Luso Academia

Início » Posts tagged 'vectores'

Tag Archives: vectores

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)

 — 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —

 

Exercício 10 A massa de um átomo de Urânio é de {4,0\cdot10^{-26} \ kg}. Quantos átomos de urânio existem em {8 \ g} de Urânio puro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

É um problema cujo método de resolução é muito comum (3 simples).

Vamos começar por converter todas as grandezas para as mesmas unidades.

Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor({k = 10^3}):

\displaystyle 4,0\cdot10^{-26} \ kg = 4,0 \cdot 10^{-26}\cdot 10^{3} \ g = \ 4,0\cdot10^{-23} \ g

Em seguida, fazemos a relação de proporção.

Chamamos de {x} ao número de átomos que pretendemos calcular. Neste caso:

\displaystyle 1 \ atomo \longrightarrow 4,0\cdot10^{-23} \ g

\displaystyle x \longrightarrow 8,0 \ g

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 4,0 \cdot10^{-23} \ g = 1 \ atomos(u) \cdot 8,0 \ g

Isolando o x, obtemos:

\displaystyle x = \frac{1 \ atomo(u)\cdot 8,0 \ g}{4,0\cdot10^{-23} \ g}

Resolvendo, temos:

\displaystyle x = 2,0\cdot 10^{23} \ atomos

Em {8 \ g} de urânio puro, existem {2,0\cdot 10^{23}} átomos de Urânio.

 

 

Exercício 12 Determine a partir da representação dada, o vector {\vec{c} \ = 3 \ \vec{a} \ + 2 \ \vec{b}} .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

Podemos resolver este exercício utilizando a regra do paralelogramo.

Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles.

A resolução aqui é feita apenas graficamente.

Desta feita, aplicando a regra do paralelogramo, teremos:

  • Em primeiro lugar, vamos traçar os vectores {3 \ \vec{a} } e { 2 \ \vec{b}}. Para tal, vamos na extremidade de {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Na extremidade deste segundo {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Neste caso, teremos o vector {3 \ \vec{a} }. Para o caso do vector { 2 \ \vec{b}}, o procedimento é análogo. Vamos na extremidade de {\vec{b}}, traçar outro vector idênticos à {\vec{b}}.Neste caso, teremos o vector {2 \ \vec{b} }. Veja a figura a seguir.

  • Em seguida, na extremidade do vector {3\vec{a}} traçamos uma imagem do vector {2\vec{b}} e na extremidade do vector {2\vec{b}} traçamos uma imagem do vector {3\vec{a}}.Veja a figura a seguir.

  • Em seguida, traçamos o vector resultante que terá como origem o ponto onde ambas origem dos dois vectores ({3 \vec{a}} e {2 \vec{b}}) se encontravam, e terá como extremidade o ponto de intercessão das extremidades das imagens ({3 \vec{a'}} e {2 \vec{b'}}).

    Então, na figura anterior, obtemos o vector {\vec{c}}.

 

 

Exercício 13 Determine a distância entre os corpos A e B na figura:

Resolução 13

Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir.

Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano.

A Relação é:

\displaystyle d(A;B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Neste caso, {x_A=5; \ y_A=15; \ x_B= 25; \ y_B=5}.

Então, substituindo os valores na relação anterior, teremos:

\displaystyle d(A;B)=\sqrt{(25-5)^2+(5-15)^2}

Resolvendo, teremos:

\displaystyle d(A;B) = \sqrt{(20)^{2} \ + \ (-10)^{2}}

\displaystyle d(A;B) = \ 22,36 \ m

Logo, a distância entre os corpos A e B é igual a {22,36 \ m}.

 

 

Exercício 14

Sendo {\vec{v_{1}} \ = \ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ + \ 4 \vec{e_{z}}} e {\vec{v_{2}} \ = \ 5 \vec{e_{y}} \ - \ 2 \vec{e_{z}}} Determine o módulo de {\vec{v} \ = \ \vec{v_{1}} \ + \ \vec{v_{2}}}

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 14 Para determinarmos o módulo do vector {\vec{v}}, é necessário que se conheça ou que se determine o vector {\vec{v}}

Sendo este vector{(\vec{v})} a soma entre os vectores {\vec{v_{1}}} e {\vec{v_{2}}}, teremos:

\displaystyle \vec{v} \ = \vec{v_{1}} \ + \ \vec{v_{2}}

Substituindo as componentes, obtemos:

\displaystyle \vec{v} \ = (\ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ +?\ 4 \vec{e_{z}}) \ + \ (5 \vec{e_{y}} \ - \ 2 \vec{e_{z}})

Efectuando a operação, teremos:

\displaystyle \vec{v} \ = \ 3 \vec{e_{x}} \ + \ 7 \vec{e_{y}} + \ 2 \vec{e_{z}}

Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes.

Então, podemos determinar o módulo do vector {\vec{v}} a partir da seguinte relação:

\displaystyle |\vec{v}| \ = \ \sqrt{x^{2} \ + \ y^{2} \ + \ z^{2}}

Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector {\vec{v}} , teremos:

\displaystyle |\vec{v}| \ = \ \sqrt{(3)^{2} \ + \ (7)^{2} \ + (2)^{2}}

Resolvendo:

\displaystyle |\vec{v}| \ = \ 7,87

Logo, o vector {\vec{v}} tem o módulo igual a {7,87} unidades.

Note: No calculo do módulo de {\vec{v}} não usamos os vectores {e_{x}, \ e_{y}, \ e \ e_{z}}. Estes vectores são unitários. Só servem para indicar as direcções.

 

Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?

NÍVEL DE DIFICULDADE: Regular.

Resolução 15

Este exercício é um problema simples de Geometria Analítica.

Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações.

Consideramos que {x \ } é o módulo de um dos vectores e {\ y}O módulo de outro vector, então:

  • {x \ + \ y \ = \ 7} De acordo com a primeira condição dada no problema.

Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura.

Se { | \vec{v_{1}}|= \ x}, {|\vec{v_{2}} | = \ y} e o {|\vec{v}|=5}, então, pelo Teorema de Pitágoras, teremos :

{x^{2} \ + \ y^{2} \ = \ (5)^{2}}

Formando um sistema de equações com duas equações obtidas das condições, teremos:

\displaystyle \left\{\begin{array}{cccccc} x & + y & = & 7\\ x^{2} & + & y^{2} & = & 25\\ \end{array}\right.

Isolando {y} na equação 1 substituindo na equação 2, teremos:

\displaystyle \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & y^{2} & = & 25 \end{array}\right. \Rightarrow \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & (7 \ - \ x)^{2} & \ = \ & 25 \end{array}\right.

\displaystyle \Rightarrow x^{2} \ + \ (7 \ - \ x)^{2} \ = \ 25

Desfazendo a diferença de quadrado e efectuando as operações, teremos:

\displaystyle x^{2} \ - \ 7 \ x \ + \ 12 \ = \ 0

Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos:

\displaystyle x_{1,2} \ = \dfrac{-b \pm \ \sqrt{b^{2} \ - \ 4 \ a \ c}}{2 \ a}

,onde {a \ = \ 1} , {b \ = \ - \ 7} e {c \ = \ 12}.

Substituindo os valores e resolvendo, teremos como resultado {x_{1} \ = \ 3} e {x_{2} \ = \ 4}

Substituindo os valores de {x_{1}} e de {x_{2}} na primeira equação do sistema, e calculando os valores correspondentes de {y}, teremos as seguintes valores para {y } : {y_1 \ = \ 4 \ e \ y_2 \ = \ 3}

Logo, temos como solução : s = { \left\{\begin{array}{cccccc} (x = 4, &y = 3)\\ (x = 3, &y = 4) \end{array}\right. }

Ambas as as soluções são aceitáveis e permutadas entre si.

Desta feita, dois vectores são: {4 \ m \ e \ 3 \ m}.

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 3)

Exercício 8 Se uma grandeza fictícia {K} tem unidade {\dfrac{ab^2}{c}} num certo sistema de unidade: Se as correspondências no SI são:

{1 \ a = 95 \ x}

{1 \ b = 57 \ y}

{1 \ c = 0,5 \ z}

Qual é o valor de {K = 18 \dfrac{ab^2}{c}} no SI ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 8 .

O objectivo do exercício é converter a unidade de {K} para o SI.

Vamos converter para o SI, substituindo o valor de {a}, {b}, {c} na expressão de {K = 18\dfrac{ab^2}{c}}.

.

\displaystyle K = 18\dfrac{ 95x \cdot (57y)^2}{0,5z}

\displaystyle \Rightarrow K = \dfrac{18 \cdot 95 \cdot (57)^2}{0,5} \cdot \dfrac{x \cdot y^2}{z}

\displaystyle K = 11111580\dfrac{x \cdot y^2}{z}

Exercício 9 Duas forças {\vec{F_1}} e {\vec{F_2}} de {10 \ N} e {20 \ N} respectivamente actuam sobre um corpo.

Qual deverá ser o modulo e a direcção da 3ª força ({\vec{F_3}}) para que a resultante seja nula?.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Teremos que inicialmente que a resultante entre as forças {\vec{F_1}}, {\vec{F_2}} e {\vec{F_3}} deve ser nula. Quer dizer que as três forças fazem parte do mesmo sistema bidimensional. A nível de análise gráfica, poderíamos determinar a resultante (parcial) das forças {F_{1}} e {F_{2}}. Chamamos ela de {F_{1/2}}. A força três, neste caso, terá sentido contrário ao vector força {F_{1/2}}, para que equilibre este resultante.

Neste caso:

\displaystyle \vec{F_3} = -\vec{F_{2/1}} \ ; \ F_3 = F_{1/2}

Para calcular a força {F_{1/2}}, vamos aplicaras componentes:

\displaystyle F_{1/2x} = F_{1x} + F_{2x}= F_{1} + 0 = F_{1} = 10 N

\displaystyle F_{1/2y} = F_{1y} + F_{2y}= 0 + F_{2} = F_{2} = 20 N

Então:

\displaystyle \vec{F_{1/2}} = F_{1/2x} \vec{i} + F_{1/2y} \vec{j} = 10 \vec{i} + 20 \vec{j} [N]

Logo:

\displaystyle \vec{F_3} = -\vec{F_{2/1}}= - 10 \vec{i} - 20 \vec{j} [N]

Em modulo:

\displaystyle F_3 = \sqrt{(-10)^2 + (-20)^2} = \sqrt{500} [N]

\displaystyle F_3 = 22,36 \ N

A direcção é definida pelos ângulos:

\displaystyle \alpha_1 = \arctan \frac{F_{3y}}{F_{3x}}

\displaystyle \alpha_2 = 180^o + \arctan \frac{F_{3y}}{F_{3x}}

Calculando:

\displaystyle \alpha_1 = \arctan{(\frac{-20}{-10})}=63 ^o

\displaystyle \alpha_2 = 180^o + \arctan{(\frac{-20}{-10})}= 243^o

Como o vector pertence ao 3º quadrante (as componentes são ambas negativas), a direcção e sentido são definidas por:

\displaystyle \alpha_2 = 243^o

Exercício 10 Um móvel percorre um troço de {400 \ km} em {2 \ dias}. Qual é a velocidade média desta viagem ? NÍVEL DE DIFICULDADE: Elementar.
Resolução 10 .

Dados

{v_m = \ ?}

{\Delta s = 400 \ km}

{\Delta t = 2 \ dias}

O exercício trate de um movimento genérico. Quando queremos analisar o movimento como um todo, usamos a velocidade e aceleração média. Então, a análise do movimento assemelha-se a um M.R.U, onde que a velocidade média é:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t}

Antes de calcular a {v_m}, vamos converter os {2 \ dias} para {h}, para usarmos unidades habituais em movimentos desta natureza. Vamos utilizar o sistema de “3 simples”:

\displaystyle 1 \ dia \longrightarrow 24 \ h

\displaystyle 2 \ dias \longrightarrow t

Multiplicado de forma cruzada, obtemos:

\displaystyle t \cdot 1 \ dia = 2 \ dias \cdot 24 \ h

\displaystyle t = 48 \ h

Agora podemos calcular a {v_m}:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t} = \dfrac{400 \ km}{48 \ h}

\displaystyle v_m = 8,33 \ km/h

Também poderíamos apresentar o valor da {v_m} em {m/s}, basta para isso dividir o valor em {km/h} por 3,6 e teremos em {m/s}.

\displaystyle v_m = \dfrac{8,33}{3,6} \ m/s

\displaystyle v_m = 2, 31 \ m/s

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

Exercício 1 .

Dois vectores têm módulos 3 e 5 unidades.

  1. Qual deverá ser o ângulo entre eles para que o vector resultante tenha módulo de 4 unidades?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

  1. Consideremos que os vectores de módulo 3 e 5 unidades são os vectores {\overrightarrow{u} e \overrightarrow{v}}, respetivamente, e o vector resultante de módulos 4 unidades é o vector {\overrightarrow{w}}.Consideremos também que { \theta} é o ângulo que os vectores {\overrightarrow{u} e \overrightarrow{v}} formam entre si. Daqui, temos os ângulos dados:Dados{\vert \overrightarrow{u} \vert=3 } .

    { \vert \overrightarrow{v} \vert=5} .

    { \vert \overrightarrow{w} \vert=4} .

    { \theta \rightarrow ? }

    A adição de vectores, dada pela regra do paralelogramo, relacionas aos seus módulos através da lei dos cossenos.

    \displaystyle \textbf{Lei do Cosseno}:\vert \overrightarrow{w}\vert^2=\vert\overrightarrow{u}\vert^2+\vert\overrightarrow{v}\vert^2+2\times\vert\overrightarrow{u}\vert\times\vert\overrightarrow{v\vert}\times \cos\theta

    * Substituindo os dados:

    \displaystyle (4)^2=(3)^2+(5)^2+2\times(3)\times(5)\times \cos\theta

    \displaystyle 16=9+25+30\times \cos\theta

     Isolando {\cos\theta:}

    \displaystyle \cos \theta =\frac{16-(9+25)}{30}=\frac{16-34}{30}=\frac{18}{30}=-0.6

    O valor de { \theta: \theta=\arccos(-0.6)=126,869^o }

    \displaystyle \theta\cong 126,9^o

.

Exercício 2 .

Um Arco tem ângulo de 1,5 radiano.
Qual é o valor deste ângulo em graus?

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Para determinar o ângulo do arco em graus, vamos usar a regra de três simples, sabendo que { \pi } radiando equivale a { 180^o }. Com isto,temos as seguintes rotações:

\displaystyle \pi \ rad \rightarrow\rightarrow180^o

\displaystyle 1,5 \ rad \rightarrow\rightarrow \theta

Onde 1.5 é o ângulo do arco em radiano e {\theta} o ângulo do arco em graus que se pretende determinar.

Desta forma, temos:

\displaystyle \theta \times \pi=1,5 \ rad \times 180^o

Isolando {\theta}:

\displaystyle \theta=\frac{1,5 \ rad \times 180^o}{\pi \ rad}=\frac{270^o}{\pi}=85,94^o

Portanto:

\displaystyle \theta=85,9^o

.

Exercício 3 .

Um disco circular tem raio de { 5 \ m}. Qual é o cumprimento deste disco?
NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Dados

{ r= 5 \ m }

O cumprimento de um arco é:

\displaystyle l= \alpha \times r

onde {\alpha} é o ângulo do arco em radianos.

Para o nosso caso, o cumprimento de um disco circular é:

\displaystyle l=2 \pi \times r

Substituindo:

\displaystyle r=5 \ m \ em (1): l= 2 \pi \times 5 \ m= 31,415 \ m

Portanto, o cumprimento do disco é de:

\displaystyle 31,415 \ m.

Exercício  4 .

Dois vectores {\overrightarrow{a}} e { \overrightarrow{b}} tem módulo iguais a { 3 \ m} e {5 \ m },respetivamente.

Qual é o módulo de vector { \overrightarrow{c} }, se {\overrightarrow{c}=3\overrightarrow{a}-\overrightarrow{2b}} e o ângulo entre { \overrightarrow{a} } e { \overrightarrow{b} } for de { 30^o }?
NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

Dados .

{ \vert \overrightarrow{a} \vert =3 \ m } .

{ \vert \overrightarrow{b} \vert =5 \ m } .

{ \overrightarrow{c}=3\overrightarrow{a} - 2\overrightarrow{b}} .

{ \theta \rightarrow 30^o} .

{ \vert \overrightarrow{c} \vert=? }

Consideremos os vectores {\overrightarrow{a} e \overrightarrow{b}}.

Os vectores {\overrightarrow{a}} e {\overrightarrow{b}} formando {30^o} entre si {(\theta=30^o)}

Entretanto, o vector {\overrightarrow{c}} é dado como {\overrightarrow{c}=3\overrightarrow{a}-2\overrightarrow{b}}. Sendo assim, consideremos os vectores {3\overrightarrow{a} } e { 2\overrightarrow{b}} , isto é,os vectores {\overrightarrow{a}} e {\overrightarrow{b}} com dimensões triplicando e dobrada, respetivamente.

Por outro lado o vector {\overrightarrow{c}} representa a diferença entre {3\overrightarrow{a}} e {2\overrightarrow{b}} neste caso a resultante é:

Calculando {\beta}:

\displaystyle \beta+\theta=180^o \ \Rightarrow \beta=180^o-\theta

Como { \theta=30^o },temos: { \beta=180^o-30^o=150^o \ \Rightarrow \beta=150^o }\

O módulo de vector { \overrightarrow{c} } , é dada pela lei dos cossenos.\

Lei dos Cossenos:

\displaystyle \vert\overrightarrow{c}\vert^2=\vert3\overrightarrow{a}\vert^2+\vert2\overrightarrow{b}\vert^2+2\times\vert3\overrightarrow{a}\vert \times \vert2\overrightarrow{b} \vert\times \cos\beta

\displaystyle \vert\overrightarrow{c}\vert^2=9^2+10^2+180\times\cos150^o=181-155,88=25,12

\displaystyle \vert \overrightarrow{c} \vert ^2=25,12 \ \Rightarrow \vert\overrightarrow{c}\vert=\sqrt{25,12}=5,01

\displaystyle \rightarrow \vert\overrightarrow{c}\vert=5,01

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

Deixe a sua interacção nos comentários deste Post;
Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
Partilhe este Post nas tuas redes sociais.

%d bloggers like this: