Início » 00 Geral » Porquê ocorrem falhas na formação da imagem em lentes? Aberrações.

Porquê ocorrem falhas na formação da imagem em lentes? Aberrações.

Estatística do blog

  • 275,688 académicos

De modo a receber actualizações do nosso blog via email clique em Seguir.

Junte-se a 777 outros seguidores

— 2.8. Erros e defeitos da formação da imagem em lentes. Aberrações —

As aberrações na realidade não são produzidas por defeitos de um sistema óptico. Elas ocorrem sim, pela não convergência dos raios para um único ponto imagem.

As superfícies esféricas só formam imagem na aproximação paraxial, isto é, para raios que incidam formando angulos muito pequenos com o eixo principal. Quando saímos da condição de validade desta aproximação começamos a observar muitas aberrações.

Podemos definir como aberração de um sistema óptico, todos os efeitos que atrapalham a formação de imagem (convergência perfeita dos raios). Assim, podemos dividir as aberrações em dois grupos: cromáticas e geométricas.

— 2.8.20. Aberrações cromáticas —

São as aberrações de uma lente, que vão surgir devido a dependência do índice de refracção com o comprimento de onda. Como já vimos em posts anteriores, a passagem da luz por material transparente depende na realidade do comprimento de onda deste raio luminoso. Dois raios Luminosos de diferentes CDOs passam de forma diferente num sistema óptico. Então, se um feixe policromático incide sobre uma lente, vai ocorrer este fenómeno, na qual os raios luminosos que atravessam a lente vão ser desviados de forma diferente em função do seu comprimento de onda. A diferença no desvio dos raios luminosos dá-se porque os materiais através dos quais a luz pode passar têm um índice de refração cujo valor é maior para comprimentos de onda menores (apresenta dispersão), aumentando do vermelho para o azul, o que faz desviar mais os raios luminosos, focando-os mais perto da lente e fazendo com que a imagem apresente manchas coloridas. A figura abaixo ilustra o fenómeno da aberração cromática em uma lente simples:

Figura 66: Fenómeno de aberração cromática

Com essa diferença de comportamento para cada cor, fica difícil fazer com que toda imagem seja focalizada no mesmo plano.

Figura 67: Imagem com e sem aberração cromática

Para corrigir este problema, utiliza-se a combinação de duas lentes, uma convergente o outra divergente, com vidros de diferentes índices de refração. Nas lentes menores elas são coladas uma à outra, mas em lentes maiores elas são apenas justapostas. Essas lentes recebem o nome de “lentes acromáticas”. [1]

Com lentes acromáticas consegue-se que pelo menos duas cores sejam focalizadas no mesmo plano e que apenas o verde fique ligeiramente deslocado, eliminando grande parte da incomoda aberração cromática. A correção da aberração cromática melhora muito a qualidade da imagem e, hoje em dia, praticamente todos os instrumentos de qualidade razoável possuem correção acromática. O que difere um do outro é o nível de correção que cada um oferece e que certamente está relacionada com o preço do instrumento.[1]

— 2.8.21. Aberrações Geométricas —

Excepto a aberração cromática, todos os outros tipos de aberrações são chamadas de aberrações geométricas. Para se descrever as aberrações geométricas, pode se recorre a diversas técnicas, desde a descrição da passagem real dos raios no sistema até a teoria das perturbações.

A forma de corrigi-las, entretanto, é sempre a mesma: aumentando o número de graus de liberdade através do uso de diversas lentes ao invés de uma só. Assim, balanceando-se as curvaturas das superfícies de cada lente e utilizando-se diferentes tipos de vidros ópticos podemos eliminar ou reduzir significativamente as aberrações geométricas. Entretanto, as aberrações geométricas são muito mais difíceis de se corrigir que as aberrações cromáticas, utilizando-se para isto sistemas com até dezenas de lentes. [1]

Aberração esférica:

Os raios luminosos provenientes de um objeto pontual são desviados de maneira diferente por uma lente ou espelho e não convergem apenas num ponto, o que provoca uma desfocagem da imagem obtida. Nos espelhos a aberração pode ser eliminada fazendo-se a superfície parabólica e não esférica. Nas lentes a aberração pode ser minimizada se ambas as superfícies (dióptros) da lente refratarem de igual forma os raios luminosos ou pode ser diminuída utilizando diafragmas que restrinjam os raios luminosos apenas à zona paraxial (central) da lente, mas que por outro lado diminuem a nitidez e a quantidade de luz proveniente da imagem.

Quando os raios luminosos provenientes de um ponto no eixo óptico passam pela região mais exterior da lente e são focados mais perto do que os raios que passam na zona paraxial da lente, a lente tem aberração esférica negativa. Quando os se dá o contrário a lente tem uma aberração positiva. No primeiro caso diz-se que a lente está subcorrigida e no segundo caso que está sobrecorrigida.

Figura 68: Exemplo de aberração esférica.[1]

Astigmatismo

Esta aberração, no caso de um sistema óptico sem outras aberrações, surge para pontos da imagem que estejam fora do eixo óptico, pois nessa situação o cone de raios que se pode traçar a partir desse ponto vai incidir na lente de um modo assimétrico o que faz com que sejam focados em pontos diferentes. Neste caso, as imagens fora do eixo principal, dificilmente apresentam-se focalizadas.

O astigmatismo é talvez o defeito mais frequentes da visão humana, devido a alterações na curvatura da córnea que a tornam assimétrica (por exemplo, os braços perpendiculares de uma cruz estão nitidamente representados em duas superfícies diferentes). George B. Airy, um astrônomo, utilizou em 1825 uma lente côncava, esférica numa direção e cilíndrica na direção perpendicular para reduzir o seu próprio astigmatismo óptico, sendo provavelmente a primeira vez que o astigmatismo foi compensado.

Figura 69: Exemplo de Astigmatismo.[1]

Coma:

Quando os raios de luz atingem a lente de modo oblíquo, o que acontece quando o objeto observado não está exatamente na área central do campo de visão, eles acabam não convergindo corretamente para o plano focal da lente e causam a coma. Esta aberração faz com que a imagem fique borrada quando próxima da borda do campo de visão e estrelas fiquem parecendo cometas.[1]

Distorção:

Aberração de uma lente, devido ao facto de que a distância focal varia radialmente a partir do centro a lente. Na ausência de qualquer outra aberração, a distorção manifesta-se por uma deformação da imagem como um todo, mas em que cada ponto da imagem é perfeito.

A distorção faz com que um objeto formado por linhas retas apareça na imagem como curvas, o que origina também a designação de distorção curvilínea. Na distorção negativa um objeto com a forma quadrada será deformado na forma de um barril porque a ampliação transversal diminui com a distância o que faz com que cada ponto da imagem se aproxime mais do centro quanto mais afastado estiver no objeto. Na distorção positiva um objeto com a forma quadrada será deformado na forma de uma almofada porque a ampliação transversal aumenta com a distância, o que faz com que cada ponto da imagem se afaste mais do centro quanto mais afastado estiver no objeto.

Figura 70: a)imagem normal; b) imagem com distorção negativa; c)imagem com distorção positiva.[1]

Se tiveres uma lupa, poderás facilmente observar a distorção. Se pegares um papel quadriculado qualquer, e observares a sua imagem pela lupa, conseguirás facilmente notar a distorção.

O conhecimento destes defeitos e erros na formação da imagem são importantes para que consigamos analisar as imagens formadas pelos sistemas ópticos, sem nos deixarmos enganar por estas “aberrações”.

 

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.]

 

 

Anúncios

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão / Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão / Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão / Alterar )

Google+ photo

Está a comentar usando a sua conta Google+ Terminar Sessão / Alterar )

Connecting to %s

%d bloggers like this: