente num corpo.
A unidade da massa no S.I é o quilograma (kg), é definido como a massa de um litro de água a com volume de
(que é igual ao volume de um cubo de
de lado).
Assim como os padrões de tempo comprimento, o padrão de quilograma mudou ao longo do tempo. O quilograma é agora definido como a massa de um determinado cilindro chamado de corpo-padrão mantido no Bureau Internacional de Pesos e Medidas em Sévres na França.
Assim comparando pesos de diferentes objetos ou tamanho comum com o peso do corpo-padrão,as massas dois objetos podem ser comparadas entre si.
1.4 Prefixos de Unidade
Às vezes torna-se necessário trabalhar com medidas que são muitos menores ou muito maiores do que as unidades padrão do S.I. Nessas situações podemos usar outras unidades, são relacionadas as unidades padrão do S.I por um múltiplo de dez(10).
Os prefixos são usados para designar as diferentes potências de 10, por exemplo, prefixo “quilo” significa ou
, enquanto o prefixo “micro” significa
ou
.
A tabela a seguir mostra o prefixo dos mais comuns múltiplos das unidades do S.I. Os prefixos podem ser aplicados a qualquer unidades S.I, por exemplo segundo é um milissegundo (
), e
são
(apesar de ainda não termos definido o Watt).
Alguns prefixos muito usados nas Unidades do S.I são mostrados a seguir:

Sendo assim:
OBS : alguns grandezas, para dimensões diferentes utiliza outras unidades, tais como a hora para o tempo ( equivale á
) e o Angstron para o comprimento (
equivale
).
1.5 Outros sistemas de unidades
Além do S.I, outros sistemas de unidades são as vezes utilizados. Um deles é o sistema CGS cujas unidades fundamentais são os centímetro para os comprimentos , o grama para massa e o segundo para o tempo.
Sistema CGS de unidades é um sistema de unidades de medidas físicas, ou sistema dimensional, de tipologia LMT (comprimento, massa tempo), cujas unidades-base são o centímetro para o comprimento, o grama para a massa e o segundo para o tempo. Foi adotado em 1881 no Congresso Internacional de Eletricidade.
CGS é, assim, um acrônimo maiúsculo para centímetro–grama–segundo. É o sistema de unidades físicas primordial que precedeu o Sistema Internacional de Unidades (SI), por este sendo substituído.
Outras unidades CGS incluem Dina (para força), Erg (para energia, trabalho, calor, etc.), Gal (para aceleração), Gauss (para campo magnético), Maxwell (para fluxo magnético), Öersted (para intensidade de campo), Phot (para intensidade luminosa), Poise (para viscosidade dinâmica em fluidos), Stilb (para luminância), Stokes (para viscosidade cinemática)e Dina por centímetro cúbico (para peso específico).
1.6 Conversão de Unidades
Como diferentes sistemas de unidades são utilizados, é importante saber como converter uma unidade para outra, em diversos contextos quando quantidades físicas são somadas, subtraídas, multiplicadas ou divididas em uma equação algébrica. A unidade pode ser tratada como qualquer outra quantidade algébrica.
Muitas vezes precisamos alterar as unidades nas quais uma grandeza física está expressa. Isto pode ser feito usando um método conhecido como conversão em cadeia. Nesse método multiplicarmos o valor original por um fator de conversão(uma razão entre unidades e igual à unidade). Assim como 1 min e 60 s correspondem a intervalos de tempo iguais, temos:
Assim, as razões e
podem ser usadas como fatores de conversão. Nota que isso não é o mesmo que escrever
ou
; cada número e a sua unidade devem ser tratadas conjuntamente.
Exemplo 1 Converter em segundos.
Neste exemplo, temos:
Exemplo 2 Converter em milhas.
Neste exemplo, temos:
Exemplo 3 Converter em metros por segundo.
Neste exemplo, temos:
Por vezes, podemos fazer a conversão de um modo mais rápido, substituindo cada unidade pela unidade de destino, com o respectivo factor de conversão.
Exemplo 4 Converter para o SI.
Sabemos que a unidade de velocidade no SI é , então, temos de converter
em
e
em
. Então temos:
Este método também é usado em conversões de unidades com prefixos (múltiplos e submúltiplos).
Exemplo 5 Converter para o SI.
Sabemos que a unidade de velocidade no SI é , então, temos de converter
em
(substituindo apenas o multiplo quilo) e
já está no S.I. Então temos:
Ainda há a clássica regra de “3 simples”, conhecida pela maioria.
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre sistema massa-mola (Parte 1)
— 1.2. Sistema massa-mola —
Exercício 16 .
Um corpo está pendurado em uma mola de Qual é a velocidade máxima desta oscilação e a massa do corpo, se o seu período for de NÍVEL DE DIFICULDADE: Elementar. |
Resolução 16 . Dados A velocidade máxima de um MHS é dada na forma: Por sua vez, sabemos que, para qualquer evento período: Logo, substituindo na equação anterior, obtemos: Para determinarmos a massa, podemos usar a relação de Ou: Então, isolando a massa, obtemos: Substituindo |
Exercício 17 . Um corpo de NÍVEL DE DIFICULDADE: Regular. |
Resolução 17 . Dados Em qualquer ponto do percurso em uma oscilação, a energia total do corpo é a soma da energia cinética com a energia potencial do corpo naquele ponto, ou seja: Pretende-se saber qual é a velocidade do corpo no ponto onde a energia cinética é o dobro da energia potencial,ou seja: Substituindo a equação 2 na equação 1, temos: Substituindo as energias cinéticas e total pelos seus equivalentes, obtemos: Isolando a velocidade, obtemos: |
Exercício 18 . Um corpo caindo de uma altura de NÍVEL DE DIFICULDADE: Complexo. |
Resolução 18 . Na figura ilustramos o sistema em 3 situações diferentes:
Vamos adoptar a posição da situação 3 como referencial de altura. De acordo com a ilustração do fenómeno é possível concluir que:
Usando a descrição acima, para a situação 1, a energia do sistema será: Para a situação 2, a energia do sistema será: Para a situação 3, a energia do sistema será: Sabemos que neste movimento apenas actuam as forças de gravida e elástica, que são ambas conservativas. Então, a energia mecânica deste sistema permanece constante: Obtemos a partir desta análise um sistema de 3 equações. Resolvendo-o, podemos obter todos os valores desconhecidos ( Substituindo os dados, obtemos: Em seguida, resolvemos a equação do segundo grau obtida pela fórmula resolvente ou por qualquer outro método conveniente. Obtemos os seguintes resultados: como sabemos, a amplitude não pode ser negativa, então o valor aceite para amplitude deste MHS é: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)
— 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —
Exercício 10 A massa de um átomo de Urânio é de NÍVEL DE DIFICULDADE: Regular. |
Resolução 10 .
É um problema cujo método de resolução é muito comum (3 simples). Vamos começar por converter todas as grandezas para as mesmas unidades. Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor( Em seguida, fazemos a relação de proporção. Chamamos de Fazendo a multiplicação cruzada, obtemos: Isolando o x, obtemos: Resolvendo, temos: Em |
Exercício 12 Determine a partir da representação dada, o vector NÍVEL DE DIFICULDADE: Elementar. |
Resolução 12 .
Podemos resolver este exercício utilizando a regra do paralelogramo. Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles. A resolução aqui é feita apenas graficamente. Desta feita, aplicando a regra do paralelogramo, teremos:
|
Exercício 13 Determine a distância entre os corpos A e B na figura:
|
Resolução 13
Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir. Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano. A Relação é: Neste caso, Então, substituindo os valores na relação anterior, teremos: Resolvendo, teremos: Logo, a distância entre os corpos A e B é igual a |
Exercício 14
Sendo . NÍVEL DE DIFICULDADE: Elementar. |
Resolução 14 Para determinarmos o módulo do vector Sendo este vector Substituindo as componentes, obtemos: Efectuando a operação, teremos: Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes. Então, podemos determinar o módulo do vector Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector Resolvendo: Logo, o vector Note: No calculo do módulo de |
Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?
NÍVEL DE DIFICULDADE: Regular. |
Resolução 15
Este exercício é um problema simples de Geometria Analítica. Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações. Consideramos que
Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura. Se Formando um sistema de equações com duas equações obtidas das condições, teremos: Isolando Desfazendo a diferença de quadrado e efectuando as operações, teremos: Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos: ,onde Substituindo os valores e resolvendo, teremos como resultado Substituindo os valores de Logo, temos como solução : s = Ambas as as soluções são aceitáveis e permutadas entre si. Desta feita, dois vectores são: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)
Exercício 13 .
A velocidade de um móvel é tal que ele percorre . NÍVEL DE DIFICULDADE: Elementar. |
Resolução 13 .
Dados .
Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel. Na forma escalar, temos: Substituindo A posição final |
Exercício 17 .
Um atleta de corrida percorre NÍVEL DE DIFICULDADE: Elementar. |
Resolução 17 .
Dados
Por definição, no MRU, a velocidade é dada por: Isolando o espaço percorrido: Substituindo os dados na fórmula anterior, obtemos: Transformando Fazendo a multiplicação cruzada, obtemos: Logo, o atleta leva |
Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante NÍVEL DE DIFICULDADE: Elementar. |
Resolução 19 .
Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal. A velocidade média será: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 2)
Exercício 5 Converter para o SI s seguintes unidades:
NÍVEL DE DIFICULDADE: Elementar. |
Resolução 5 .
Para converter-mos no SI, vamos utilizar o sistema de “3 simples”.
|
Exercício 6 Numa partícula actuam 3 forças conforme indica a figura abaixo:
Determine a força resultante sabendo que NÍVEL DE DIFICULDADE: Regular. |
Resolução 6 .
Para sabermos a força resultante, devemos encontrar as componentes das forças aplicadas nos eixos Ox e Oy. Como as Forças primeiramente devemos traçar as correspondestes das Calculamos as componentes usando as razões trigonométricas: Vamos agora Fazemos então a soma vectorial das componentes Ox e Oy: O módulo força resultante é dada pelo teorema de Pitágoras: |
Exercício 7 Se as componentes da velocidade de um móvel são Determine: o modulo deste vector velocidade. NÍVEL DE DIFICULDADE: Elementar. |
Resolução 7 .
Dados Para determinar o modulo do valor velocidade, primeiramente devemos determinar o valor da coordenada da velocidade em z ( Neste caso, a velocidade será obtida de modo seguinte: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais
— 1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —
Exercício 5 .
Considere o sistema representado abaixo.Considerando a origem do referencial sua base direita do prédio, o Eixo ox horizontal dirigido a esquerda e o Eixo oy vertical e dirigido para cima. Determine a posição dos pontos A, B e C. NÍVEL DE DIFICULDADE: Elementar |
Resolução 5 .
O referencial(bidimensional) do sistema é necessário ser traçado para a determinação da posição dos pontos A, B e C. Logo temos as seguintes características do referencial: * Eixo Ox: eixo horizontal dirigido da direita para a esquerda; * Eixo Oy: eixo vertical dirigido para cima; * Origem do referencial: base direita do prédio.\ . Aposição do ponto A tem coordenada onde A posição do ponto B tem coordenada Onde: A posição do ponto C tem coordenada |
Exercício 6 .
A velocidade de um móvel é tal que ele percorre NÍVEL DE DIFICULDADE: Elementar. |
Resolução 6 .
Dados .
Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel. Na forma escalar, temos: Substituindo A posição final |
Resolução 7 .
Calcule a velocidade média do móvel da figura abaixo, se . |
Resolution 7 . Dados
.
Em módulos: . Portanto, para determinar a velocidade média precisamos determinar o deslocamento Note que o vector deslocamento é o vector que une a posição inicial à posição final, ou seja, no nosso caso Então temos: A equação 4 é a fórmula para o cálculo de distancia em um sistema bidimensional.Considerando o ponto de partida A e o de chegada C, : A(10,20) e B(20) considerando a abcissa y e a ordenada x. Portanto, temos: . O tempo Dos dados temos temos Então Sendo assim: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
A Importância das CTEM
Ao longos dos séculos várias sociedades na história da humanidade procuraram perceber o mundo que está à nossa volta. Naturalmente as explicações encontradas eram muito simplistas no princípio, mas com o passar do tempo o nível de sofisticação foi aumentando. Isto equivale a dizer que os fenómenos a serem estudados foram se tornando cada vez mais complexos e consequentemente as ferramentas utilizadas foram se tornando também mais complexas.
Importa aqui realçar que a compreensão alcançada dos fenómenos naturais permitiu à espécie humana controlar o meio ambiente e com isso alcançar melhores condições de vida. Muitos exemplos podem ser dados para substanciar a afirmação anterior, mas iremos apenas indicar a Revolução Industrial. Esta aconteceu durante o princípio da primeira metade do Séc. XVIII e estendeu-se até ao final da primeira metade do Séc. XIX. Durante este período assistiu-se a uma intensa mecanização dos métodos de produção, a utilização crescente da energia a vapor e a fabricação de produtos químicos para os mais variados fins.
Estes progressos tiveram várias consequências positivas nos países onde foram implementados. Os volumes de produção aumentaram de uma forma incrível, um maior número de pessoas passou a ter acesso aos bens e o número de empregos aumentou pois as novas fábricas que estavam ser formadas precisavam de força de trabalho. Do lado demográfico também vimos avanços incontestáveis com a melhoria generalizada das condições de vida: aumento da população, aumento da esperança média de vida e diminuição da mortalidade infantil.
Na última década do Séc. XX surgiu nos EUA a sigla STEM que significa “Science, Technology, Engineering and Mathematics” que significa “Ciência, Tecnologia, Engenharia e Matemática” (em português vamos optar pela sigla CTEM). Muito mais que uma simples sigla esta é uma perspectiva integrada de olhar para todas as áreas que são responsáveis pelos avanços técnicos alcançados pelos seres humanos. No entanto, como já vimos, estes avanços de natureza mais técnica acarretam sempre progressos noutras áreas.
Deste modo é muito importante realçar as vantagens associadas a termos uma sociedade que aposta nas CTEM como forma de potenciar o seu desenvolvimento noutras áreas não directamente relacionadas com as CTEM. è bastante claro que o investimento aplicado em áreas mais experimentais como as engenharias acarretam várias vantagens para as sociedades e potenciam o seu crescimento económico. No entanto, vários estudos foram já feitos e todos eles comprovam que o investimento em áreas como a Física e a Química vêm um maior crescimento na sua Economia quando comparados com países que se focam somente nas ciências aplicadas.
Podemos então concluir que esforços devem ser envidados para apoiar a educação de base nas CTEM ao mesmo que se investe na produção investigação científica de natureza mais fundamental para alavancarmos o desenvolvimento económico em países de renda média (como é o caso de Angola.
Curso de Astronomia – 1º Programa – Luso Academia
Desde tempos imemoriais que a Humanidade olha para o céu noturno numa tentativa de dar sentido ao mundo que temos à nossa volta. Os padrões, a regularidade, a beleza e elegância dos movimentos dos corpos celestes e as suas interacções sempre cativaram a nossa
imaginação e impeliram o nosso esforço para encontrar explicações para os factos observados.
Ainda hoje em plena era espacial, onde não só o nosso conhecimento avançou de forma inegável, e até já navegamos várias vezes para o espaço sideral, continuamos a olhar para o céu noturno com o mesmo sentimento de assombro. Este sentimento advém, tal como para os
nossos antepassados longínquos, da ordem e organização que observamos no firmamento.
Nesse sentido a Luso Academia, em conjunto com o Acelera Angola, vai ministrar um curso de astronomia onde todos os interessados poderão conhecer um pouco melhor os métodos da ciência da astronomia e quais são os seus principais contributos para aquela que é talvez a maior aventura do intelecto humano: conhecer o Cosmos à nossa volta.
No link a seguir pode consultar o evento de facebook e fazer a sua marcação: Curso de Astronomia – 1º Programa – Luso Academia. O link para a marcação de lugares no evento é Curso de Astronomia.
Os nossos leitores de fora de Angola podem também fazer a sua inscrição pois iremos transmitir o evento via livestreaming (o link relevante irá ser partilhado oportunamente)