Luso Academia

Início » Posts tagged 'séries numéricas'

Tag Archives: séries numéricas

Cálculo I – Generalização às séries de algumas propriedades das somas finitas

— 8.2. Generalização às séries de algumas propriedades das somas finitas —

Teorema 73 Se {\displaystyle \sum_{n=p}^{+\infty} u_n} converge e {\alpha \in \mathbb{R}}, então também {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} converge e tem-se

\displaystyle   \sum_{n=p}^{+\infty} \alpha u_n = \alpha \sum_{n=p}^{+\infty} u_n \ \ \ \ \ (76)

Demonstração: Temos efectivamente

{\begin{aligned} \displaystyle \sum_{n=p}^{+\infty} \alpha u_n &= \lim_{m \rightarrow +\infty}\sum_{n=p}^m \alpha u_n \\ &= \lim_{m \rightarrow +\infty} \alpha \sum_{n=p}^m u_n \\ &= \alpha \lim_{m \rightarrow +\infty} \sum_{n=p}^m u_n \\ &= \alpha \sum_{n=p}^{+\infty} u_n \end{aligned}}

\Box

Corolário 74

Se {\alpha \neq 0} as séries {\displaystyle \sum_{n=p}^{+\infty} u_n} e {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} têm a mesma natureza.

Demonstração: Se {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} é convergente vem, pelo Teorema 73, que a série {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} também é convergente.

Reciprocamente, suponha-se que {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} é convergente. Então, pelo pelo Teorema 73, {\displaystyle \sum_{n=p}^{+\infty} \frac{1}{\alpha}\alpha u_n} também é convergente. Ou seja, {\displaystyle \sum_{n=p}^{+\infty} u_n} é convergente \Box

Para simplificação de linguagem vamos introduzir o símbolo {\leftrightarrow } como sendo equivalente à expressão “têm a mesma natureza”.

Assim quando escrevermos {\displaystyle \sum_{n=p}^{+\infty}\dfrac{5}{n} \leftrightarrow \sum_{n=p}^{+\infty}\dfrac{1}{n}} queremos dizer que as séries {\displaystyle \sum_{n=p}^{+\infty}\dfrac{5}{n}} e {\displaystyle \sum_{n=p}^{+\infty}\dfrac{1}{n}} têm a mesma natureza.

Teorema 75 Se {\displaystyle \sum_{n=p}^{+\infty} u_n} e {\displaystyle \sum_{n=p}^{+\infty} v_n} são ambas convergentes então também {\displaystyle \sum_{n=p}^{+\infty} (u_n+v_n)} é convergente e tem-se

\displaystyle   \sum_{n=p}^{+\infty} (u_n+v_n)=\sum_{n=p}^{+\infty} u_n+ \sum_{n=p}^{+\infty} v_n \ \ \ \ \ (77)

Demonstração: {\begin{aligned} \displaystyle \sum_{n=p}^{+\infty} (u_n+v_n) &= \lim_{m \rightarrow +\infty}\sum_{n=p}^m(u_n+v_n) \\ &= \lim_{m \rightarrow +\infty} \left( \sum_{n=p}^m u_n+ \sum_{n=p}^m v_n \right) \\ &=\lim_{m \rightarrow +\infty}\sum_{n=p}^m u_n+ \lim_{m \rightarrow +\infty}\sum_{n=p}^m v_n \\ &= \sum_{n=p}^{+\infty} u_n+ \sum_{n=p}^{+\infty} v_n \end{aligned}} \Box

Teorema 76 {Teorema da Mudança de Índice de Série} As séries {\displaystyle \sum_{n=p}^{+\infty} u_n} e {\displaystyle \sum_{n=0}^{+\infty} u_{n+p}} têm a mesma natureza e em caso de convergência a mesma soma.

\displaystyle   \sum_{n=p}^{+\infty} u_n = \sum_{n=0}^{+\infty} u_{n+p} \ \ \ \ \ (78)

Demonstração: Fica como um exercício para o leitor. \Box

Como aplicação do teorema anterior vamos calcular

\displaystyle  \sum_{n=p}^{+\infty} r^n

Onde temos que {|r|<1}.

Temos então

{\begin{aligned} \sum_{n=p}^{+\infty} r^n &= \sum_{n=0}^{+\infty} r^{n+p} \\ &= \sum_{n=0}^{+\infty} r^n\cdot r^p \\ &= r^p \sum_{n=0}^{+\infty} r^n \\ &= r^p \dfrac{1}{1-r} \end{aligned}}

Assim fica

\displaystyle  \sum_{n=p}^{+\infty} r^n=\frac{r^p}{1-p} \quad |r|<1

Teorema 77 Dada uma série {\sum_{n=p}^{+\infty} u_n}, um índice {k>p}, as séries {\sum_{n=p}^{+\infty} u_n} e {\sum_{n=k}^{+\infty} u_n} têm a mesma natureza, e em caso de convergência é válido

\displaystyle   \sum_{n=p}^{+\infty} u_n= \sum_{n=p}^{k-1} u_n+\sum_{n=k}^{+\infty} u_n \ \ \ \ \ (79)

Demonstração: Vamos apenas apresentar a ideia da demonstração e deixamos para o leitor a sua correcta formalização.

Sugerimos ao leitor começar a partir da identidade:

\displaystyle  \sum_{n=p}^m u_n= \sum_{n=p}^{k-1} u_n+\sum_{n=k}^m u_n

e tomar o limite {m \rightarrow +\infty} \Box

Utilizando a estenografia introduzida anteriormente podemos escrever:

\displaystyle  \sum_{n=k}^{+\infty} \leftrightarrow \sum_{n=p}^{+\infty} \quad \forall k>p

Podemos então dizer o seguinte:

A natureza de uma série não depende do valor do índice onde começa a série.

Cálculo I – Introdução às Séries Numéricas

— 8. Introdução às Séries Numéricas —

Tomemos os termos de uma sucessão {u_n} onde {n \geq p} para um certo {p}. Ou seja temos {u_p}, {u_{p+1}}, , {u_{p+2}}, …, , {u_n},…

Uma questão que podemos colocar de forma bastante natural é qual é o resultado da soma destes termos:

\displaystyle u_p+ u_{p+1}+ u_{p+2}+ \cdots + u_n+ \cdots =\sum_{n=p}^{+\infty} u_n

A soma que contém um número infinito de termos acima definida tem o nome de: série de termo geral {u_n}.

Seja {m \geq p}.

{\displaystyle \sum_{n=p}^m u_n = u_p+ u_{p+1}+\cdots + u_m}

Tomando o limite

\displaystyle \lim_{n \rightarrow +\infty} \sum_{n=p}^m u_n

podemos definir de forma matematicamente rigorosa o valor da soma da série.

\displaystyle \sum_{n=p}^{+\infty} u_n =\lim_{m \rightarrow +\infty} \sum_{n=p}^m u_n

Podemos ainda definir a sucessão das somas parciais de uma série, {S_m}

\displaystyle S_m=\sum_{n=p}^m u_n

e escrever

\displaystyle \sum_{n=p}^{+\infty} u_n =\lim_{m \rightarrow +\infty} S_m

Dizemos que a série converge se e só se {S_m} é convergente.

Após estas definições iniciais referentes à séries numéricas vamos olhar para um dos paradoxos de Zenão como motivação para a introdução da teoria das séries numéricas.

Imaginemos que temos um corpo que vai percorrer uma distância de 2 metros tendo uma velocidade constante de {1 m/s}.

Se alguém nos perguntar qual será o intervalo de tempo necessário para percorrer uma distância de 2 metros tendo uma velocidade de 1 {m/s} não precisamos de ser grandes físicos para responder que o tempo total será de 2 segundos.

No entanto sabemos que o corpo em questão antes de percorrer a totalidade do seu percurso terá que percorrer antes de mais a sua metade. E antes de percorrera metade terá que percorrer a metade da metade. E assim sucessivamente. A expressão que permitirá expressar a soma dos intervalos de tempo referentes às distâncias parciais face à distância total é:

\displaystyle T=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots +\frac{1}{2^n}+\cdots

Na altura em que este paradoxo foi proposto a teoria matemática não era tão avançada como é hoje em dia e questão de qual seria o resultado desta soma era também uma questão de debate filosófico.

Assim sendo a resposta a esta questão tinha duas possibilidades.

Por um lado, Zenão argumenta que o resultado da soma {\displaystyle \sum_{k=0}^{+\infty}\frac{1}{2^n}} era infinito pois estávamos a somar um número infinito de parcelas que são sempre maior do que {0}, e por outro lado toda a gente sabia que do ponto de vista experimental a resposta deveria ser {2 \, s}.

É precisamente esta tensão entre as duas respostas que dá o nome a este argumento de um paradoxo. Por um lado nós sabemos qual é a resposta correcta, mas não somos capazes de providenciar um argumento que a justifique de uma forma matematicamente rigorosa.

Definição 49 Uma série geométrica de razão {r} é definida através da seguinte expressão:

\displaystyle \sum_{n=0}^{+\infty} r^n \ \ \ \ \ (73)

Para as series geométricas é válido o seguinte:

{\begin{aligned} \displaystyle \sum_{n=0}^{+\infty} r^n &= \lim_{m \rightarrow \infty} \sum_{n=0}^m r^n \\ &= \lim_{m \rightarrow \infty} \dfrac{1- r^{m+1}}{1-r} \end{aligned}}

Se {|r|<1} vem que {r^{m+1}\rightarrow 0} quando {m \rightarrow +\infty}.

Assim vem que

\displaystyle \lim_{m \rightarrow \infty} \frac{1- r^{m+1}}{1-r}= \frac{1}{1-r}

Assim podemos escrever com todo o rigor matemático

\displaystyle \sum_{n=0}^{+\infty} r^n= \frac{1}{1-r}

Caso se tenha {|r|>1} a série diverge.

Voltando então ao paradoxo de Zenão e utilizando este simples resultado derivado por nós vem que:

{\begin{aligned} \displaystyle \sum_{n=0}^{+\infty}\dfrac{1}{2^n} &= \left(\dfrac{1}{2} \right)^n \\ &= \dfrac{1}{1-1/2}\\ &= \dfrac{1}{1/2} \\ &=2 \end{aligned}}

Que é a resposta que nós sabemos estar correcta!

%d bloggers like this: