Luso Academia

Início » Posts tagged 'vector'

Tag Archives: vector

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)

 — 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —

 

Exercício 10 A massa de um átomo de Urânio é de {4,0\cdot10^{-26} \ kg}. Quantos átomos de urânio existem em {8 \ g} de Urânio puro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

É um problema cujo método de resolução é muito comum (3 simples).

Vamos começar por converter todas as grandezas para as mesmas unidades.

Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor({k = 10^3}):

\displaystyle 4,0\cdot10^{-26} \ kg = 4,0 \cdot 10^{-26}\cdot 10^{3} \ g = \ 4,0\cdot10^{-23} \ g

Em seguida, fazemos a relação de proporção.

Chamamos de {x} ao número de átomos que pretendemos calcular. Neste caso:

\displaystyle 1 \ atomo \longrightarrow 4,0\cdot10^{-23} \ g

\displaystyle x \longrightarrow 8,0 \ g

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 4,0 \cdot10^{-23} \ g = 1 \ atomos(u) \cdot 8,0 \ g

Isolando o x, obtemos:

\displaystyle x = \frac{1 \ atomo(u)\cdot 8,0 \ g}{4,0\cdot10^{-23} \ g}

Resolvendo, temos:

\displaystyle x = 2,0\cdot 10^{23} \ atomos

Em {8 \ g} de urânio puro, existem {2,0\cdot 10^{23}} átomos de Urânio.

 

 

Exercício 12 Determine a partir da representação dada, o vector {\vec{c} \ = 3 \ \vec{a} \ + 2 \ \vec{b}} .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

Podemos resolver este exercício utilizando a regra do paralelogramo.

Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles.

A resolução aqui é feita apenas graficamente.

Desta feita, aplicando a regra do paralelogramo, teremos:

  • Em primeiro lugar, vamos traçar os vectores {3 \ \vec{a} } e { 2 \ \vec{b}}. Para tal, vamos na extremidade de {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Na extremidade deste segundo {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Neste caso, teremos o vector {3 \ \vec{a} }. Para o caso do vector { 2 \ \vec{b}}, o procedimento é análogo. Vamos na extremidade de {\vec{b}}, traçar outro vector idênticos à {\vec{b}}.Neste caso, teremos o vector {2 \ \vec{b} }. Veja a figura a seguir.

  • Em seguida, na extremidade do vector {3\vec{a}} traçamos uma imagem do vector {2\vec{b}} e na extremidade do vector {2\vec{b}} traçamos uma imagem do vector {3\vec{a}}.Veja a figura a seguir.

  • Em seguida, traçamos o vector resultante que terá como origem o ponto onde ambas origem dos dois vectores ({3 \vec{a}} e {2 \vec{b}}) se encontravam, e terá como extremidade o ponto de intercessão das extremidades das imagens ({3 \vec{a'}} e {2 \vec{b'}}).

    Então, na figura anterior, obtemos o vector {\vec{c}}.

 

 

Exercício 13 Determine a distância entre os corpos A e B na figura:

Resolução 13

Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir.

Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano.

A Relação é:

\displaystyle d(A;B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Neste caso, {x_A=5; \ y_A=15; \ x_B= 25; \ y_B=5}.

Então, substituindo os valores na relação anterior, teremos:

\displaystyle d(A;B)=\sqrt{(25-5)^2+(5-15)^2}

Resolvendo, teremos:

\displaystyle d(A;B) = \sqrt{(20)^{2} \ + \ (-10)^{2}}

\displaystyle d(A;B) = \ 22,36 \ m

Logo, a distância entre os corpos A e B é igual a {22,36 \ m}.

 

 

Exercício 14

Sendo {\vec{v_{1}} \ = \ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ + \ 4 \vec{e_{z}}} e {\vec{v_{2}} \ = \ 5 \vec{e_{y}} \ - \ 2 \vec{e_{z}}} Determine o módulo de {\vec{v} \ = \ \vec{v_{1}} \ + \ \vec{v_{2}}}

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 14 Para determinarmos o módulo do vector {\vec{v}}, é necessário que se conheça ou que se determine o vector {\vec{v}}

Sendo este vector{(\vec{v})} a soma entre os vectores {\vec{v_{1}}} e {\vec{v_{2}}}, teremos:

\displaystyle \vec{v} \ = \vec{v_{1}} \ + \ \vec{v_{2}}

Substituindo as componentes, obtemos:

\displaystyle \vec{v} \ = (\ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ +?\ 4 \vec{e_{z}}) \ + \ (5 \vec{e_{y}} \ - \ 2 \vec{e_{z}})

Efectuando a operação, teremos:

\displaystyle \vec{v} \ = \ 3 \vec{e_{x}} \ + \ 7 \vec{e_{y}} + \ 2 \vec{e_{z}}

Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes.

Então, podemos determinar o módulo do vector {\vec{v}} a partir da seguinte relação:

\displaystyle |\vec{v}| \ = \ \sqrt{x^{2} \ + \ y^{2} \ + \ z^{2}}

Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector {\vec{v}} , teremos:

\displaystyle |\vec{v}| \ = \ \sqrt{(3)^{2} \ + \ (7)^{2} \ + (2)^{2}}

Resolvendo:

\displaystyle |\vec{v}| \ = \ 7,87

Logo, o vector {\vec{v}} tem o módulo igual a {7,87} unidades.

Note: No calculo do módulo de {\vec{v}} não usamos os vectores {e_{x}, \ e_{y}, \ e \ e_{z}}. Estes vectores são unitários. Só servem para indicar as direcções.

 

Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?

NÍVEL DE DIFICULDADE: Regular.

Resolução 15

Este exercício é um problema simples de Geometria Analítica.

Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações.

Consideramos que {x \ } é o módulo de um dos vectores e {\ y}O módulo de outro vector, então:

  • {x \ + \ y \ = \ 7} De acordo com a primeira condição dada no problema.

Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura.

Se { | \vec{v_{1}}|= \ x}, {|\vec{v_{2}} | = \ y} e o {|\vec{v}|=5}, então, pelo Teorema de Pitágoras, teremos :

{x^{2} \ + \ y^{2} \ = \ (5)^{2}}

Formando um sistema de equações com duas equações obtidas das condições, teremos:

\displaystyle \left\{\begin{array}{cccccc} x & + y & = & 7\\ x^{2} & + & y^{2} & = & 25\\ \end{array}\right.

Isolando {y} na equação 1 substituindo na equação 2, teremos:

\displaystyle \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & y^{2} & = & 25 \end{array}\right. \Rightarrow \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & (7 \ - \ x)^{2} & \ = \ & 25 \end{array}\right.

\displaystyle \Rightarrow x^{2} \ + \ (7 \ - \ x)^{2} \ = \ 25

Desfazendo a diferença de quadrado e efectuando as operações, teremos:

\displaystyle x^{2} \ - \ 7 \ x \ + \ 12 \ = \ 0

Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos:

\displaystyle x_{1,2} \ = \dfrac{-b \pm \ \sqrt{b^{2} \ - \ 4 \ a \ c}}{2 \ a}

,onde {a \ = \ 1} , {b \ = \ - \ 7} e {c \ = \ 12}.

Substituindo os valores e resolvendo, teremos como resultado {x_{1} \ = \ 3} e {x_{2} \ = \ 4}

Substituindo os valores de {x_{1}} e de {x_{2}} na primeira equação do sistema, e calculando os valores correspondentes de {y}, teremos as seguintes valores para {y } : {y_1 \ = \ 4 \ e \ y_2 \ = \ 3}

Logo, temos como solução : s = { \left\{\begin{array}{cccccc} (x = 4, &y = 3)\\ (x = 3, &y = 4) \end{array}\right. }

Ambas as as soluções são aceitáveis e permutadas entre si.

Desta feita, dois vectores são: {4 \ m \ e \ 3 \ m}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 3)

Exercício 8 Se uma grandeza fictícia {K} tem unidade {\dfrac{ab^2}{c}} num certo sistema de unidade: Se as correspondências no SI são:

{1 \ a = 95 \ x}

{1 \ b = 57 \ y}

{1 \ c = 0,5 \ z}

Qual é o valor de {K = 18 \dfrac{ab^2}{c}} no SI ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 8 .

O objectivo do exercício é converter a unidade de {K} para o SI.

Vamos converter para o SI, substituindo o valor de {a}, {b}, {c} na expressão de {K = 18\dfrac{ab^2}{c}}.

.

\displaystyle K = 18\dfrac{ 95x \cdot (57y)^2}{0,5z}

\displaystyle \Rightarrow K = \dfrac{18 \cdot 95 \cdot (57)^2}{0,5} \cdot \dfrac{x \cdot y^2}{z}

\displaystyle K = 11111580\dfrac{x \cdot y^2}{z}

Exercício 9 Duas forças {\vec{F_1}} e {\vec{F_2}} de {10 \ N} e {20 \ N} respectivamente actuam sobre um corpo.

Qual deverá ser o modulo e a direcção da 3ª força ({\vec{F_3}}) para que a resultante seja nula?.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Teremos que inicialmente que a resultante entre as forças {\vec{F_1}}, {\vec{F_2}} e {\vec{F_3}} deve ser nula. Quer dizer que as três forças fazem parte do mesmo sistema bidimensional. A nível de análise gráfica, poderíamos determinar a resultante (parcial) das forças {F_{1}} e {F_{2}}. Chamamos ela de {F_{1/2}}. A força três, neste caso, terá sentido contrário ao vector força {F_{1/2}}, para que equilibre este resultante.

Neste caso:

\displaystyle \vec{F_3} = -\vec{F_{2/1}} \ ; \ F_3 = F_{1/2}

Para calcular a força {F_{1/2}}, vamos aplicaras componentes:

\displaystyle F_{1/2x} = F_{1x} + F_{2x}= F_{1} + 0 = F_{1} = 10 N

\displaystyle F_{1/2y} = F_{1y} + F_{2y}= 0 + F_{2} = F_{2} = 20 N

Então:

\displaystyle \vec{F_{1/2}} = F_{1/2x} \vec{i} + F_{1/2y} \vec{j} = 10 \vec{i} + 20 \vec{j} [N]

Logo:

\displaystyle \vec{F_3} = -\vec{F_{2/1}}= - 10 \vec{i} - 20 \vec{j} [N]

Em modulo:

\displaystyle F_3 = \sqrt{(-10)^2 + (-20)^2} = \sqrt{500} [N]

\displaystyle F_3 = 22,36 \ N

A direcção é definida pelos ângulos:

\displaystyle \alpha_1 = \arctan \frac{F_{3y}}{F_{3x}}

\displaystyle \alpha_2 = 180^o + \arctan \frac{F_{3y}}{F_{3x}}

Calculando:

\displaystyle \alpha_1 = \arctan{(\frac{-20}{-10})}=63 ^o

\displaystyle \alpha_2 = 180^o + \arctan{(\frac{-20}{-10})}= 243^o

Como o vector pertence ao 3º quadrante (as componentes são ambas negativas), a direcção e sentido são definidas por:

\displaystyle \alpha_2 = 243^o

Exercício 10 Um móvel percorre um troço de {400 \ km} em {2 \ dias}. Qual é a velocidade média desta viagem ? NÍVEL DE DIFICULDADE: Elementar.
Resolução 10 .

Dados

{v_m = \ ?}

{\Delta s = 400 \ km}

{\Delta t = 2 \ dias}

O exercício trate de um movimento genérico. Quando queremos analisar o movimento como um todo, usamos a velocidade e aceleração média. Então, a análise do movimento assemelha-se a um M.R.U, onde que a velocidade média é:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t}

Antes de calcular a {v_m}, vamos converter os {2 \ dias} para {h}, para usarmos unidades habituais em movimentos desta natureza. Vamos utilizar o sistema de “3 simples”:

\displaystyle 1 \ dia \longrightarrow 24 \ h

\displaystyle 2 \ dias \longrightarrow t

Multiplicado de forma cruzada, obtemos:

\displaystyle t \cdot 1 \ dia = 2 \ dias \cdot 24 \ h

\displaystyle t = 48 \ h

Agora podemos calcular a {v_m}:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t} = \dfrac{400 \ km}{48 \ h}

\displaystyle v_m = 8,33 \ km/h

Também poderíamos apresentar o valor da {v_m} em {m/s}, basta para isso dividir o valor em {km/h} por 3,6 e teremos em {m/s}.

\displaystyle v_m = \dfrac{8,33}{3,6} \ m/s

\displaystyle v_m = 2, 31 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 2)

Exercício 5 Converter para o SI s seguintes unidades:

  1. { 10 \ km/s }.
  2. { 20 \ polegadas }.
  3. { 25 \ km/h^2 }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 5 .

Para converter-mos no SI, vamos utilizar o sistema de “3 simples”.

  1. –    { \dfrac { 10 \ km}{s}\rightarrow \dfrac {m}{s} }Neste Caso, temos de converter apenas o numerador, de {km} para {m}.

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 10 \ km \longrightarrow x

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 10 \ km

    \displaystyle x = 10000 \ m

    Quer dizer que {10 \ km = 10000 \ m} logo, {10 \ km/s } no Sistema Internacional equivale a {10000 \ m/s }.

    .

  2. –      { 20 \ polegadas \rightarrow m }Sabemos que: { 1 \ polegada \approx 0,025 \ m } Então, usando o sistema de “3 simples”

    \displaystyle 1 \ polegada \longrightarrow 0,025 \ m

    \displaystyle 20 \ polegadas \longrightarrow x

    fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ polegada = 0,025 \ mc \cdot 20 \ polegadas

    \displaystyle x = 0,5 \ m

    Quer dizer que {20 \ polegadas} no Sistema Internacional equivale a {0,5 \ m }.

    .

  3. –    { \dfrac {25 \ km}{h^2} \rightarrow \dfrac {m}{s^2}}.Vamos começar por converter {km} em {m} e depois {h} em {s}, então: {2}

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 25 \ km \longrightarrow x

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 25 \ km

    \displaystyle x = 25000 \ m

    \displaystyle 1 \ h \longrightarrow 60 \ min

    \displaystyle 1 \ min \longrightarrow 60 \ s

    \displaystyle 1 \ h = 60 \times 60 \ s = 3600 \ s

    \displaystyle (1 \ h)^2 = (3600 \ s)^2 = 12960000 \ s^2

    \displaystyle 1 \ h^2 = 12960000 \ s^2

    Vamos substituir as equações {25 \ km = 25000 \ m} e {1 \ h^2 = 12960000 \ s^2} na expressão inicial:

    \displaystyle 25 \ km/h^2 =\dfrac {25 \ km}{h^2} = \dfrac {25000 \ m}{ 12960000 \ s^2}

    \displaystyle = \dfrac{25000 \ m}{12960000 \ s^2} =0,0019 \ m/s^2

    Quer dizer que, no SI { \dfrac {25 \ km}{h^2} = 0,0019 \ m/s^2}.

Exercício 6 Numa partícula actuam 3 forças conforme indica a figura abaixo:

Determine a força resultante sabendo que {F_1 = 3 \ N, F_2 = 5 \ N, F_3 = 8 \ N  \ e  \  \alpha = 10^o}

NÍVEL DE DIFICULDADE: Regular.

Resolução 6 .

Para sabermos a força resultante, devemos encontrar as componentes das forças aplicadas nos eixos Ox e Oy. Como as Forças primeiramente devemos traçar as correspondestes das {F_1} e {F_3} são paralelas aos eixos Ox e Oy, respectivamente, elas só têm uma componente não nula, que corresponde ao eixo a que são paralelas. A componente no outro eixo é nula. Para da força {F_2}, devemos projecta-la nos eixos e calcular as componentes para cada eixo (Ox e Oy).

Calculamos as componentes usando as razões trigonométricas:

\displaystyle F_{2x} = F_2 \sin \alpha \ ; \ F_{2y} = F_2 \cos \alpha

\displaystyle F_{2x} = 0,86 \ N \ ; \ F_{2y} = 4,92 \ N

Vamos agora Fazemos então a soma vectorial das componentes Ox e Oy:

\displaystyle \vec{F_{Rx}} = \vec{F_1} + \vec{F_{2x}} \ ; \ F_{Rx} = F_1 - F_{2x} = 3 - 0,86 = 2,14 \ N

\displaystyle \vec{F_{Ry}} = \vec{F_{2y}} - \vec{F_3} \ ; \ F_{Ry} = F_{2y} - F_3 = 4,92 - 8 = -3,08 \ N

O módulo força resultante é dada pelo teorema de Pitágoras:

\displaystyle F_R = \sqrt{F_{Rx}^2 + F_{Ry}^2}

\displaystyle F_R = \sqrt{(2,14)^2 + (-3,08)^2} = \sqrt{14,066}

\displaystyle F_R = 3,75 \ N \approx 4 \ N

Exercício 7 Se as componentes da velocidade de um móvel são {v_x = 10 \ m/s}, {v_y = 5 \ m/s} e {v_z = 2v_x + 3v_y}.

Determine: o modulo deste vector velocidade.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 7 .

Dados

{v_x = 10 \ m/s}

{v_y = 5 \ m/s}

{v_z = 2v_x + 3v_y}

{v_z\rightarrow \ ? }

{|v| \rightarrow \ ? }

Para determinar o modulo do valor velocidade, primeiramente devemos determinar o valor da coordenada da velocidade em z ({v_z}), substituindo o valor das velocidades de {v_x} e {v_y} em {v_z}.

\displaystyle v_z = 2v_x + 3v_y \Rightarrow v_z = 2 \cdot 10 + 3 \cdot 5

\displaystyle v_z = 35 \ m/s

Neste caso, a velocidade será obtida de modo seguinte:

\displaystyle |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{10^2 + 5^2 + 35^2}

\displaystyle |\vec{v}| = \sqrt{100 + 25 + 1225} = \sqrt{1350}

\displaystyle |\vec{v}| = 36,74 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais

— 1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —

Exercício 5 .

Considere o sistema representado abaixo.Considerando a origem do referencial sua base direita do prédio, o Eixo ox horizontal dirigido a esquerda e o Eixo oy vertical e dirigido para cima.

Determine a posição dos pontos A, B e C.

NÍVEL DE DIFICULDADE: Elementar

Resolução 5 .

O referencial(bidimensional) do sistema é necessário ser traçado para a determinação da posição dos pontos A, B e C. Logo temos as seguintes características do referencial:

* Eixo Ox: eixo horizontal dirigido da direita para a esquerda;

* Eixo Oy: eixo vertical dirigido para cima;

* Origem do referencial: base direita do prédio.\

.

Aposição do ponto A tem coordenada { 50 \ m} na horizontal e { 100 \ m } na vertical, então :

\displaystyle B(50,100)\ m

onde

\displaystyle x_A=50 \ m

\displaystyle y_A=100 \ m

A posição do ponto B tem coordenada { -40 \ m } na horizontal e 0 na vertical, então:

\displaystyle B(-40,0) \ m

Onde:

\displaystyle x_B=-40 \ m

\displaystyle y_B=0

A posição do ponto C tem coordenada {-35 \ m } na horizontal e { 20 \ m} na vertical então:

\displaystyle C(-35,20) \ m

\displaystyle x_C= -35 \ m

\displaystyle x_C= 20 \ m

Exercício 6 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Dados .

{ v= \frac{5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \times t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \times t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \times t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s}:

\displaystyle x= 5 + 2,5 \times 25= 67,5 \ m

\displaystyle x=67,5 \ m

Resolução 7 .

Calcule a velocidade média do móvel da figura abaixo, se { t_1=10 \ s } e é { t_2= 20 \ s }, no movimento { A\rightarrow B \rightarrow C }.

.

Resolution 7 . Dados

{ t_1=t_{A\rightarrow B} = 10 \ s } .

{ t_2=t_{B\rightarrow C} = 20 \ s }. Por definição a velocidade média de um móvel é dada por:

\displaystyle \overrightarrow{v_m}=\frac{\overrightarrow{\Delta s}}{\Delta t}

.

{ \overrightarrow{\Delta s} } – Vector deslocamento.

{ \Delta t } – Intervalo de tempo total durante o movimento.

Em módulos:

\displaystyle v_m=\frac{\Delta s}{\Delta t}

.

Portanto, para determinar a velocidade média precisamos determinar o deslocamento { A\rightarrow B \rightarrow C } e o tempo total para o móvel sair de A para C.

Note que o vector deslocamento é o vector que une a posição inicial à posição final, ou seja, no nosso caso {\overrightarrow{\Delta s}=\overrightarrow{AC}}

Então temos:

\displaystyle \Delta s= \sqrt{(x_C-x_A)^2+(y_C-y_A)^2} \ \ \ \ \ (4)

A equação 4 é a fórmula para o cálculo de distancia em um sistema bidimensional.Considerando o ponto de partida A e o de chegada C, :

A(10,20) e B(20) considerando a abcissa y e a ordenada x.

Portanto, temos:

\displaystyle (x_C - x_A)= (40-10)=30 \\ (y_C - y_A)= (30-20)=10 \ \ \ \ \ (5)

.

Substituindo 7 em 4, obtemos:

\displaystyle \Delta s_{A-C}= \sqrt{(30)^2+(10)^2}=31,6 \ m

O tempo { \Delta t } do movimento de { A \rightarrow B \rightarrow C } é a soma dos tempos de { A \rightarrow B } e de { B \rightarrow C }.

Dos dados temos temos

\displaystyle t_{A-B} = 10 \ s e t_{B-C}= 20 \ s

Então

\displaystyle \Delta t = t_{A-B} + t_{B-C} =10+20=30 \ s \Delta t = 30 \ s

Sendo assim:

\displaystyle v_m = \frac{\Delta s}{\Delta t} = \frac{31,6 \ m}{30 \ s} = 1,05 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

Mecânica Quântica – Revisões I

— 1. Introdução —

Vamos agora começar o nosso estudo de Mecânica Quântica. Conceptualmente falando a Mecânica Quântica é a parte da Física onde temos uma maior disrupção face aos conceitos que temos do quotidiano. Por outro lado alguns dos conhecimentos de base para a Mecânica Quântica foram transmitidos noutras disciplinas e como tal é bastante provável que estejam algo esquecidos.

Por forma a minimizar as eventuais falhas identificadas, vamos, antes de mais, rever alguns conceitos de Física e Matemática de outras disciplinas. Em primeiro lugar vamos olhar para a Mecânica Clássica usando um formalismo próprio da Álgebra Linear. Desta forma vemos a linguagem matemática da Mecânica Quântica num contexto físico mais familiar. Posteriormente vamos entrar propriamente na Mecânica Quântica e esperamos que desta forma o choque não seja tão severo pois o estudante já estará mais acostumado à linguagem matemática usada e terá que se acostumar a uma nova linguagem física.

— 2. Sistemas de coordenadas —

Vamos admitir que temos um sistema de coordenadas {S} e um sistema de coordenadas {S'} que resulta de uma rotação a {S}. Vamos considerar um ponto {P} de coordenadas {(x_1,x_2,x_3)} em {S} e coordenadas {(x'_1,x'_2,x'_3)} em {S'}.

Em geral é óbvio que {x'_1=x'_1(x_1,x_2,x_3)}, {x'_2=x'_2(x_1,x_2,x_3)} e que {x'_3=x'_3(x_1,x_2,x_3)}.

Uma vez que a transformação de {S} para {S'} é uma rotação podemos assumir que se trata de uma transformação linear. Assim podemos escrever

{\begin{aligned} x'_1 &= \lambda _{11}x_1+ \lambda _{12}x_2 +\lambda _{13}x_3 \\ x'_2 &= \lambda _{21}x_1+ \lambda _{22}x_2 +\lambda _{23}x_3 \\ x'_3 &= \lambda _{31}x_1+ \lambda _{32}x_2 +\lambda _{33}x_3 \end{aligned}}

Podemos escrever as equações anteriores de uma forma mais compacta:

\displaystyle x'_i=\sum_{j=1}^3 \lambda_{ij}x_j

No caso de queremos fazer uma transformação de {S'} para {S} a transformação inversa é

\displaystyle x_i=\sum_{j=1}^3 \lambda_{ji}x'_j

A notação anterior sugere que os índices {\lambda} podem ser agrupados numa matriz:

\displaystyle \lambda= \left(\begin{array}{ccc} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{array} \right)

Na literatura a matriz acima tem o nome de matriz de rotação.

— 3. Propriedades da Matriz de Rotação —

Para a transformação {x'_i=x'_i(x_i)}

\displaystyle  \sum_j \lambda_{ij}\lambda_{kj}=\delta_{ik}

Onde {\delta_{ik}} é o delta de Kronecker e a sua definição é

\displaystyle  \delta_{ik}=\begin{cases} 0 \quad i\neq k\\ 1 \quad i=k \end{cases}

Para a transformação inversa {x_i=x_i(x'_i)} é

\displaystyle  \sum_i \lambda_{ij}\lambda_{ik}=\delta_{jk}

As relações anteriores têm o nome de relações ortogonais.

— 4. Matrizes: Definições, Operações e propriedades —

Vamos representar as coordenadas de um ponto {P} usando um vector coluna

\displaystyle  x = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)

Usando a notação habitual da Álgebra Linear podemos escrever as equações de transformação {x'=\mathbf{\lambda} x}

Definimos o produto matricial, {\mathbf{AB}=\mathbf{C}}, como sendo possível somente quando o número de colunas de {\mathbf{A}} é igual ao número de linhas de {\mathbf{B}}.

Para calcularmos um elemento específico da matriz {\mathbf{C}}, que vamos denotar por {\mathbf{C}_{ij}}, temos

\displaystyle  \mathbf{C}_{ij}=[\mathbf{AB}]_{ij}=\sum_k A_{ik}B_{kj}

Dada a definição de produto matricial é claro que em geral temos {\mathbf{AB} \neq \mathbf{BA}}

Como exemplo vamos calcular

\displaystyle \mathbf{A}=\left( \begin{array}{cc} 2 & 1\\ -1 & 3 \end{array}\right) ;\quad \mathbf{B}=\left( \begin{array}{cc} -1 & 2\\ 4 & -2 \end{array}\right)

Com

\displaystyle  \mathbf{AB}=\left( \begin{array}{cc} 2\times (-1)+1\times 4 & 2\times 2+1\times (-2)\\ -1\times (-1)+3\times 4 & -1\times 2+3\times (-2) \end{array}\right)=\left( \begin{array}{cc} 2 & 2\\ 13 & -8 \end{array}\right)

e

\displaystyle  \mathbf{BA}=\left( \begin{array}{cc} -4 & 5\\ 10 & -2 \end{array}\right)

Dizemos que {\lambda^T} é a matriz transposta, ou simplesmente transposta, de {\lambda} e calculamos os elementos matriciais da transposta por {\lambda_{ij}^T=\lambda_{ji}}.

De uma forma mais vulgar dizemos que para obtermos a transposta de uma matriz devemos trocar as suas colunas por linhas ou vice-versa.

Para uma matriz {\mathbf{A}} existe outra {\mathbf{U}} tal que {\mathbf{AU}=\mathbf{UA}=\mathbf{A}}. A matriz {\mathbf{U}} diz-se a matriz unidade e escrevemos {\mathbf{U}=\mathbf{1}}.

Se {\mathbf{AB}=\mathbf{BA}=\mathbf{1}}, {\mathbf{A}} e {\mathbf{B}} dizem-se matrizes inversas e {\mathbf{B}=\mathbf{A}^{-1}}, {\mathbf{A}=\mathbf{B}^{-1}}.

Para as matrizes de rotação temos

{\begin{aligned} \lambda \lambda ^T &= \left( \begin{array}{cc} \lambda_{11} & \lambda_{12}\\ \lambda_{21} & \lambda_{22} \end{array}\right)\left( \begin{array}{cc} \lambda_{11} & \lambda_{21}\\ \lambda_{12} & \lambda_{22} \end{array}\right) \\ &= \left( \begin{array}{cc} \lambda_{11}^2+\lambda_{22}^2 & \lambda_{11}\lambda_{21}+\lambda_{12}\lambda_{22}\\ \lambda_{21}\lambda_{11}+\lambda_{22}\lambda_{12} & \lambda_{21}^2+\lambda_{22}^2 \end{array}\right)\\ &=\left( \begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)\\ &= \mathbf{1} \end{aligned}}

Onde a penúltima igualdade segue do que vimos na Secção 3.

Assim {\lambda ^T=\lambda ^{-1}}.

Para terminarmos esta secção vamos indicar mais algumas propriedade das matrizes.

Em primeiro lugar vamos dizer que ainda que o produto matricial não seja comutativo ele é associativo. Logo {(\mathbf{AB})\mathbf{C}=\mathbf{A}(\mathbf{BC})}.

Para a adição de matriz é válido {C_{ij}=A_{ij}+B_{ij}}.

A matriz responsável por invertermos as coordenadas de todos os eixos de um sistema de coordenadas é chamada de matriz paridade

\displaystyle  \left( \begin{array}{ccc} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{array}\right)

Uma vez que podemos mostrar que as matrizes de rotação têm sempre determinante igual a {1}, enquanto que o determinante da matriz paridade é {-1} sabemos que não existe nenhuma transformação contínua das matrizes de rotação para a matriz paridade.

— 5. Vectores e Escalares —

Em Física as quantidades ou são escalares ou são vectores (também podem ser tensores, mas uma vez que ainda não precisamos destas quantidades vou fingir que não existem). Estas duas entidades são definidas de acordo com as suas propriedades de transformação

Seja {\lambda} uma transformação de coordenadas, {\displaystyle\sum_j\lambda_{ij}\lambda_{kj}=\delta_{ij}}, Se:

  • {\displaystyle\sum_j\lambda_{ij}\varphi=\varphi} então {\varphi} é um escalar.
  • {\displaystyle\sum_j\lambda_{ij}A_j=A'_i} para {A_1}, {A_2} e {A_3} então {(A_1,A_2,A_3)} é um vector.

— 5.1. Operações com escalares e vectores —

No interesse de termos um artigo auto-contido vamos enumerar algumas propriedades de vectores e escalares:

  1. {\vec{A}+\vec{B}=\vec{B}+\vec{A}}
  2. {\vec{A}+(\vec{B}+\vec{C})=(\vec{A}+\vec{B})+\vec{C}}
  3. {\varphi+\psi=\psi+\varphi}
  4. {\varphi+(\psi+\xi)=(\varphi+\psi)+\xi}
  5. {\xi \vec{A}= \vec{B}} é um vector.
  6. {\xi \varphi=\psi} é um escalar.

Como exemplo vamos demonstrar a quinta proposição e as restantes demonstrações ficam como um exercício para o leitor.

Para mostrarmos que {\xi \vec{A}= \vec{B}} é um vector temos que mostrar que a sua lei de transformação é a lei de transformação de um vector.

{\begin{aligned} B'_i &= \displaystyle\sum_j \lambda_{ij}B_j\\ &= \displaystyle\sum_j \lambda_{ij}\xi A_j\\ &= \xi\displaystyle\sum_j \lambda_{ij} A_j\\ &= \xi A'_i \end{aligned}}

Assim {\xi A} transforma-se como um vector.

— 6. Produtos vectoriais —

As operações entre escalares são de conhecimento geral por isso não vamos perder muito tempo com elas, mas provavelmente é importante que olhemos para duas operações entre vectores visto que elas serão muito importantes para os nossos desenvolvimentos futuros.

— 6.1. Produto escalar —

Usando dois vectores é possível construirmos um escalar. Este escalar é uma medida da projecção de um vector no outro e a sua definição é

\displaystyle  \vec{A}.\cdot\vec{B}=\sum_i A_i B_i = AB\cos (A.B)

Para esta operação ser digna do seu nome temos ainda que provar que o resultado é de facto um escalar.

Primeiro escrevemos {A'_i=\displaystyle \sum_j\lambda_{ij}A_j} e {B'_i=\displaystyle \sum_k\lambda_{ik}B_k}, onde alteramos o índice da segunda soma pois vamos multiplicar estas duas quantidades e assim evitamos confusões desnecessárias.

Temos

{\begin{aligned} \vec{A}'\cdot \vec{B}' &= \displaystyle\sum_i A'_i B'_i \\ &= \displaystyle \sum_i \left(\sum_j\lambda_{ij}A_j\right)\left( \sum_k\lambda_{ik}B_k \right)\\ &= \displaystyle \sum_j \sum_k \left( \sum_i \lambda_{ij}\lambda_{ik} \right)A_j B_k\\ &= \displaystyle \sum_j \left(\sum_k \delta_{jk}A_jB_k \right)\\ &= \displaystyle \sum_j A_j B_j \\ &= \vec{A}\cdot \vec{B} \end{aligned}}

Assim {\vec{A}\cdot \vec{B}} é um escalar.

— 6.2. Produto vectorial —

Antes de mais vamos introduzir o Símbolo de Levi-Civita {\varepsilon_{ijk}}. A sua definição é {\varepsilon_{ijk}=0} se dois ou mais índices são iguais; {\varepsilon_{ijk}=1} se {i\,j\,k} é uma permutação par de {123} (as permutações pares são {123}, {231} e {312}); {\varepsilon_{ijk}=-1} se {i\,j\,k} é uma permutação ímpar de {123} (as permutações ímpares são {132}, {321} e {213}).

O produto vectorial, {\vec{C}}, entre dois vectores {\vec{A}} e {\vec{B}} é {\vec{C}=\vec{A}\times \vec{B}}.

Para calcular as componentes do vector {\vec{C}} usamos a seguinte equação:

\displaystyle  C_i=\sum_{j,k}\varepsilon_{ijk}A_j B_k

Onde {\displaystyle\sum_{j,k}} é uma abreviatura para {\displaystyle\sum_j\sum_k}.

Como exemplo vamos calcular {C_1}

{\begin{aligned} C_1 &= \sum_{j,k}\varepsilon_{1jk}A_j B_k\\ &= \varepsilon_{123}A_2 B_3+\varepsilon_{132}A_3 B_2\\ &= A_2B_3-A_3B_2 \end{aligned}}

Onde usámos a definição de {\epsilon_{ijk}} ao longo da dedução.

Também podemos ver que (outro exercício para o leitor) {C_2=A_3B_1-A_1B_3} e que {C_3=A_1B_2-A_2B_1}.

Se apenas queremos determinar a magnitude de {\vec{C}} podemos usar a equação {C=AB\sin (A,B)}.

Após escolhermos os três eixos que definem o nosso referencial podemos escolher como base do nosso espaço um conjunto de três vectores linearmente independentes com norma igual a {1}. Estes vectores são chamados de vectores unitários.

Se denotarmos estes vectores por {\vec{e}_i} qualquer vector {\vec{A}} pode ser escrito como

\displaystyle \vec{A}=\displaystyle \sum _i \vec{e}_i A_i

Também temos {\vec{e}_i\cdot \vec{e}_j=\delta_{ij}} e {\vec{e}_i\times \vec{e}_j=\vec{e}_k}. A última equação pode também ser escrita como {\vec{e}_i\times \vec{e}_j=\vec{e}_k\varepsilon_{ijk}}.

— 7. Derivada de um vector em ordem a um escalar —

Seja {\varphi} uma função escalar de {s}: {\varphi=\varphi(s)}. Uma vez que tanto {\varphi} como {s} são escalares sabemos que as suas equações de transformação são {\varphi=\varphi '} e {s=s'}. Logo temos {d\varphi=d\varphi '} e {ds=ds'}

Assim para a diferenciação é {d\varphi/ds=d\varphi'/ds'=(d\varphi/ds)'}.

Para definirmos a derivada de um vector em ordem a um escalar vamos seguir um caminho semelhante.

Já sabemos que é {A'_i=\displaystyle \sum_j \lambda _{ij}A_j}. Então

{\begin{aligned} \dfrac{dA'_i}{ds'} &= \dfrac{d}{ds'}\left( \displaystyle \sum_j \lambda _{ij}A_j \right)\\ &= \displaystyle \lambda _{ij}\dfrac{d A_j}{ds'}\\ &= \displaystyle \lambda _{ij}\dfrac{d A_j}{ds}\ \end{aligned}}

Onde a última igualdade segue do facto que {s} é um escalar.

Pelo que mostrámos podemos escrever

\displaystyle  \frac{d A'_i}{ds'}= \left( \frac{d A_i}{ds} \right)'=\sum_j \lambda _{ij}\frac{d A_j}{ds}

Assim {dA_j/ds} transforma-se de acordo com a lei de transformação de um vector. Logo {d\vec{A}/ds} é um vector.

As regras para derivarmos vectores são:

  • {\dfrac{d}{ds}(\vec{A}+\vec{B})= \dfrac{d\vec{A}}{ds}+\dfrac{d\vec{B}}{ds}}
  • {\dfrac{d}{ds}(\vec{A}\cdot\vec{B})= \vec{A}\cdot\dfrac{d\vec{B}}{ds}+\dfrac{d\vec{A}}{ds}\cdot \vec{B}}
  • {\dfrac{d}{ds}(\vec{A}\times\vec{B})= \vec{A}\times\dfrac{d\vec{B}}{ds}+\dfrac{d\vec{A}}{ds}\times \vec{B}}
  • {\dfrac{d}{ds}(\varphi\vec{A})= \varphi\dfrac{d\vec{A}}{ds}+\dfrac{d\varphi}{ds}\vec{A}}

As demonstrações destas regras não são necessárias para ganharmos qualquer tipo técnica e assim sendo não serão apresentadas, no entanto o leitor que não esteja muito habituado a este tipo de raciocínio deve concluir as demonstrações para ganhar experiência.

%d bloggers like this: