Luso Academia

Início » 00 Geral » Como se formam as cores na bolha de sabão? Interferência.

Como se formam as cores na bolha de sabão? Interferência.

— 3. Interferência —

— 3.1. Introdução —

A questão da natureza da luz, se era onda ou partícula, durante décadas e séculos animou diversos debates e discussões sobre a n esta, estando a comunidade científica dividida entre a teoria corpuscular de Newton e a teoria ondulatória de Hyugens. Esta calorosa discussão foi depois esclarecida com a teoria de dualidade onda-partícula de “De Broglie”. A concepção actual é de que a luz é onda e partícula. Na realidade, enquadra-se no grupo de ondas electromagnéticas, ocupando uma parte do espectro denominada espectro da luz visível. (Para mais esclarecimentos, ver nos post´s antigos ). Neste artigo , estudaremos o fenómeno de interferência das onda eletromagnéticas, com mais ênfase para a luz. Este é um fenómeno tipicamente ondulatório, e não pode ser analisado segundo os princípios estudados na óptica geométrica. Em vez dela, temos que empregar óptica ondulatória baseada no princípio de Huygens e nos conceitos de ondas electromagnéticas, que foi visto em temas anteriores.

Sugerimos que faça uma recapitulação sobre ondas electromagnéticas.

Quanto a classificação as ondas podem ser mecânicas ou electromagnéticas. As ondas elásticas que se propagam nos corpos sólidos, líquidos ou gasosos são ondas mecânicas.

A luz visível que é objecto do estudo da Óptica é uma espécie de onda electromagnética cujo comprimento de onda vai de {0,40 \mu m} a {0,76 \mu m}. Ela pode se propagar no vácuo bem como nos meios materiais transparentes como ar, o vidro, a água, etc. A luz e as outras espécies de ondas electromagnéticas (ondas de rádio-frequência, raios ultra-violeta,, etc.) são ondas transversais.

Quando a grandeza ou partícula que sofre perturbação oscila perpendicularmente à direcção de propagação do movimento ondulatório , então, as ondas são chamadas de ondas transversais.

Para as ondas electromagnéticas, são os vectores intensidade do campo eléctrico e do campo magnético que oscilam nos planos perpendiculares à direcção de propagação da onda e perpendiculares entre si como mostra a figura.

Figura 71: Onda electromagnética monocromática

As ondas electromagnéticas incluindo a luz visível propagam-se no vácuo (e também no ar) com velocidade aproximadamente igual a: {c = 3\cdot 10^8m/s}.

Quando as grandezas ou partículas oscilam na mesma direcção de propagação do movimento ondulatório as suas oscilações propagam-se por compressões e dilatações originando ondas longitudinais. Por exemplo, quando um som é transmitido no ar, as camadas do ar realizam periodicamente as compressões e dilatações ao longo da direcção de propagação da onda e em torno de suas posições de equilíbrio, criando assim uma onda sonora longitudinal.

As principais característica da onda são:

  • A amplitude de onda define-se como valor máximo da oscilação do movimento oscilatório.
  • O período {T} de uma onda é o intervalo de tempo necessário para que um elemento oscilatório da onda efectue uma vibração completa.
  • A frequência de uma onda é o número de oscilações completas realizadas numa unidade de tempo; depende apenas da frequência da fonte ou centro de abalo.A frequência mede-se em Hertz (Hz). O Hertz é também referido vulgarmente como ciclo por segundo.
  • O comprimento de onda é a distância entre duas cristas ou dois vales consecutivos na onda. Ela representa a distância percorrida pela onda no intervalo de tempo de um período. Por isso, ele é igual ao produto da velocidade de propagação da onda pelo período da onda.
  • A fase caracteriza a posição da partícula (ou o valor da grandeza) que oscila no ciclo. Pode ser medida em graus ou em radianos. a unidades no {SI} é o radiano.

— 3.2. Sobreposição de ondas e interferência —

O princípio de sobreposição é um princípio muito básico e já notamos o seu efeito várias vezes na nossa vida. Nós nos comunicamos através do som, que é uma onda mecânica. Quando duas pessoas falam ao mesmo tempo, as duas estão produzindo ondas mecânicas, e estas estão se propagando pelo ar. O nosso ouvido, pela sua própria característica de constituição e funcionamento não consegue separar uma da outra. O cérebro pode concentra-se em processar mais uma do que a outra, mas o ouvido, não. Portanto, se muitas pessoas falarem ao mesmo tempo, e com volumes de som aproximadamente iguais, não conseguimos distinguir um som do outro. Isto é consequência do princípio de sobreposição.

Outro exemplo clássico, é quando, por defeito de filtragem ou outra falha técnica, duas ou mais estações de rádio emitam na mesma frequência. O receptor não consegue receber o sinal de cada uma delas, mas sim o sinais, sobrepostos um num outro. O resultado disso é ouvirmos duas emissoras ao mesmo tempo.

Sempre que isso acontece, dizemos que há interferência. Então, a interferência é um fenómeno muito comum na nossa vida, e ela ocorre devido ao princípio de sobreposição. Vamos analisar com mais detalhe a interferência electromagnética, com mais ênfase para a luz.

A interferência da luz já era observada há muito tempo apesar de não ser considerada de grande importância. Viu-se muitas vezes um quadro de interferência quando na infância se entretínhamos a soltar bolas de sabão ou observamos os tons irisados das películas finas de querosene ou petróleo à superfície da água. A bola de sabão, ao voltar do ar, reveste-se de todas as cores que existem nos objectos que a rodeia. É a interferência da luz que torna as bolas de sabão tão dignas de admiração.

Foi Thomas Young, cientista inglês que pela primeira vez teve a ideia genial de explicar as cores das películas finas através da soma das ondas, uma das quais é reflectida pela superfície exterior da película e outra pela interior.

No electromagnetismo aprendemos que quando dois ou mais campos eléctricos (ou magnéticos) se sobrepõem, então o campo eléctrico (ou magnético) resultante é igual a soma vectorial de cada um dos campos eléctricos (ou magnéticos) que actua nesta região. Este princípio é conhecido como princípio de sobreposição.

A interferência é um fenómeno tipicamente ondulatório que ocorre quando duas ou mais ondas passam pelo mesmo ponto no espaço no mesmo instante. Através do princípio de superposição, que vale tanto para ondas mecânicas, quanto para ondas eletromagnéticas: o deslocamento resultante é determinado somando-se os deslocamentos provocados pelas ondas individuais como se elas estivessem presentes sozinhas. O termo “deslocamento” tem sentido genérico: (1) no caso das ondas mecânicas, trata-se do deslocamento das partículas do meio em relação à posição de equilíbrio, (2) no caso das ondas eletromagnéticas, trata-se do valor dos vetores dos campos elétricos e magnéticos.

Podemos dizer que a interferência de duas ondas luminosas é a sobreposição de duas ou mais ondas, em consequência da qual se observa o reforço ou o enfraquecimento estável no tempo das oscilações luminosas resultantes em diversos pontos do espaço.

Vale recordar, que, a luz do princípio de independência dos raios luminosos, a sobreposição das ondas não provoca nenhuma transformação nas características das ondas no geral, ou seja, no ponto onde ocorre a sobreposição, é válido o princípio de sobreposição, mas nos pontos posteriores e anteriores, as ondas continuam os seus percursos como se a outra nunca tivesse existido. Vamos então centrar a nossa atenção no ponto de sobreposição.

A sobreposição de dois movimentos harmónicos simples de frequências diferentes, poderá produzir um movimento variado, com presença das duas harmónicas.

Figura 72: a) Sinal sinusoidal com frequência de {50Hz}, b) Sinal sinusoidal com frequência de {28Hz}, c) sinal resultante da soma do sinal a) com o sinal b).

Mas a soma de duas sinusoides com mesma frequência, vai produzir uma terceira sinusoide com frequência igual as duas primeiras.

Figura 73: a) Sinal sinusoidal com frequência de {50Hz}, b) Sinal sinusoidal com frequência de {28Hz}, c) sinal resultante da soma do sinal a) com o sinal b).

Podemos ver que a amplitude do sinal resultante da figura 73 não é exatamente igual á soma da amplitude dos dois sinais somados. À semelhança da soma entre vectores, a amplitude da soma de duas ondas harmónicas que se propagam no mesmo sentido não é igual à soma aritmética das duas amplitudes, ou seja, somando uma onda sinusoidal de amplitude de {100V/m} com outra também de {100V/m}, não dará necessariamente uma onda com amplitude de {200V/m}. O resultado depende da diferença de fase. Dependendo da diferença entre as fases das ondas, o resultado pode variar entre {0} e {200V/m}.

Os casos extremos desta sobreposição são dois:

  • Quando as ondas que se sobrepõem têm mesma fase, então a onda resultante amplitude máxima. No caso de duas onda de amplitude igual, a onda resultante terá amplitude igual ao dobro da amplitude cada. Esta interferência é denominada interferência construtiva.
  • Quando as ondas que interferem estão em oposição de fases, ou seja, têm um desfasamento de {180^0}, então, a onda resultante terá amplitude mínima. No caso de ondas com mesma amplitude, está amplitude será zero. Esta interferência é chamada de interferência destrutiva

Figura 74: a) Interferência construtiva, b) interferência destrutiva.

Podemos deduzir a equação da onda resultante da sobreposição e aí, ver em que condições ocorre a interferência. Considere que duas fontes que estejam sincronizadas uma com a outra e emitam ambas ondas com mesma frequência e fase {E_1(r,t)=E_0 \cdot \cos (\omega t-k \cdot r_1)} e {E_2(r,t)=E_0 \cdot \cos (\omega t-k \cdot r_2)} e que estas se encontrem num ponto qualquer {P}.

Figura 75: Interferência de fontes coerentes

Da sobreposição delas vai resultar uma onda {E_R(r,t)=E_1(r,t)+E_2(r,t)=E_0 \cdot \cos (\omega t-k \cdot r_1)+E_0 \cdot \cos (\omega t-k \cdot r_2)}. Factorizando {E_0}, teremos: {E_R(r,t)= E_0 \cdot ( \cos (\omega t-k \cdot r_1)+ \cos (\omega t-k \cdot r_2))}. Aplicando a fórmula do co-seno da soma, teremos: { E_R(r,t)= E_0 \cdot 2 \cdot ( \cos ( \frac{\omega t - k \cdot r_1 + \omega t - k \cdot r_2}{2})) \cdot (\cos ( \frac{ \omega t - k \cdot r_1 - \omega t + k \cdot r_2}{2}))}. A equação da onda resultante será:

\displaystyle E_R(r,t)= 2E_0 \cdot \cos (\omega t-\frac{k \cdot(r_1+r_2)}{2})\cdot \cos (\frac{k \cdot (r_2-r_1)}{2}) \ \ \ \ \ (82)

 

No ponto de sobreposição, o tipo de interferência obtido será construtiva ou destrutiva dependendo da fase com que as ondas chegam neste ponto. Quando a diferença de fase for {0} teremos interferência construtiva, e quando a diferença de fase for {180^0} teremos interferência destrutiva. Nas situações intermédias a estas. teremos também ondas com amplitudes intermédias.

A fase da onda ao chegar neste ponto, é por sua vez, dependente do caminho percorrido pela onda. Neste caso, podemos dizer de outro modo: a amplitude da onda resultante, no caso de duas fontes coerentes (em fase), vai depender da diferença de percurso { \vert r_2-r_1 \vert} das duas ondas. Sempre que {\vert r_2-r_1 \vert =m\cdot\lambda}, a interferência será construtiva e sempre que {\vert r_2-r_1 \vert =(2m-1)\cdot \frac{\lambda}{2}} a interferência será destrutiva.

No caso de fontes policromáticas emitindo ondas coerentes, o tipo de interferência não vai depender só da diferença de percurso, mas também do comprimento de onda, visto que cada raio tem um conjunto de ondas com vários comprimentos de onda, ocorrendo que, para um feixe policromático incidindo num material,haverá interferência de modos que algumas ondas façam interferência construtivas e outras façam interferência destrutiva, permitindo-nos ver cores diferentes da cor da luz que incidiu.

No exemplo da bolha de sabão, quando a luz branca incide numa película da bolha de sabão, algumas cores sofrem interferência construtiva e outras sofrem interferência destrutiva, resultando daí, que só observaremos o comprimento de onda médio das ondas que sofreram interferência construtiva.

Figura 76: Interferência na bolha de sabão.

Num local escuro, quando a luz incidente é monocromática, a interferência num obstáculo vai apresentar-se na forma de franjas ( ou riscas) claras e franjas escuras. As franjas claras correspondem aos pontos onde ocorre interferência construtiva (resultando num máximo de intensidade luminosa) e as franjas escuras ocorrem onde há interferência destrutiva (resultando em um mínimo de intensidade luminosa.

Figura 77: Franjas claras e escuras na interferência.

 

 

 

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.]


Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers gostam disto: