Luso Academia

Início » Posts tagged 'sistema massa-mola'

Tag Archives: sistema massa-mola

1.2. Exercícios sobre sistema massa-mola (Parte 2)

Exercício 1 Um móvel executa MHS e obedece a função horária {x = 3 \cdot cos(0,5 \pi t + \pi)}, no SI.
  1. Determine o tempo necessário para que este móvel vá da posição de equilíbrio para a posição de elongação máxima.
  2. Obtenha o valor da aceleração no instante {t = 1 \ s}.

Nível de dificuldade: Regular.

Resolução 1 .
  1. Sabemos que num MHS o tempo que o corpo leva a sair do extremo para a posição de equilíbrio ou vice-versa é igual a um quarto do período {t= \dfrac{T}{4}}. Neste caso, precisamos calcular o período e depois calcular o {t}.
    Na equação obtemos que:

    \displaystyle \omega=0,5 \pi \ rad/s

    Mas sabemos que { \omega= \dfrac{2 \pi}{T}}. Então:

    \displaystyle \omega=0,5 \pi

    \displaystyle \Rightarrow \dfrac{2 \pi}{T}=0,5 \pi

    \displaystyle \Rightarrow \dfrac{2}{T}=0,5

    \displaystyle \Rightarrow 2 = 0,5 T

    \displaystyle \Rightarrow T = \dfrac{2}{0,5}

    \displaystyle \Rightarrow T = 4 \ s

    Neste caso, o tempo é:

    \displaystyle t= \dfrac{T}{4}

    \displaystyle \Rightarrow t = 1 \ s

  2. Precisamos saber primeiro a função da aceleração desse movimento, que é dada pela segunda derivada da posição em função do tempo, ou seja

    \displaystyle a = \dfrac{d^2x}{dt^2}

    Logo:

    \displaystyle a = \dfrac{d}{dt} \Bigg[ \dfrac{d x}{dt} \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg[ \dfrac{d}{dt}[3 \cos(0,5 \pi t + \pi)] \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg [-3 \cdot 0,5 \pi sen (0,5 \pi t + \pi) \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg [-1,5 \cdot \pi sen (0,5 \pi t + \pi) \Bigg]

    \displaystyle a = -1,5 \pi \cdot0,5 \pi \cos(0,5 \pi t + \pi)

    \displaystyle a = -0,75 \pi^2 \cdot \cos(0,5 \pi t + \pi)

    Considerando {t = 1 \ s}, logo:

    \displaystyle a = -0,75 \pi^2 \cdot \cos(0,5 \pi \cdot 1 + \pi)

    \displaystyle a = 0

Exercício 2 Na figura ao lado, dois blocos ({m = 2 \ kg} e {M = 16 \ kg}) e uma mola ({k = 250 \ N/m}) estão dispostos em uma superfície horizontal sem atrito. O sistema oscila em MHS com amplitude de {10 \ cm}. Qual deverá ser o coeficiente de atrito mínimo para que o bloco menor fique na eminência de deslizar sobre o bloco maior ?

Nível de dificuldade: Regular.

Resolução 2 .

Dados:

{m=2 \ kg}

{M=16 \ kg}

{k=250 \ N/m}

{A=10 \ cm = 0,1 \ m}

{ \mu \longrightarrow ? } (eminência de cair).

Para que o bloco menor fique fique em repouso relativo ao bloco maior, deslizando conjuntamente com ele, (na iminência de deslizar sobre bloco maior, mas não deslizando) é necessário que haja uma igualdade entre a força que o bloco maior aplica ao bloco menor (determinada a partir da aceleração) e a força de atrito existente na superfície de contacto entre eles (1ª Lei de Newton).

\displaystyle Diagrama \ do \ corpo \ livre

Como estamos a tratar de um MHS, a força aplicada pelo bloco de baixo ao bloco de cima é:

\displaystyle F_M = m \cdot a_{mhs}

Onde {a_{mhs}} é a aceleração do MHS.

Logo:

\displaystyle F_M = F_a

\displaystyle m \cdot a_{mhs} = \mu \cdot N

Como o bloco {m} não está inclinado nem em relação a horizontal, logo:

\displaystyle N = m \cdot g

Então:

\displaystyle F_M = F_a

\displaystyle \Rightarrow m \cdot a_{mhs} = \mu \cdot m \cdot g

\displaystyle a_{mhs} = \mu \cdot g

Nota: O enunciado não sugere que o bloco deslize, mas sim que ele fique prestes a deslizar. Esta situação só pode ser analisada quando os dois blocos atingem o extremo. Neste ponto a força exercida pela mola é máxima e consequentemente a {a_{mhs}} também é máxima. logo:

\displaystyle a_{mhs} = A \cdot \omega^2

Num sistema massa-mola:

\displaystyle \omega^2 = { \dfrac{k}{m_{sist}}}

Além disso, a frequência angular não depende somente do bloco {m}, mas sim dos dois, pois a mola desloca os dois em conjunto. Então:

\displaystyle \omega^2 = { \dfrac{k}{m + M}}

\displaystyle a_{mhs} = \mu \cdot g

Voltando a igualdade entre as forças, teremos:

\displaystyle A \cdot \omega^2 = \mu \cdot g

\displaystyle A \cdot \dfrac{k}{m + M} = \mu \cdot g

\displaystyle \mu = \dfrac{A \cdot k}{g(m + M)}

\displaystyle \mu = \dfrac{0,1 \cdot 250}{9,8(16 + 2)}

\displaystyle \mu = 0,142

Exercicío 3 Um corpo de {60 \ g}, preso a uma extremidade de uma mola ideal ({k = 3,2 \ N/m}) comprimida de {32 \ cm}, é abandonado do repouso na posição “A” da figura. A partir desse instante o corpo inicia o MHS. Despreze o atrito e adote o ponto de equilíbrio do corpo (ponto O) e sentido para a direita como referencial. Nessas condições, determine a equação da posição e da velocidade desse MHS.

 

Nível de dificuldade: Regular.

Resolução 3 .

 

Dados

{k = 3,2 \ N/m}

{A = 32 \ cm = 0,32 \ m}

{m = 60 \ g = 0,06 \ kg}

O corpo inicialmente se encontra no extremo negativo (de acordo com a figura inicial). Estando neste extremo, de acordo com a situação (mola comprimida) ao ser solto vai movimentar-se para a posição de equilíbrio e continuar a oscilar. Veja o gráfico analítico abaixo:

A equação geral da posição de um MHS é:

\displaystyle x = Asen ( \omega t + \varphi_0)

Considere o gráfico genérico da função {x=sen (\varphi)}.

Para a função {sen} o extremo negativo é atingido para a fase {- \dfrac{ \pi}{2}} ou { \dfrac{3 \pi}{2}}.

Sendo que a oscilação começa a partir do extremo negativo (Ponto A), logo { \varphi_0 = - \dfrac{ \pi}{2}}.

Sabemos que, num sistema corpo-mola:

\displaystyle \omega = \sqrt{ \dfrac{k}{m}}

Então:

\displaystyle \omega = \sqrt{ \dfrac{3,2}{0,06}} = 7,30 rad/s

Logo, substituindo na equação geral, obtemos:

\displaystyle x = 0,32sen \ (7,30 \ t - \dfrac{ \pi}{2}) \ [SI]

A velocidade de um movimento é dada como a derivada da equação da posição, ou seja:

\displaystyle v = \dfrac{dx}{dt}

Logo:

\displaystyle v = \dfrac{d}{dt} \Big[0,32sen \ (7,30 \ t - \dfrac{ \pi}{2}) \Big]

\displaystyle v = 0,32 \cdot 7,30 \cdot \cos \ (7,30 \ t - \dfrac{ \pi}{2})

\displaystyle v = 2,337 \cos \ (7,3 \ t - \dfrac{ \pi}{2}) \ [SI]

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre sistema massa-mola (Parte 1)

— 1.2. Sistema massa-mola —

Exercício 16 .

Um corpo está pendurado em uma mola de { k= 600 \ N/m} e oscila com uma amplitude de {5 \ cm}.

Qual é a velocidade máxima desta oscilação e a massa do corpo, se o seu período for de {1 \ s} ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 16 .
Dados
{k= \ 600 \ N/m}
{A= \ 5 \ cm= \ 0,05 \ m}
{T= \ 1 \ s}
{v_M \rightarrow ?}
{m \rightarrow ?}

A velocidade máxima de um MHS é dada na forma:

\displaystyle v_M= A \cdot\omega

Por sua vez, sabemos que, para qualquer evento período:

\displaystyle \omega= \dfrac{2 \pi}{T}

Logo, substituindo na equação anterior, obtemos:

\displaystyle v_M= A \cdot \dfrac{2 \pi}{T}

\displaystyle \Rightarrow v_M=0,05 \cdot \dfrac{2 \pi}{1}

\displaystyle \Rightarrow v_M= \ 0,314 \ m/s

Para determinarmos a massa, podemos usar a relação de {\omega} para o sistema massa-mola. Sabemos que neste sistema, a relação o {\omega} é dado por:

\displaystyle \omega = \sqrt{ \dfrac{k}{m} }

Ou:

\displaystyle \omega^2 = \dfrac{k}{m}

Então, isolando a massa, obtemos:

\displaystyle m= \dfrac{k}{\omega^2}

Substituindo {\omega} pela sua relação com o período, obtemos:

\displaystyle m= \dfrac{k}{(2 \pi / T)^2}

\displaystyle \Rightarrow m= \dfrac{600}{(2 \pi / 1)^2}

\displaystyle \Rightarrow m= \ 15 \ kg

Exercício 17 .
Um corpo de { 0,1 \ kg} preso em uma mola ideal de rigidez elástica de {200 \ N/m} oscila em MHS com {5 \ cm} de amplitude. Qual é a velocidade do corpo no momento em que a energia cinética do corpo é o dobro da energia potencial?

NÍVEL DE DIFICULDADE: Regular.

Resolução 17 .
Dados
{m= \ 0,1 \ kg}
{k= \ 200 \ N/m}
{A= \ 5 \ cm= \ 0,05 m}
{m \rightarrow ?} ({E_c=2E_p})

Em qualquer ponto do percurso em uma oscilação, a energia total do corpo é a soma da energia cinética com a energia potencial do corpo naquele ponto, ou seja:

\displaystyle E_c + E_p = E_{Total} \ \ \ \ \ (1)

Pretende-se saber qual é a velocidade do corpo no ponto onde a energia cinética é o dobro da energia potencial,ou seja:

\displaystyle E_c=2 E_p \ \ \ \ \ (2)

Substituindo a equação 2 na equação 1, temos:

\displaystyle 2E_p + E_p = E_{Total}

\displaystyle 3E_p = E_{Total}

Substituindo as energias cinéticas e total pelos seus equivalentes, obtemos:

\displaystyle 3\dfrac{mv^2}{2}= \dfrac{kA^2}{2}

Isolando a velocidade, obtemos:

\displaystyle v= \sqrt{ \dfrac{k}{3m} \cdot A^2}

\displaystyle \Rightarrow v=1,29 \ m/s

Exercício 18 .
Um corpo caindo de uma altura de {10 \ cm } (em relação ao topo da mola), comprime a mola (ficando presa nesta) e inicia um MHS .Sendo a massa do corpo de {100 \ g} e a constante da mola {20 \ N/m}, determine a amplitude desta oscilação.

NÍVEL DE DIFICULDADE: Complexo.

Resolução 18 .
Dados
{h=10 \ cm= \ 0,1 \ m }
{m= \ 100 \ g= 0,1 \ kg}
{k= \ 20 \ N/m}
{g= \ 9,8 \ m/s^2}
{A \longrightarrow ?}

Na figura ilustramos o sistema em 3 situações diferentes:

  • Situação 1 – O corpo está na altura de 10 cm e a mola está relaxada. O corpo, inicialmente em repouso, cai em direcção a mola.
  • Situação 2 – O corpo chega na mola (e fica preso nela). A partir daqui a mola e o corpo movem-se como um só. até o momento do encontro, o movimento era acelerado e com aceleração constante. Após esse encontro, no corpo começa a actuar a força elástica e portanto a sua aceleração começa a diminuir. A medida em que o corpo desce, a mola se vai comprimindo mais, a força elástica vai aumentando e a aceleração do corpo diminui até zero e em seguida aumenta negativamente. Ai o corpo começa a fazer um movimento retardado.
  • Situação 3 – Após a sua velocidade reduzir até zero, o corpo pára momentaneamente (e em seguida faz o movimento de retorno a posição de equilíbrio).

Vamos adoptar a posição da situação 3 como referencial de altura.

De acordo com a ilustração do fenómeno é possível concluir que:

  • A oscilação começou no ponto de equilíbrio;
  • Na posição da situação 1 o corpo estava em repouso. Existe apenas a energia potencial gravítica (devido a altura de {h + A});
  • Na posição da situação 2, após cair aos { 10 \ cm}, o corpo está em movimento com uma velocidade definida pela altura de queda. O sistema possuí energia cinética (do corpo) e energia potencial gravítica (devido a altura {A});
  • Após comprimir a mola até ao máximo, o corpo para. Nesse momento o sistema só tem a energia potencial elástica.

Usando a descrição acima, para a situação 1, a energia do sistema será:

\displaystyle E_1=E_{c1}+E_{pel1}+E_{pgrav1}

\displaystyle \Rightarrow E_1=0+0+E_{pgrav1}

\displaystyle \Rightarrow E_1= m \cdot g \cdot (h+A)

Para a situação 2, a energia do sistema será:

\displaystyle E_2=E_{c2}+E_{pel2}+E_{pgrav2}

\displaystyle \Rightarrow E_2=E_{c2}+0+E_{pgrav2}

\displaystyle \Rightarrow E_2=\dfrac{m \cdot v_2^2}{2}+0+m \cdot g \cdot A

\displaystyle \Rightarrow E_2=\dfrac{m \cdot v_2^2}{2}+m \cdot g \cdot A

Para a situação 3, a energia do sistema será:

\displaystyle E_3=E_{c3}+E_{pel3}+E_{pgrav3}

\displaystyle \Rightarrow E_3=0+E_{pel3}+0

\displaystyle \Rightarrow E_3=E_{pel3}

\displaystyle \Rightarrow E_3=\dfrac{k \cdot A^2}{2}

Sabemos que neste movimento apenas actuam as forças de gravida e elástica, que são ambas conservativas. Então, a energia mecânica deste sistema permanece constante:

\displaystyle E_1=E_2=E_3=E

Obtemos a partir desta análise um sistema de 3 equações. Resolvendo-o, podemos obter todos os valores desconhecidos ({v_2}, {A} e {E}). Para obter a amplitude, podemos igualar as equações de {E_1} e {E_3}. Neste caso, obteremos:

\displaystyle E_1=E_3

\displaystyle \Rightarrow m \cdot g \cdot (h+A)=\dfrac{k \cdot A^2}{2}

\displaystyle \Rightarrow m \cdot g \cdot h+m \cdot g \cdot A=\dfrac{k \cdot A^2}{2}

\displaystyle \Rightarrow 0=\dfrac{k \cdot A^2}{2} - m \cdot g \cdot A - m \cdot g \cdot h

\displaystyle \Rightarrow \dfrac{k \cdot A^2}{2} - m \cdot g \cdot A - m \cdot g \cdot h =0

Substituindo os dados, obtemos:

\displaystyle \Rightarrow \dfrac{20 \cdot A^2}{2} - 0,1 \cdot 9,8 \cdot A - 0,1 \cdot 9,8 \cdot 0,1 =0

\displaystyle \Rightarrow 10 \cdot A^2 - 0,98 \cdot A - 0,098 =0

Em seguida, resolvemos a equação do segundo grau obtida pela fórmula resolvente ou por qualquer outro método conveniente.

Obtemos os seguintes resultados: {A_1=0,159 \ m} e {A_2=-061 \ m}.

como sabemos, a amplitude não pode ser negativa, então o valor aceite para amplitude deste MHS é:

\displaystyle A=0,159 \ m

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers gostam disto: