Luso Academia

Início » Posts tagged 'velocidade instantânea'

Tag Archives: velocidade instantânea

Análise Matemática – Cálculo Diferencial III

Teorema 65 {Teorema de Cauchy} Sejam { {[a,b]\subset\mathbb{R}}} e { {f}}, { {g}} contínua tal que { {f;g:[a,b]\rightarrow \mathbb{R}}}. Se { {f}} e { {g}} são diferenciáveis em { {]a,b[}} e { {g'}} é diferente de {0} em { {]a,b[}}, então existe { {c \in ]a,b[}} tal que

\displaystyle   \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)} \ \ \ \ \ (66)

Demonstração: Temos { {g(a)\neq g(b)}} uma vez que se fosse { {g(a)=g(b)}}, { {g'}} teria uma raiz em { {]a,b[}}.

Seja

\displaystyle  \lambda=\frac{f(b)-f(a)}{g(b)-g(a)}

e vamos definir { {\varphi}} como sendo { {\varphi:[a,b]\rightarrow\mathbb{R}}}(diferenciável em { {]a,b[}} e contínua em { {[a,b]}}) tal que { {\varphi=f(x)-\lambda g(x)}} { {\forall x \in [a,b]}}. Assim

\displaystyle  \varphi(a)=f(a)-\lambda g(a)=\ldots=\varphi(b)

Aplicando o teorema 63 em { {[a,b]}} existe { {c\in [a,b]}} tal que { {\varphi'=0}}. Isto é

\displaystyle  f'(c)-\lambda g'(c)=0 \Leftrightarrow \lambda=\frac{f'(c)}{g'(c)}

\Box

O Teorema anterior de certa forma é mais um Lema do que propriamente um Teorema. Dizemos isso porque não obstante seja um resultado importante por si próprio ele é bastante útil para provarmos outros teoremas. Para além disso este resultado pode ainda ser interpretado com um algoritmo que nos permite obter aproximações (muito) locais para funções na vizinhança de um dado ponto.

Teorema 66 {Primeira regra de Cauchy} Sejam { {I \subset \mathbb{R}}}, { {c\in I'}} e { {f,g:I\setminus \{c\}\rightarrow \mathbb{R}}} diferenciável. Vamos também assumir que { {g'}} não se anula em { {I\setminus \{c\}}} e que { {\displaystyle \lim _{x\rightarrow c}f(x)=\displaystyle \lim _{x\rightarrow c}g(x)=0}}.

Se { {\displaystyle \lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}}} existe temos que

\displaystyle   \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)} \ \ \ \ \ (67)

Demonstração: Seja { {c\in\mathbb{R}}}. Uma vez que { {f,g}} são contínuas em { {I\setminus \{ c \}}} e { {\displaystyle \lim _{x\rightarrow c}f(x)=\displaystyle \lim _{x\rightarrow c}g(x)=0}} podemos definir { {f(c)=g(c)=0}}. Seja { {x_n: \mathbb{N}\rightarrow I\setminus \{c\}}} tal que { {x_n\rightarrow c^+}}.

Aplicando o Teorema 65 a cada intervalo { {[c,x_n]}} vem que

\displaystyle  \frac{f(x_n)}{g(x_n)}=\frac{f(x_n)-f(c)}{g(x_n)-g(c)}=\frac{f'(u_n)}{g'(u_n)}

Com { {c<u_n<x_n}}.

Então { {u_n\rightarrow c}} pelo Teorema da sucessão enquadrada 17

E

\displaystyle  \lim _{x\rightarrow c}\frac{f'(u_n)}{g'(u_n)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}

pela definição de limite.

Então

\displaystyle  \lim _{x\rightarrow c}\frac{f(x_n)}{g(x_n)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}

Assim pela definição de limite é

\displaystyle   \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c^+}\frac{f'(x)}{g'(x)} \ \ \ \ \ (68)

Analogamente se para { {x_n}} temos

\displaystyle  x_n\rightarrow c^-

Aplicando o Teorema 65 a cada intervalo { {[x_n,c]}} é

\displaystyle  \frac{f(x_n)}{g(x_n)}=\frac{f(x_n)-f(c)}{g(x_n)-g(c)}=\frac{f(c)-f(x_n)}{g(c)-g(x_n)}=\frac{f'(u_n)}{g'(u_n)}

Com { {x_n<u_n<c}}.

Analogamente ao que vimos atrás fica

\displaystyle   \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c^-}\frac{f'(x)}{g'(x)} \ \ \ \ \ (69)

Das equações 68 e 69 vem que

\displaystyle  \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}

Finalmente façamos { {c=+\infty}}. Seja { {x=1/t}}. Temos que { {x\rightarrow \infty \Leftrightarrow t\rightarrow 0^+}}. Pelo que provámos até agora temos

{ {\begin{aligned} \displaystyle \lim _{x\rightarrow +\infty}\frac{f(x)}{g(x)} &= \displaystyle \lim_{t \rightarrow 0^+}\frac{f(1/t)}{g(1/t)}\\ &= \displaystyle\lim_{t \rightarrow 0^+}\frac{(f(1/t))'}{(g(1/t))'}\\ &=\displaystyle \lim_{t \rightarrow 0^+}\frac{-1/t^2f'(1/t)}{-1/t^2g'(1/t)}\\ &=\displaystyle \lim_{t \rightarrow 0^+}\frac{f'(1/t)}{g'(1/t)}\\ &=\displaystyle \lim_{t \rightarrow 0^+}\frac{f'(x)}{g'(x)}\\ \end{aligned}}}

Assim, para este caso também é { {\displaystyle\lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}}}.

O caso { {c=-\infty}} pode ser demonstrado de forma semelhante com a mudança de variável { {x=-1/t}}. \Box

Teorema 67 {Segunda regra de Cauchy} Sejam { {I \subset \mathbb{R}}}, { {c\in I'}} e { {f,g:I\setminus \{c\}\rightarrow \mathbb{R}}} diferenciável. Suponha-se { {g}} não se anula em { {I\setminus \{c\}}} e que { {\displaystyle \lim _{x\rightarrow c}f(x)=\displaystyle \lim _{x\rightarrow c}g(x)=+\infty}}. Então se existir limite { {\displaystyle \lim _{x\rightarrow c}\frac{f'(x)}{g'(x)}}} tem-se

\displaystyle   \lim _{x\rightarrow c}\frac{f(x)}{g(x)}=\lim _{x\rightarrow c}\frac{f'(x)}{g'(x)} \ \ \ \ \ (70)

Demonstração: Deixada como um exercício para o leitor. \Box

Os dois teoremas anteriores são conhecidos por uma variedade de nomes na literatura matemática e são sobejamente utilizados para calcularmos limites. Como sempre daremos alguns exemplos para demonstrar a sua utilidade.

Exemplo 1 As funções { {e^x}} and { {x}} tendem para infinito quando { {x}} tende para infinito. Já sabemos que a função exponencial tende para infinito mais rápido que qualquer polinómio de {x} pelo teorema 45 no artigo Análise Matemática – Limites e Continuidade VI mas utilizando a Segunda regra de Cauchy podemos demonstrar esse resultado de forma mais rápida.

\displaystyle   \lim_{x\rightarrow \infty}\frac{e^x}{x} \ \ \ \ \ (71)

Como sempre um método que consegue demonstrar um mesmo resultado de uma forma mais rápida e eficiente é um método mais poderoso.

{ {\begin{aligned} \displaystyle \lim _{x\rightarrow +\infty}\frac{e^x}{x} &= \displaystyle \lim_{x \rightarrow +\infty}\frac{(e^x)'}{x'}\\ &= \displaystyle \lim _{x\rightarrow +\infty}\frac{e^x}{1}\\ &= \infty \end{aligned}}}

Exemplo 2 As funções { {\cos x-1}} e { {x^2}} tendem para { {0}} quando { {x}} tende para { {0}}. A pergunta que se coloca é qual das funções tende para { {0}} de forma mais rápida?

{ {\begin{aligned} \displaystyle \lim_{x\rightarrow 0}\frac{\cos x-1}{x^2} &= \displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)'}{(x^2)'}\\ &= \displaystyle \lim_{x\rightarrow 0}\frac{-\sin x}{2x}\\ &= \ldots \end{aligned}}}

No final dos cálculos anteriores chegamos mais uma vez a uma indeterminação do tipo { {\displaystyle \lim_{x\rightarrow 0}\frac{f(x)}{g(x)}}} onde { {\displaystyle \lim_{x\rightarrow 0}f(x)=\displaystyle \lim_{x\rightarrow 0}g(x)=0}}.

No entanto ambas a regras de Cauchy podem ser utilizadas mais do que uma vez. Assim sendo vamos utilizar mais uma vez a regra de Cauchy (voltando ao ponto inicial para que não percamos o raciocínio)

{ {\begin{aligned} \displaystyle \lim_{x\rightarrow 0}\frac{\cos x-1}{x^2} &= \displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)'}{(x^2)'}\\ &= \displaystyle \lim_{x\rightarrow 0}\frac{-\sin x}{2x}\\ &= \displaystyle \lim_{x\rightarrow 0}\frac{-\cos x}{2}\\ &= -\dfrac{1}{2} \end{aligned}}}

Como exercício calcule:

\displaystyle  \lim_{x \rightarrow 0} \frac{e^x-1}{1}

Vamos agora demonstrar mais um resultado matemático que é muito importante para a Física, a um nível conceptual pode ser interpretado tanto de forma geométrica como de forma cinemática e que tem o nome de teorema de Lagrange.

Teorema 68 {Teorema de Lagrange} Sejam { {[a,b]\subset\mathbb{R}}} e { {f:[a,b]\rightarrow\mathbb{R}}} contínua. Se { {f}} é diferenciável { {]a,b[}} existe { {c\in ]a,b[}} tal que

\displaystyle   \frac{f(b)-f(a)}{b-a}=f'(c) \ \ \ \ \ (72)

Demonstração: No teorema 65 faça-se { {g(x)=x}} e o resultado segue trivialmente. \Box

Como dissemos anteriormente este teorema pode ser interpretado de uma forma geométrica ou de uma forma cinemática.

Geometricamente podemos dizer que a secante a função { {f(x)}} que passa pelas extremidades de { {[a,b]}} tem um determinado declive e que podemos sempre encontrar uma tangente à função { {f}} no intervalo { {[a,b]}} cujo declive é o mesmo que o da recta secante. Assim podemos dizer que a recta tangente é paralela à recta secante.

A interpretação cinemática diz-nos que se { {x}} representa o tempo e que se { {f(x)}} representa a posição (num movimento unidimensional) então { {f(b)-f(a)}} representa a distância percorrida no intervalo de tempo { {b-a}} com uma velocidade média de

\displaystyle  \frac{f(b)-f(a)}{b-a}

Neste contexto sabemos que { {f'(x)}} é a velocidade instantânea e assim sendo o Teorema 68 diz-nos que existe um instante de tempo { {c}} para o qual a velocidade instantânea é igual à velocidade média em todo o intervalo de tempo.

Exemplo 3 Mostre que { {e^x-1>x\quad \forall x \neq 0}}.

Seja { {f(t)=e^t}}. Vamos assumir que { {x>0}} e aplicar o teorema 68 no intervalo { {[0,x]}}.

{ \displaystyle \frac{e^x-e^0}{x-0}=\left( e^t \right)'_{t=c} }

com { {0<c<x}}.

Então

\displaystyle  \frac{e^x-1}{x}=e^c>1

Vamos agora assumir que { {x<0}} e aplicar mais uma vez o teorema 68 no intervalo { {[x,0]}}.

\displaystyle  \frac{e^0-e^x}{0-x}=\left( e^t \right)'_{t=c}

com { {x<c<0}}.

Então

\displaystyle  \frac{1-e^x}{-x}=e^c<e^0=1\Leftrightarrow 1-e^x<-x\Leftrightarrow e^x-1>x

De notar que não tivemos que inverter o sinal da desigualdade quando multiplicámos por { {-x}} uma vez que { {x<0}} e consequentemente { {-x>0}}.

Vamos agora enunciar dois importantes corolários para o teorema anterior.

Corolário 69 Sejam { {I}} um intervalo em { {\mathbb{R}}} e { {f:I\rightarrow\mathbb{R}}} contínua. Se {{f'}} existe e é identicamente nula no interior de { {I}}, então { {f}} é constante.

Demonstração: Por redução ao absurdo vamos assumir que { {f}} não é constante. Então existe { {a,b \in I}} tal que { {a<b}} e { {f(a)\neq f(b)}}. Uma vez que { {f}} é constante em { {[a,b]}} e diferenciável em { {]a,b[}} pelo teorema 68 vem que

\displaystyle  \frac{f(b)-f(a)}{b-a}=f'(c)

com { {c\in ]a,b[}}.

Assim { {\frac{f(b)-f(a)}{b-a}=0}} o que é absurdo pois tal implicaria que { {f(b)=f(a)}}, que é contrário à nossa hipótese. \Box

Corolário 70 Sejam { {I}} um intervalo em { {\mathbb{R}}} e { {f:I\rightarrow\mathbb{R}}} contínua. Se { {f'}} existe e é positiva (negativa) no interior de { {I}}, então { {f}} é estritamente crescente (decrescente).

Demonstração: Vamos analisar o caso { {f'>0}}. Dado { {a,b \in I}} tais que { {a<b}}. Do teorema 68 vem que

\displaystyle  \frac{f(b)-f(a)}{b-a}=f'(c)>0

com { {c \in ]a,b[}}.

Uma vez que { {b-a>0}} vem que { {f(b)>f(a)}} e { {f}} é estritamente crescente. \Box

Com estes resultados terminamos o capítulo de Cálculo Diferencial no nosso curso de Análise Real. Os nossos próximos artigos teóricos irão debruçar-se sobre a Teoria das Séries Numéricas

Análise Matemática – Cálculo Diferencial I

— 7. Cálculo Diferencial —

Definição 37

Seja { {D\subset\mathbb{R}}}, { {f:D\rightarrow\mathbb{R}}} e { {c\in D\cap D'}}. { {f}} diz-se diferenciável no ponto { {c}} se o seguinte limite existe

\displaystyle   \displaystyle \lim_{x\rightarrow c}\frac{f(x)-f(c)}{x-c} \ \ \ \ \ (53)

Este limite é representado por { {f'(x)}} e diz-se que é a derivada de { {f}} em { {c}}.

Geometricamente podemos interpretar o valor da derivada no ponto {c} como sendo igual ao declive da recta tangente à curva que passa pelo ponto {c}.

Pensando em termos cinemáticos sabemos que podemos representar a evolução da posição de uma partícula pela função { {x=f(t)}}. Deste modo podemos definir a velocidade média da partícula no intervalo { {[t_0,t]}} por

\displaystyle  v_m(t_0,t)=\frac{f(t)-f(t_0)}{t-t_0}

Se quisermos determinar a velocidade da partícula num dado instante de tempo temos que partir da definição anterior e fazer com que o intervalo de tempo seja o mais pequeno e próximo possível do instante para o qual queremos saber a velocidade. Se { {f}} é uma função bem comportada o limite existe e podemos defini-lo como sendo o valor da velocidade no instante (velocidade instantânea):

\displaystyle  v(t_0)=\lim_{t\rightarrow t_0}v_a(t_0,t)=\lim_{t\rightarrow t_0}\frac{f(t)-f(t_0)}{t-t_0}=f'(t_0)

Assim o conceito de derivada serve para unificar dois conceitos que à partida eram distintos:

  • O conceito de recta tangente a uma curva, que é um conceito puramente geométrico.
  • O conceito de velocidade instantânea, que é um conceito puramente cinemático.

O facto de dois conceitos aparentemente díspares serem unificados por um objecto matemático é uma indicação da importância e profundidade do conceito de derivação.

Definição 38

Seja { {f:D\rightarrow\mathbb{R}}}. Se { {c\in D\cap D_{c^+}'}}, podemos definir a derivada à direita de {f} em { {c}} por

\displaystyle   f_+'(c)=\lim_{x\rightarrow c^+}\frac{f(x)-f(c)}{x-c} \ \ \ \ \ (54)

Definição 39

Seja { {f:D\rightarrow\mathbb{R}}}. Se { {c\in D\cap D_{c^-}'}}, podemos definir a derivada à esquerda de {f} em { {c}} por

\displaystyle   f_-'(c)=\lim_{x\rightarrow c^-}\frac{f(x)-f(c)}{x-c} \ \ \ \ \ (55)

Definição 40

Se { {c\in D_{c^+}\cap D_{c^-}}}, dizemos que { {f'(c)}} existe sse { {f_+'(c)}} e { {f_-'(c)}} existem e são iguais.

Definição 41

Seja { {f:D\rightarrow\mathbb{R}}} diferenciável em { {D}}. A função { {x \in D \rightarrow f'(x)\in\mathbb{R}}} é chamada de função derivada de { {f}} e é representada por { {f'}}.

Definição 42

Fazendo a mudança de variável { {h=x-c}} na Definição 37 podemos definir a derivada de uma função num ponto através da expressão:

\displaystyle   f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} \ \ \ \ \ (56)

Finalmente vamos introduzir a notação de Leibniz para denotar a derivada de {f}:

  • { {\Delta x}} representa o incremento em { {x}}.
  • { {\Delta f = f(x+h)-f(x)}} representa o incremento em { {y}}.

Se os incremento são infinitamente pequenos, ou seja, se os incrementos são infinitesimais podemos representa-los por

  • { {dx}} é o acréscimo infinitesimal em { {x}}.
  • { {df}} é o acréscimo infinitesimal em { {y}}.

Assim podemos escrever a derivada como

\displaystyle  f'(x)=\frac{df}{dx}

Como exemplo vamos calcular a derivada da função { {f(x)=e^x}}.

{ {\begin{aligned} f'(x)&=\lim_{h\rightarrow 0}\dfrac{e^{x+h}-e^x}{h}\\ &=e^x\lim_{h\rightarrow 0}\dfrac{e^h-1}{h}\\ &=e^x \end{aligned}}}

Para { {x\in\mathbb{R}}}.

Como outro exemplo vamos agora calcular a derivada de { {f(x)=\log x}}

{ {\begin{aligned} f'(x)&=\lim_{h\rightarrow 0}\dfrac{\log (x+h)-\log x}{h}\\ &=\lim_{h\rightarrow 0}\dfrac{\log \left(x(1+h/x)\right)-\log x}{h}\\ &=\lim_{h\rightarrow 0}\dfrac{\log (1+h/x)}{h}\\ &=\lim_{h\rightarrow 0}\dfrac{h/x}{h}\\ &=1/x \end{aligned}}}

Para { {x\in\mathbb{R}}}.

Fica como um exercício para o leitor demonstrar as seguintes igualdades:

  • { {(\sin x)'=\cos x}}.
  • { {(\cos x)'=-\sin x}}.
Teorema 57 Seja { {D\subset\mathbb{R}}}, { {f:D\rightarrow\mathbb{R}}} e { {c\in D\cap D'}}. Se { {f}} é diferenciável em { {c}}, existe uma função contínua { {\varphi:D\rightarrow\mathbb{R}}} com um zero em { {c}} tal que:

\displaystyle   f(x)=f(c)+\left( \left( f'(c)+\varphi(x) \right) (x-c) \right)\quad x\in D \ \ \ \ \ (57)

Demonstração:

Definindo { {\varphi (x)}} por:

{ \displaystyle f(x) = \begin{cases} \dfrac{f(x)-f(c)}{x-c}-f'(c) \quad \mathrm{se}\quad x \in D\setminus \{c\}\\ 0 \quad \mathrm{se}\quad x =c \end{cases}}

Uma vez que { {\displaystyle \lim_{x\rightarrow c}\varphi (x)=\lim_{x\rightarrow c} \left(\dfrac{f(x)-f(c)}{x-c}-f'(c)\right)=(f'(c)-f'(c)=0 }}, vem que { {\varphi}} é contínua em { {c}}.

Para completar a nossa demonstração o leitor terá que mostrar que a nossa construção de { {\varphi}} faz com que a igualdade do teorema seja válida. \Box

Corolário 58

Seja { {f=D\rightarrow\mathbb{R}}} diferenciável em { {c}}. Então é { {f(x)=f(c)+f'(c)(x-c)+o(x-c)}} quando { {x\rightarrow c}}

Demonstração:

Seja { {r(x)=\varphi (x)(x-c)}}. Utilizando o Teorema 57 vem que

\displaystyle  f(x)=f(c)+f'(c)(x-c)+r(x)

Uma vez que { {\lim_{x\to c}\varphi (x)=\varphi (c)=0}} vem que { {r(x)=o(x-c)}} quando { {x\rightarrow c}}. \Box

Corolário 59

Seja { {f}} diferenciável em { {c}}. Então { {f}} é contínua em { {c}}

Demonstração:

Do Teorema 57 é

{ {\begin{aligned} \lim_{x\rightarrow c} f(x)&=\lim_{x\rightarrow c}(f(c)+(f'(c)+\varphi (x))(x-c))\\ &=f(c) \end{aligned}}} \Box

Do Corolário 59 segue que todas as funções diferenciáveis são necessariamente contínuas. Será que o recíproco deste Corolário também é uma proposição válida?

A resposta a esta questão é: Não! Como um simples contraexemplo temos a função módulo.

Que é uma função contínua mas não é diferenciável pois no ponto {0} a derivada não existe. Uma maneira simples de ver que a derivada em {0} não existe é notar {f'_+=1} enquanto que {f'_-=-1}.

Dito de uma forma informal vemos que a derivada de uma função num dado ponto não existe sempre que a função tenha forma de um bico nesse ponto.

Um exemplo mais extremo de uma função que é contínua mas não é diferenciável é a função de Weierstrass:

\displaystyle  \sum_{n=0}^\infty a^n\cos\left( b^n\pi x \right)

com { {0<a<1}}, { {b}} um número ímpar positivo, e { {ab>1+3/2\pi}}.

Esta função é contínua em todos os pontos do seu domínio e no entanto não é diferenciável em nenhum ponto do seu domínio. Na nossa linguagem informal, que corresponde a uma intuição geométrica ingénua, podemos dizer que a função de Weierstrass tem bicos em todos os pontos do seu domínio, algo que não é fácil de visualizar.

%d bloggers like this: