Luso Academia

Início » Posts tagged 'Força Eléctrica'

Tag Archives: Força Eléctrica

1.1. Exercícios sobre Carga, Forças Eléctricas e Campo Eléctrico(Parte 3)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 7 .

O sistema abaixo mostra três cargas { q_1= \ -1,5 \ \mu C }; { q_2= \ 5 \ \mu C } e { q_3= \ 10 \ \mu C }.

Qual é a força resultante sobre {q_2}.

.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7

.

Dados .

{ q_1= \ -1,5 \ \mu C = \ -1,5 \cdot 10 ^{-6} \ C } .

{ q_2= \ 5 \ \mu C = \ 5 \cdot 10^6 \ C } .

{ q_3= \ 10 \ \mu C = \ 10 \cdot 10 ^{-6} \ C }

O exercícios nós pede para calcular a força resultante { q_2}.

O sistema apresenta um conjunto de 3 cargas. Neste caso, as forças na carga em questão surgem devido a interacção com as outras duas cargas.

Então, temos 2 forças de interacção. A natureza da interacção depende do sinal das cargas. A interacção entre { q_2} e { q_1} é de atracção, pois ambas têm sinais opostos. A interacção entre { q_2} e { q_3} é de repulsão, pois ambas têm sinais iguais.

Denotamos por {\vec{F_{12}}} e {\vec{F_{21}}} as forças de interacção entre { q_2} e { q_1}.

Denotamos por {\vec{F_{32}}} e {\vec{F_{23}}} as forças de interacção entre { q_2} e { q_3}.

Veja a figura.

neste caso calculamos em cada caso:

Então, observamos que em { q_2} actua duas forças: {\vec{F_{21}}} e {\vec{F_{23}}}.

Para calcular o valor dos módulos destas forças vamos usar a formula obtida pela lei de Coulomb.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_3} temos:

\displaystyle F_{23}= K \dfrac{| q_2 | | q_3 |}{r_{23}^2}= \dfrac{9 \cdot 10^9 \cdot 5 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(3 \cdot 10 ^{-3} )^2}

\displaystyle F_{23}= \ 5 \cdot 10^4 \ N

A distancia {r_{23}} foi obtida pela diferença das coordenadas de cada carga: {r_{23}= \ |x_3-x_2|= \ 7-4= \ 3 m}.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

\displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{r_{12}^2}=\dfrac{9 \cdot 10^9 \ 1,5 \cdot 10 ^{-6} \cdot 5 \cdot 10 ^{-6}}{(6 \cdot 10 ^{-3} )^2}

\displaystyle F_{21}= 0,1875 \cdot 10^{-4} \ N

Como tem duas forças que interagem em {q_2} podemos calcular a força resultante em {q_1}.

No caso, as duas forças têm mesmo sentido e mesma direcção. Então, não existe necessidade de projectarmos ou usarmos a lei dos cossenos. A força resultante será obtida pela soma dos módulos dos vectores obtidos:

\displaystyle F_{r2}=F_{23} + F_{21}=50.000+1.875=51.184 \ N

Exercício 8 Um sistema apresenta três cargas dispostas nos vértices de um quadrado de aresta a=0,02 mm. Sendo: {q_1=q_2=q_3= \ 10 \ \mu C}, qual será:

  1. O campo eléctrico no outro vértice?
  2. A força na carga {q_2}?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 8

O problema nos pede para determinar o Campo eléctrico no ponto O e a força eléctrica resultante na carga {q_2}.

Para obter o campo eléctrico no ponto {O}, devemos ter em conta que o campo eléctrico obedece ao principio de super posição. Neste caso, o campo eléctrico provocado por um sistemas de cargas é igual á soma (vectorial, visto que o campo eléctrico é uma grandeza vectorial dos campos produzidos por cada carga. (Nota: aqui, quando nos referimos ao campo eléctrico, estamos a falar da sua intensidade).
Para o efeito, temos de achar o campo eléctrico produzidos por cada carga no ponto {O}, para termos o campo resultante neste ponto.

No caso de forças, temos de analisar todas as interacções de {q_2}. Neste caso, são duas: A interacção entre { q_2} e { q_1}, e a interacção entre { q_2} e { q_3}.

Então, temos 2 forças de interacção. A natureza da interacção depende do sinal das cargas. A interacção entre { q_2} e { q_1} é de repulsão, pois ambas têm mesmo sinal. A interacção entre { q_2} e { q_3} também é de repulsão, pois ambas têm sinais iguais.

Denotamos por {\vec{F_{12}}} e {\vec{F_{21}}} as forças de interacção entre { q_2} e { q_1}.

Denotamos por {\vec{F_{32}}} e {\vec{F_{23}}} as forças de interacção entre { q_2} e { q_3}.

Dados

{a = 0,02 \ mm = 0,02 \cdot 10^{-3} }

{q_1 = q_2 = q_3 = 10 \ \mu C=10 \cdot 10^{-6} \ C}

{ K=8,99 \cdot 10^9 \ Nm^2/C^2}

{ E_{R}-? }

{F_{q_{2}}-? }

.

  1. Para calcularmos o campo eléctrico resultante no ponto {O}, vamos calcular o campo produzido por cada carga e fazer a soma vectorial deles. Como as direcções e sentidos têm importância na soma vectorial, devemos, além de calcular os módulos, representar e determinar geometricamente os ângulos entre estes vectores. Traçando os campos eléctricos no ponto {O}, todos apontando para o sentido oposto as cargas que os origina (visto que as cargas são positivas), observamos que teremos neste 3 campos eléctricos: {\vec{E_1}}, {\vec{E_2}} e {\vec{E_3}}, sendo que o primeiro é vertical e apontando para baixo, o segundo é oblíquo, dirigido paralelamente a diagonal do quadrado e o terceiro é horizontal apontando para a direita. Veja figura.

    A diagonal de um quadrado faz um ângulo de {45^o} com as suas arestas.

    Pela relação do campo criado por uma carga pontual temos:

    \displaystyle E= K \dfrac{q}{r^2}

    Então para o caso da carga {q_1}, temos:

    \displaystyle E_1=K \dfrac{q_1}{r_1^2}=K \dfrac{q_1}{a^2}

    \displaystyle \Rightarrow E_1 =9 \cdot 10^9 \cdot \dfrac{10 \cdot 10^{-6}}{(0,02 \cdot 10^{-3})^2}= 2,25 \cdot 10^{14} \ N/C

    Para o caso da carga {q_3}, não precisamos fazer o cálculo, pois { E_3 = E_1 }, por ter mesmo valor de carga e mesmas distâncias.

    Para o caso da carga {q_2}, temos:

    \displaystyle E_2 = K \cdot \dfrac{q_2}{r_2^2} = K \cdot \dfrac{q_2}{b^2}

    Para tal, temos de obter uma relação para {b}.

    Usando o teorema de Pitágoras,temos:

    \displaystyle b^2=a^2 + a^2

    \displaystyle \Rightarrow b=\sqrt{a^2 + a^2}

    \displaystyle \Rightarrow b=\sqrt{2 \cdot a^2}= \sqrt{2} a

    Logo, voltando a {E_2}, temos:

    \displaystyle E_2 = K \cdot \dfrac{q_2}{(\sqrt{2} a)^2}

    \displaystyle \Rightarrow E_2=9 \cdot 10^9 \cdot \dfrac{10 \cdot 10^{-6}}{(0,02 \cdot 10^{-3} \cdot \sqrt{2})^2}=1,125 \cdot 10^{14} \ N/C

    Para calcularmos o campo resultante, trabalharemos com o método de projecções. Como s campo eléctrico {E_2}, vamos obter as suas projecções em {Ox} e em {Oy}.

    \displaystyle E_{Rx}=E_3+E_{2x}

    \displaystyle E_{Ry}=E_1 + E_{2y}

    Substituindo as projecções pelos seus equivalentes, obtemos:

    \displaystyle E_{Rx}=E_3+E_{2} \cdot \cos 45^o

    \displaystyle E_{Ry}=E_1 + E_{2} \cdot \sin 45^o

    Neste caso, o módulo do vector resultante será:

    \displaystyle E_R=\sqrt{ E_{Rx}^{2} + E_{Ry}^{2}}

    \displaystyle \Rightarrow E_R=\sqrt{(E_3+E_{2} \cdot \cos 45^o)^2 + (E_1 + E_{2} \cdot \sin 45^o)^2}

    Substituindo os valores obtidos anteriormente, obtemos:

    \displaystyle E_{R}=\sqrt{( 2,25 \cdot 10^{14}+1,125 \cdot 10^{14} \cdot \cos 45^o)^2 + ( 2,25 \cdot 10^{14} + 1,125 \cdot 10^{14} \cdot \sin 45^o)^2}

    \displaystyle E_{R}= \ 4,31 \cdot 10^{14} \ N/C

  2. Para determinamos a Forças resultante na carga {q_2}, devemos representar as forças que actuam nela, conforme explicação anterior. Veja a figura.
    De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

    \displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{a^2}=\dfrac{9 \cdot 10^9 \ 10 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(0,02 \cdot 10 ^{-3} )^2}

    \displaystyle F_{21}= 2,25 \cdot 10^9 \ N

    Para interacção da carga {q_2} em {q_3}, não é necessário calcular, pois as cargas que interagem são iguais e estão colocadas a igual distância. Neste caso, temos:

    \displaystyle F_{23}= F_{21}= 2,25 \cdot 10^9 \ N

    Para achar a força resultante, visto que temos a soma de dois vectores perpendiculares entre si, aplicaremos o teorema de Pitágoras. Pelo teorema de Pitágoras, temos:

    \displaystyle F_{q_{2}}=\sqrt{F^{2}_{23} + F^{2}_{21}}

    Como {F_{23}= F_{21}}, então:

    \displaystyle F_{q_{2}}=\sqrt{F^{2}_{23} + F^{2}_{23}}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2 \ F^{2}_{23}}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2} \ F_{23}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2} \ 2,25 \cdot 10^9

    \displaystyle \Rightarrow F_{q_{2}}=3,18 \cdot 10^9

Exercício 9 Um sistema apresenta três cargas dispostas nos vértices de um quadrado de aresta a=0,02 mm. As cargas são: {q_1=q_2=q_3=10 \ \mu C}.

Qual carga(módulo e sinal) deve ser colocado no vértice do quadrado para que a força eléctrica resultante em {q_2} seja igual a zero?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 9 .

Dados

{q_1 =q_2 =q_3 = \ 10 \ \mu C= \ 10 \cdot 10^{-6} \ C}

{q_4-? }

{F_{q_{2}}=0}
A resolução deste problema possui dois caminhos e dois modos:

Modo 1: Calcular a força eléctrica que as cargas actuais exercem no na carga {q_2}. Em seguida calcular, pela lei de Coulomb, qual carga provocaria uma força tal que anulasse esta força.

Modo 1: Representar o sistema de 4 cargas e representar as 3 forças na carga {q_2}. Aplicar a resultante na carga {q_2}, através das componentes e com a condição de que a força deve ser nula, calcular essa carga desconhecida.

Além dos dois modos, há ainda duas variantes de parâmetros: Podemos resolver considerando a Força eléctrica ou considerando o campo eléctrico.

Vamos resolver este problema considerando o 1º modo e usando a força eléctrica.

Primeiro, vamos calcular a força eléctrica resultante na carga {q_2} no sistema, antes da adição da carga {q_4}

Para determinamos a força resultante na carga {q_2} dos efeitos de {q_1} e {q_3} ({F_{2,13}}), devemos representar as forças que actuam nela, conforme explicação anterior. Veja a figura.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

\displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{a^2}=\dfrac{9 \cdot 10^9 \ 10 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(0,02 \cdot 10 ^{-3} )^2}

\displaystyle F_{21}= 2,25 \cdot 10^9 \ N

Para interacção da carga {q_2} em {q_3}, não é necessário calcular, pois as cargas que interagem são iguais e estão colocadas a igual distância. Neste caso, temos:

\displaystyle F_{23}= F_{21}= 2,25 \cdot 10^9 \ N

Para achar a força resultante dos efeitos de {q_1} e {q_3}, visto que temos a soma de dois vectores perpendiculares entre si, aplicaremos o teorema de Pitágoras. Pelo teorema de Pitágoras, temos:

\displaystyle F_{2,13}=\sqrt{F^{2}_{23} + F^{2}_{21}}

Como {F_{23}= F_{21}}, então:

\displaystyle F_{2,13}=\sqrt{F^{2}_{23} + F^{2}_{23}}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2 \ F^{2}_{23}}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2} \ F_{23}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2} \ 2,25 \cdot 10^9

\displaystyle \Rightarrow F_{2,13}=3,18 \cdot 10^9

Portanto, {F_{2,13}} é a força resultante dos efeitos de {q_1} e {q_3} sobre {q_2}.

Para que a resultante em {q_2} seja zero, é necessário adicionar no vértice {O} uma carga {q_4} que produza em {q_2} uma força ({F_{24}}) de igual módulo, mas de sentido oposto.

Neste caso, já concluímos que a carga {q_4} deve ser negativa.

O seu módulo dever ser:

\displaystyle F_{24} = F_{2,13}

\displaystyle K\dfrac{| q_2 | | q_4|}{b^2} = F_{2,13}

A diagonal do quadrado {b} é obtida da aplicação do Teorema de Pitágoras no triângulo que ele forma com as duas arestas do quadrado.

\displaystyle b^2=a^2 + a^2

\displaystyle \Rightarrow b=\sqrt{a^2 + a^2}

\displaystyle \Rightarrow b=\sqrt{2 \cdot a^2}= \sqrt{2} a

Então:

\displaystyle K\dfrac{| q_2 | | q_4|}{(\sqrt{2} a )^2} = F_{2,13}

Então, isolando o modulo de {q_4}, obtemos:

\displaystyle | q_4| = \dfrac{ F_{2,13}(\sqrt{2} a )^2}{K \cdot| q_2 | }

\displaystyle \Rightarrow | q_4| = \dfrac{ 3,18 \cdot 10^9 (\sqrt{2} 0,02 \ \ \cdot 10^{-3} )^2}{ 9 \cdot 10^{9}\cdot 10 \cdot 10^{-6} }

\displaystyle \Rightarrow | q_4| = 2,83 \cdot 10^{-5} \ C

Então:

\displaystyle q_4 = \ - 2,83 \cdot 10^{-5} \ C

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.