Luso Academia

Início » Posts tagged 'topologia'

Tag Archives: topologia

Topologia – Introdução aos Espaços Métricos

— 1.1.4. Alguns Exemplos de Espaços Métricos —

Na aula de hoje, daremos alguns exemplos de espaços métricos, e só depois continuaremos com a topologia dos espaços métricos. Infelizmente, pela grande variedade de espaços métricos que existem, que são infinitos, não poderemos demonstrar que cada métrica definida em um conjunto dado realmente fora um espaço métrico, por isso as respectivas demonstrações são deixadas ao leitor.

Comentário 3 É importante notarmos que em um mesmo conjunto podemos definir várias métricas.
Exemplo 5

  1. Seja {X=\mathbb{R}}, este é sem dúvida o espaço métrico mais importante, podemos definir nele as seguintes métricas:
    • {d_{1}(x,y)=\mid x-y\mid }, {\forall x,y\in \mathbb{R},}. Esta é a métrica usual ou euclidiana.
    • {d(x,y)=\sqrt{\mid x-y\mid}}, {\forall x,y\in \mathbb{R}}. (Sugestão: para provarmos que esta métrica satisfaz a desigualdade triangular podemos aplicar a desigualdade: {\sqrt{a+b}\leq\sqrt{a}+\sqrt{b}}, {\forall a,b\in \mathbb{R}}).
    • {\rho(x,y)=\frac{d_{1}(x,y)}{1+d_{1}(x,y)}}, onde {d_{1}} é a métrica usual euclidiana.(sugestão: a função {f(a)=\frac{a}{1+a}} é crescente, logo, {\mid a+b\mid\leq\mid a\mid+\mid b\mid\Longrightarrow f(\mid a+b\mid)\leq f(\mid a\mid + \mid b\mid)}).
  2. Se {X=\mathbb{R}^{2}} podemos definir as seguintes métricas:
    • {d_{t}(x,y)=\mid x_{1}-y_{1}\mid + \mid x_{2}-y_{2}\mid}, onde {x=(x_{1},x_{2})} e {y=(y_{1},y_{2})}. Esta métrica é conhecida como métrica do táxi.
    • {d_{2}(x,y)=\sqrt{( x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}}}, {x,y\in\mathbb{R}^{2}}. Esta é a métrica euclidiana no plano.
    • {d_{max}(x,y)=\max{\mid x_{1}-y_{1}\mid,\mid x_{2}-y_{2}\mid}}, é a métrica do máximo.
  3. Se {X=\mathbb{R}^{n}}, temos:
    • {d_{n}(x,y)=\sqrt{\sum_{i=1}^{n}(x_{i}-y_{i})^{2}}}, onde {x=(x_{1},...,x_{n})} e {y=(y_{1},...,y_{n})}.(sugestão: use a desigualde de Cauchy-Schwarz: {(\sum_{i=1}^{n}\mid x_{i}y_{i}\mid)^{2}\leq (\sum_{i=1}^{n}x_{i}^{2})^{2}(\sum_{i=1}^{n}y_{i}^{2})^{2}}, {\forall x,y\in\mathbb{R}^{n}}).
    • {d_{\infty}(x,y)=\max\{\mid x_{i}-y_{i}\mid:1\leq i\leq n\}}, {x,y\in \mathbb{R}^{n}}.
    • Para {p\geq 1}, definimos a métrica:

      \displaystyle d_{p}(x,y):=\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}-y_{i}\mid^{p}}

      também é uma métrica em {\mathbb{R}^{n}}.(sugestão: use a desigualdade de Minkovsky: {\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}+y_{1}\mid}\leq\sqrt[p]{\sum_{i=1}^{n}\mid x_{i}\mid^{p}}+\sqrt[p]{\sum_{i=1}^{n}\mid y_{i}\mid^{p}}}, {\forall p\geq 1}).

  4. Seja {B(A)} o conjunto de todas as funções limitadas no conjunto {A}, então a métrica {d_{\infty}:B(A)\times B(A)\longrightarrow \mathbb{R}^{+}} definida por

    \displaystyle d_{\infty}(f,g):=\sup\{\mid f(x)-g(x)\mid:x\in A\}

    torna-o num espaço métrico {\forall f,g\in B(A)} .

  5. Seja {C_{[a,b]}}, o conjunto de todas as funções contínuas no intervalo {[a,b]\subset \mathbb{R}} é um espaço métrico com as métricas:
    • {d(f,g):=\max\{\mid f(x)-g(x)\mid:x\in [a,b]\}}, {\forall f,g\in C_{[a,b]} }.
    • {d_{p}(f,g):=\sqrt[p]{\int_{a}^{b}\mid f(x)-g(x)\mid^{p}dx}}. (sugestão: para a desigualdade triangular use o equivalente integral da desigualdade de Minkovsky)
  6. Terminamos com a métrica {d_{0}:X\times X\longrightarrow \mathbb{R}^{+}}, definida por

    \displaystyle d_{0}(x,y):=\sum_{i=1}^{\infty}\frac{d(x_{i},y_{i})}{2^{i}}

    onde {d} é uma métrica em {X}. Demonstração: É evidente que {d_{0}(x,y)\geq 0} e que {d_{0}(x,y)=0} se e só se {x=y}. Também é fácil verificar que {d_{0}(x,y)=d_{0}(y,x)}, vamos portanto mostrar apenas a desigualdade triangular,

    {d_{0}(x,y)=\sum_{i=1}^{\infty}\frac{d(x_{i},y_{i})}{2^{i}}}

    {\leq\sum_{i=1}^{\infty}\frac{d(x_{i},z_{i})+d(z_{i},y_{i})}{2^{i}}=}

    {\sum_{i=1}^{\infty}\frac{d(x_{i},z_{i})}{2^{i}}+\sum_{i=1}^{\infty}\frac{d(z_{i},y_{i})}{2^{i}}}

    {=d_{0}(x,z)+d(z,y)}

    \Box

Definição 3 Seja {d:X\times X\longrightarrow \mathbb{R}^{+}} uma aplicação, o par {(X,d)} é chamado de pseudométrica ou pseudodistância em {X} se,

  1. {d(x,y)=0} se {x=y},
  2. {d(x,y)=d(y,x)} para todo {x,y\in X},
  3. {d(x,y)\leq d(x,z)+d(z,y)} para todo {x,y,z \in X}.
Exercício 1 Seja dada a aplicação {f:X\longrightarrow \mathbb{R}^{+}}, a aplicação

\displaystyle d:X\times X\longrightarrow \mathbb{R}^{+}

definida por

\displaystyle d(x,y)= \left \{ \begin{array}{cl} 0 & \mbox{, } x= y\\ f(x)+f(y) & \mbox{, } x\neq y \end{array}\right.

é uma pseudométrica se e só se {f^{-1}(0)} tem no máximo um elemento.

Exercício 2 Prove que se

\displaystyle d_{i}:X\times X\longrightarrow \mathbb{R}^{+}\,\,\,(i\in \mathbb{N})

é uma família enumerável de pseudométricas e

\displaystyle \alpha:\mathbb{R}_{\geq0}^{\mathbb{N}}\longrightarrow \mathbb{R}^{+}

é uma função que satisfaz:

  • {\alpha(x)=0} se e só se {x=0},
  • Se {x\leq y}, então {\alpha(x)\leq\alpha(y)}
  • {\alpha(x+y)\leq\alpha(x)+\alpha(y)}

então a função

\displaystyle d:X\times X\longrightarrow \mathbb{R}^{+}

definida por

\displaystyle d(x,y):=\alpha(d_{1}(x,y),...,d_{n}(x,y),...),

é uma pseudométrica, e que é uma métrica se e só se para todo {x,y\in X}, com {x\neq y}, existe {i\in \mathbb{N}} tal que {d_{i}(x,y)>0}.

Topologia – Introdução II

— 1.1. Bolas Abertas e Fechadas —

Definição 2 Dado {x\in X} e {r>0}. Definimos os seguintes conceitos:

  • (Bola aberta) {B(x,r)=\{y\in X:d(x,y)<r\}}.
  • (Bola fechada) {\overline{B}(x,r)=\{y\in X:d(x,y)\leq r\}}
  • (Esfera){S(x,r)=\{y\in X:d(x,y)=r\}}

Exemplo 4 Se, na definição tomarmos {X=\mathbb{R}}, então as bolas abertas (resp. fechadas) serão basicamente intervalos abertos (resp. fechados), i.e., {B(x,r)=(x-r,x+r)} e {\overline{B}(x,r)=[x-r,x+r]}. Se {x=0} e {r=1}, então {B(0,1)=(-1,1)}, {\overline{B}(0,1)=[-1,1]}.

Comentário 2 É enganoso pensarmos, conforme aconselha o Kreyszig, que as bolas(abertas ou fechadas) em espaços métricos arbitrários não euclidianos possuem as mesmas propriedades que as bolas ou esferas em {\mathbb{R}^{3}}. Por exemplo, nos espaços métricos que surgem a partir da métrica discreta, espaços discretos, uma esfera pode ser vazia, i.e., {S(x,r)=\{y\in X:d(x,y)=r\}=\emptyset }, para isso, basta tomarmos {r\neq1}.

— 1.1.1. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 1 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 2 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

— 1.1.2. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 3 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 4 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

— 1.1.3. Propriedades das Bolas Abertas —

Seja {(X,d)} um espaço métrico, então:

Proposição 5 Dadas duas bolas abertas {B(x,r_{1})} e {B(x,r_{2})}, então :

\displaystyle r_{1}\leq r_{2}\Longrightarrow B(x,r_{1})\subset B(x,r_{2})

Demonstração: A demonstração desse facto é bastante simples. Seja {y\in B(x,r_{1})} então

\displaystyle d(x,y)<r_{1}\leq r_{2}\Longrightarrow d(x,y)<r_{2}

logo, {y\in B(x,r_{2})}. \Box

Proposição 6 Seja {y} um ponto em {(X,d)} tal que {y\in B(x,r)}, então existe uma bola {B(y,r_{1})} ({r_{1}>0}), tal que

\displaystyle B(y,r_{1})\subset B(x,r)

Demonstração: Seja {y\in B(x,r)}, se tomarmos {r_{1}=r-d(x,y)} teremos:

\displaystyle z\in B(y,r_{1})\Longrightarrow d(z,x)\leq d(z,y)+d(y,x)<r_{1}+d(y,x)=r.

\Box

Proposição 7 Sejam {B(x,r_{1})} e {B(y,r_{2})}, tais que {B(x,r_{1})\cap B(y,r_{2})\neq \emptyset}. Se {a\in B(x,r_{1})\cap B(y,r_{2})}, então existe uma bola aberta de centro {a} contida na intersecção {B(x,r_{1})\cap B(y,r_{2})}.

Demonstração: Deixada ao leitor. \Box

Proposição 8 Sejam {B(x_{1},r_{1})} e {B(x_{2},r_{2})} duas bolas abertas. Se {r_{1}+r_{2}\leq d(x_{1},x_{2})}, então

\displaystyle B(x_{1},r_{1})\cap B(x_{2},r_{2})=\emptyset.

Demonstração: deixada ao leitor. \Box

Topologia – Introdução

Topologia

— 1. Espaços Métricos —

A topologia, literalmente, a ciência da forma, é uma área da Matemática, muito ligada à Geometria e Análise, que têm como objectivo fundamental a análise do conceito de continuidade entre espaços.

Existem duas maneiras de se introduzir uma estrutura topológica em um espaço, a primeira através da noção de distância entre elementos de um conjunto, que passará a ser um espaço métrico, a outra, numa abordagem mais conjuntista e abstracta, utilizando a noção primitiva de conjunto aberto. Nas primeiras aulas abordaremos principalmente a primeira maneira, por ser talvez a mais intuitiva e também por cumprir com os objectivos que preconizamos.

Definição 1 Seja {X} um conjunto não vazio. A aplicação {d:X\times X\longrightarrow\mathbb{R}} define uma distância ou métrica em {X} se as condições abaixo são cumpridas {\forall x,y,z\in X}:

  1. {d(x,y)\geq 0}, com igualdade se e só se {x=y}
  2. {d(x,y)=d(y,x)}
  3. {d(,y)\leq d(x,z)+d(z,y)}.
Comentário 1 Ao par {(X,d)} chamamos de espaço métrico mas, muitas vezes omitiremos a notação anterior à favor de uma mais simples, i.e., denotaremos um espaço métrico apenas pela letra {X}.

Do axioma 3 obtemos por indução a desigualdade triangular generalizada:

\displaystyle  d(x_{1},x_{n})\leq d(x_{1},x_{2})+d(x_{2},x_{3})+\cdots+d(x_{n-1},x_{n}) \ \ \ \ \ (1)

Um subespaço {(Y,\rho)} de um espaço métrico {(X,d)} é obtido se tomarmos o subconjunto {Y\subset X} e restringirmos {d} a {Y\times Y}, assim a métrica em {Y} é a restrição

\displaystyle \rho=d\mid _{Y\times Y}

A definição acima nos mostra claramente que em um mesmo conjunto podemos definir várias métricas, ou seja, várias maneiras de se medir distâncias. Um dos conjuntos mais famosos que possui várias distâncias nele definidas é o conjunto dos números reais {\mathbb{R}}.

Exemplo 1 1. O conjunto dos Números Reais {\mathbb{R}}. Munido com a distância:

\displaystyle d(x,y)=\mid x-y\mid

Esta é com certeza a distância mais famosa em matemática, pois quase toda a análise elementar é feita usando esta métrica e é também bastante intuitiva, vamos provar que os números reais com essa distância é de facto um espaço métrico. Demonstração: (i) Vamos verificar o primeiro axioma, {d(x,y)\geq 0} e {x=y \Longleftrightarrow d(x,y)=0}. Então temos,

\displaystyle d(x,y)\geq 0 \Longleftrightarrow d(x,y)=\mid x-y\mid \geq 0

o que é evidente pela definição de módulo. Resta demonstrar a segunda parte do axioma 1, temos então

\displaystyle d(x,y)= 0 \Longleftrightarrow \mid x-y \mid =0

\displaystyle \Longleftrightarrow x-y=0

\displaystyle \Longleftrightarrow x=y

a reciproca é evidentemente verdadeira, se tomarmos {x=y} então {d(x,x)=0}. (ii)O segundo axioma também é simples de demonstrar,

\displaystyle d(x,y)=\mid x-y\mid =\mid (-1).(y-x)\mid = \mid (-1)\mid \mid y-x\mid 		=\mid y-x\mid = d(y,x)

(iii)Para demonstrarmos a desigualdade triangular vamos precisar da desigualdade triangular nos reais, i.e.,

\displaystyle \mid x-y\mid \leq \mid x\mid + \mid y\mid

Fazendo uso de um pequeno artifício temos,

\displaystyle (x-y)=(x-z)+(z-y)

Então,

\displaystyle \mid x-y\mid \leq \mid (x-z)+(z-y)\mid \leq \mid x-z\mid +\mid z-y\mid

assim demonstramos que o par {(\mathbb{R},d)} é um espaço métrico. \Box

Exemplo 2 Ao tomarmos qualquer conjunto {X\neq \emptyset} podemos definir nele a seguinte métrica,

\displaystyle  \rho(x,y) = \left \{ \begin{array}{cl} 1 & \mbox{, } x\neq y\\ 0 & \mbox{, } x= y \end{array}\right.

O exemplo a seguir foi tirado do livro an epsilon of room, escrito por Terence Tao, e é muito interessante porque mostra como a partir de duas métricas podemos formar outras métricas, chamadas de métricas produto.

Exemplo 3 Dado dois espaços métricos {X=(X,d_{X})} e {Y=(Y,d_{Y})}, podemos definir o produto {X\times Y=(X\times Y,d_{X}\times d_{Y})} como sendo o produto cartesiano {X \times Y} com a métrica produto

\displaystyle  d_{X}\times d_{Y}((x,y),(x',y')):=\max \{d_{X}(x,x'),d_{Y}(y,y')\}

ou ainda

\displaystyle  d_{X}\times d_{Y}((x,y),(x',y')):= d_{X}(x,x')+d_{Y}(y,y')

%d bloggers like this: