Início » Posts tagged 'sistema massa-mola'
Tag Archives: sistema massa-mola
1.2. Exercícios sobre sistema massa-mola (Parte 2)
Exercício 1 Um móvel executa MHS e obedece a função horária
Nível de dificuldade: Regular. |
Resolução 1 .
|
Exercício 2 Na figura ao lado, dois blocos ( Nível de dificuldade: Regular. |
Resolução 2 .
Dados:
Para que o bloco menor fique fique em repouso relativo ao bloco maior, deslizando conjuntamente com ele, (na iminência de deslizar sobre bloco maior, mas não deslizando) é necessário que haja uma igualdade entre a força que o bloco maior aplica ao bloco menor (determinada a partir da aceleração) e a força de atrito existente na superfície de contacto entre eles (1ª Lei de Newton). Como estamos a tratar de um MHS, a força aplicada pelo bloco de baixo ao bloco de cima é: Onde Logo: Como o bloco Então: Nota: O enunciado não sugere que o bloco deslize, mas sim que ele fique prestes a deslizar. Esta situação só pode ser analisada quando os dois blocos atingem o extremo. Neste ponto a força exercida pela mola é máxima e consequentemente a Num sistema massa-mola: Além disso, a frequência angular não depende somente do bloco Voltando a igualdade entre as forças, teremos: |
Exercicío 3 Um corpo de
Nível de dificuldade: Regular. |
Resolução 3 .
Dados O corpo inicialmente se encontra no extremo negativo (de acordo com a figura inicial). Estando neste extremo, de acordo com a situação (mola comprimida) ao ser solto vai movimentar-se para a posição de equilíbrio e continuar a oscilar. Veja o gráfico analítico abaixo: A equação geral da posição de um MHS é: Considere o gráfico genérico da função Para a função Sendo que a oscilação começa a partir do extremo negativo (Ponto A), logo Sabemos que, num sistema corpo-mola: Então: Logo, substituindo na equação geral, obtemos: A velocidade de um movimento é dada como a derivada da equação da posição, ou seja: Logo: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.2. Exercícios sobre sistema massa-mola (Parte 1)
— 1.2. Sistema massa-mola —
Exercício 16 .
Um corpo está pendurado em uma mola de Qual é a velocidade máxima desta oscilação e a massa do corpo, se o seu período for de NÍVEL DE DIFICULDADE: Elementar. |
Resolução 16 . Dados A velocidade máxima de um MHS é dada na forma: Por sua vez, sabemos que, para qualquer evento período: Logo, substituindo na equação anterior, obtemos: Para determinarmos a massa, podemos usar a relação de Ou: Então, isolando a massa, obtemos: Substituindo |
Exercício 17 . Um corpo de NÍVEL DE DIFICULDADE: Regular. |
Resolução 17 . Dados Em qualquer ponto do percurso em uma oscilação, a energia total do corpo é a soma da energia cinética com a energia potencial do corpo naquele ponto, ou seja: Pretende-se saber qual é a velocidade do corpo no ponto onde a energia cinética é o dobro da energia potencial,ou seja: Substituindo a equação 2 na equação 1, temos: Substituindo as energias cinéticas e total pelos seus equivalentes, obtemos: Isolando a velocidade, obtemos: |
Exercício 18 . Um corpo caindo de uma altura de NÍVEL DE DIFICULDADE: Complexo. |
Resolução 18 . Na figura ilustramos o sistema em 3 situações diferentes:
Vamos adoptar a posição da situação 3 como referencial de altura. De acordo com a ilustração do fenómeno é possível concluir que:
Usando a descrição acima, para a situação 1, a energia do sistema será: Para a situação 2, a energia do sistema será: Para a situação 3, a energia do sistema será: Sabemos que neste movimento apenas actuam as forças de gravida e elástica, que são ambas conservativas. Então, a energia mecânica deste sistema permanece constante: Obtemos a partir desta análise um sistema de 3 equações. Resolvendo-o, podemos obter todos os valores desconhecidos ( Substituindo os dados, obtemos: Em seguida, resolvemos a equação do segundo grau obtida pela fórmula resolvente ou por qualquer outro método conveniente. Obtemos os seguintes resultados: como sabemos, a amplitude não pode ser negativa, então o valor aceite para amplitude deste MHS é: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.