Topologia
— 1. Espaços Métricos —
A topologia, literalmente, a ciência da forma, é uma área da Matemática, muito ligada à Geometria e Análise, que têm como objectivo fundamental a análise do conceito de continuidade entre espaços.
Existem duas maneiras de se introduzir uma estrutura topológica em um espaço, a primeira através da noção de distância entre elementos de um conjunto, que passará a ser um espaço métrico, a outra, numa abordagem mais conjuntista e abstracta, utilizando a noção primitiva de conjunto aberto. Nas primeiras aulas abordaremos principalmente a primeira maneira, por ser talvez a mais intuitiva e também por cumprir com os objectivos que preconizamos.
Definição 1 Seja
|
Comentário 1 Ao par |
Do axioma 3 obtemos por indução a desigualdade triangular generalizada:
Um subespaço de um espaço métrico
é obtido se tomarmos o subconjunto
e restringirmos
a
, assim a métrica em
é a restrição
A definição acima nos mostra claramente que em um mesmo conjunto podemos definir várias métricas, ou seja, várias maneiras de se medir distâncias. Um dos conjuntos mais famosos que possui várias distâncias nele definidas é o conjunto dos números reais .
Exemplo 1 1. O conjunto dos Números Reais Esta é com certeza a distância mais famosa em matemática, pois quase toda a análise elementar é feita usando esta métrica e é também bastante intuitiva, vamos provar que os números reais com essa distância é de facto um espaço métrico. Demonstração: (i) Vamos verificar o primeiro axioma, o que é evidente pela definição de módulo. Resta demonstrar a segunda parte do axioma 1, temos então a reciproca é evidentemente verdadeira, se tomarmos (iii)Para demonstrarmos a desigualdade triangular vamos precisar da desigualdade triangular nos reais, i.e., Fazendo uso de um pequeno artifício temos, Então, assim demonstramos que o par |
Exemplo 2 Ao tomarmos qualquer conjunto |
O exemplo a seguir foi tirado do livro an epsilon of room, escrito por Terence Tao, e é muito interessante porque mostra como a partir de duas métricas podemos formar outras métricas, chamadas de métricas produto.
Exemplo 3 Dado dois espaços métricos ou ainda |