Luso Academia

Início » Posts tagged 'Resolvido' (Página 2)

Tag Archives: Resolvido

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 5)

Exercício 20 Uma chita pode acelerar de {0} a {96 \ km} em {2 \ s}, enquanto um carro, em média atinge a mesma velocidade final em {4,5 \ s}. Calcular as acelerações média dos dois. NÍVEL DE DIFICULDADE: Elemntar.
Resolução 20 .

A conversão de {96 \ km} para {m/s}, é feita pela regra de 3 simples conforme os exercícios anteriores.

Para a Chita, temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 2 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{2}=13,4 \ m/s^2

Para o carro,temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 4,5 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{4,5} = 5,9 \ m/s^2

.

Exercício 21 Um móvel fazendo a trajectória rectilínea {A-B-C}, tem a velocidade dada no gráfico ao lado.

Determinar:

  1. A velocidade média deste movimento.
  2. A aceleração média do mesmo.

NÍVEL DE DIFICULDADE: Regular.

Resolução 21 .

Diante de um problema gráfico ({v\cdot t}), é válido lembrar que área de baixo da curva determina o espaço total percorrido pelo móvel. No gráfico {v\cdot t}, a inclinação da recta, determina à aceleração.

  1. Para determinar a velocidade média, precisamos conhecer o deslocamento total e o tempo total. O tempo pode ser obtido directamente no gráfico. Para o deslocamento, ele deve ser calculado. Podemos usar dois raciocínios: o calculo da área ou a determinação dos parâmetros cinemáticos deste movimento. Para efeitos de familiarização, dado que temos dois tempos de movimentos ( Um MRUV acelerado de A para B e um MRUV retardado de B para C), vamos usar os dois métodos. Vamos usar a determinação de parâmetros para o movimento de A para B e vamos usar o cálculo de área de B para C. Em qualquer dos casos, os dois métodos são válidos. Cabe a quem resolve escolher.
    1. Determinando a aceleração de {A\longrightarrow B} (Determinação dos parâmetros):

      \displaystyle \left.\begin{array}{cccccccc} t_o = 0 \ s, v_o = 20 \ m/s\\ t= 40 \ s, v = 60 \ m/s\\ \end{array}\right\} \Rightarrow a = \frac{\Delta v}{\Delta t} = \frac{60 - 20}{40 - 0} = 0,5 \ m/s^2

    2. Determinando do correspondente deslocamento {A\longrightarrow B}:

      \displaystyle s = s_o + v_o\cdot t + \frac{1}{2}a\cdot t^2

      \displaystyle s = (20)(40) + \frac{1}{2}(0,5)(40)^2

      \displaystyle s = 1200 \ m

    3. Determinando o espaço percorrido {B\longrightarrow C} (cálculo de área):

      \displaystyle s_{\Delta} = Area = \frac{20\cdot 40}{2} = 600 \ m

    4. Neste caso, o deslocamento total é:

      \displaystyle \Delta s = 1200 + 600 = 1800 \ m

    5. Logo, a velocidade média será:

      \displaystyle v_{med} = \frac{\Delta s}{\Delta t} = \frac{1800}{60} = 30 \ m/s

  2. Aceleração média.

    \displaystyle a_{med} = \frac{v_{final}-v_{0}}{\Delta t} = \frac{0-20}{60} \approx -0,33 \ m/s^2

Exercício 22 Uma pessoa caminha {100 \ m} em {12 \ s} numa certa direcção e depois caminha na direção oposta passando {50 \ m} durante {30 \ s}. Calcule (a) a velocidade média definida pelo caminho percorrido e (b) a velocidade média definida pelo deslocamento. NÍVEL DE DIFICULDADE: Regular.
Resolução 22 .

Para o problema em questão, devemos entender a diferença entre deslocamento e distância percorrida. O deslocamento é o vector que une a posição inicial à posição final de um móvel, sem se importar pelo trajecto do mesmo. O seu modulo equivale a distancia entre a origem e o destino do móvel. A distancia percorrida é o somatório escalar de todo o caminho percorrido pelo móvel, levando em conta a sua trajectoria e eventuais mudanças de direcção.

Na figura, observamos que o móvel sai da posição {x_1}, vai para a posição {x_2} e depois vai (em sentido oposto) para a posição {x_3}. Se tomarmos {x_1=0}, então {x_2=100 \ m} e {x_3=50 m} (recuando 50 m a partir de {x_2}).

Neste caso o deslocamento será {\Delta x= x_3 - x_1 = \ 50 - 0= \ 50m}.

A distancia percorrida será: {d= \ d_1+d_2= \ 100+50= \ 150 \ m}.

  • A velocidade média definida pelo caminho percorrido será:

    \displaystyle v_{med} = \dfrac{d}{\Delta t} = \dfrac{150}{30 + 12}

    \displaystyle v_{med} = 3,75 \ m/s

  • A velocidade média definida pelo deslocamento será:

    \displaystyle v_{med} = \dfrac{\Delta x}{\Delta t} = \dfrac{50}{30+12}

    \displaystyle v_{med} \approx 1,19 \ m/s

.. Note que é a duração de todo o movimento, e como o tempo não recua, então sempre {\Delta t = \ 30+12= \ 42 \ s}. Estes tempos refere-se a intervalos de tempo, por isso somamos. Se fossem instantes de tempo, deveríamos subtrair.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)

Exercício 13 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Dados .

{ v= \dfrac {5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \cdot t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \cdot t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \cdot t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s} é:

\displaystyle x= 5 + 2,5 \cdot 25= 67,5 \ m

\displaystyle x=67,5 \ m

Exercício 17 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 17 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \dfrac {\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \dfrac {\Delta s}{v}

Substituindo os dados na fórmula anterior, obtemos:

\displaystyle \Delta t = \dfrac {10,000 \ m}{1,5 \ m/s} = 6,66 \cdot 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \cdot 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h \rightarrow 3600 \ s \\ x \rightarrow 6,66 \cdot 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 3600 \ s= 1 \ h \cdot 6,66 \cdot 10^3 \ s

\displaystyle \Rightarrow x = \dfrac {1 \ h \cdot 6,66 \cdot 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante {t_1} está {x_1 = 3,0\cdot 10^{12} \ m}, em relação ao sol. Um ano depois, está em {x_2 = 2,1\cdot 10^{12} \ m}. Achar o seu deslocamento e a sua velocidade média.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 19 .

Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal.

\displaystyle Deslocamento

\displaystyle \Delta x = x_1 - x_2

\displaystyle \Delta x = 3,0\cdot 10^{12} - 2,1\cdot 10^{12}

\displaystyle \Delta x = 0,9\cdot 10^{12} \ m

\displaystyle \Delta x = 9,0\cdot 10^{8} \ km

\displaystyle Intervalo \ de \ tempo

\displaystyle \Delta t = 1 \ ano = 365 \ dia

\displaystyle \Delta t = 8760 \ h

A velocidade média será:

\displaystyle v_{med} = \frac{\Delta x}{\Delta t} = \frac{9,0\cdot 10^8 \ km}{8760 \ h}

\displaystyle v_{med} = 1,02\cdot 10^5 \ km/h

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  • Deixe a sua interacção nos comentários deste Post;
  • Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  • Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação (Parte 2)

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 4 Dois trens de pulso de certa radiação electromagnética são criados simultaneamente, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com comprimento de {L_1 = \ 125 \ m} e {L_2 = \ 70 \ m}. O trem de pulso 1 passa pelo material de índice de refração {n_1}. O trem de pulso 2 passa pelo material de índice {n_2}.

  1. Sendo que a parte externa é o ar, e { n_1 = \ 1,5}, qual deverá ser o valor de {n_2} para que os pulsos cheguem ao mesmo tempo na tela.
  2. Qual é a diferença entre o tempo de chegada dos dois pulsos no caso em que {n_2 = \ 1,5}.

NÍVEL DE DIFICULDADE: Regular.

 

Resolução 4

    1. .
  1. Para que os trens de pulsos das ondas cheguem na tela ao mesmo tempo é os caminhos ópticos sejam iguais. Como temos 3 materiais, é necessário apenas comparar o trajecto aonde há diferença de índices de refração. Neste caso, o trem pulso 1 passa pelo material de índice de refração {n_1}. Analisaremos o trajecto de B-E. O trem de pulso 2 passa pelo material de índice {n_2} e depois passa por um percurso de ar, até chegar ao ponto D que está alinhado com o ponto E. Analisaremos o trajecto B-C-D.

    A condição para que cheguem ao mesmo tempo é que os caminhos ópticos sejam iguais. Note que o caminho óptico é defino pela relação:

    \displaystyle \textless AB \textgreater = \int_{A}^{B} n \cdot dl

    Para meios em que { n=const \ \Rightarrow \textless AB \textgreater = \bar{AB} \cdot n }.

    Então:

    \displaystyle \textless AE \textgreater = \textless BD \textgreater \Rightarrow \textless AE \textgreater = \textless BC \textgreater + \textless CD \textgreater

    \displaystyle \Rightarrow \bar{AE} n_1 = \bar{BC} n_2 + \bar{CD} n_{Ar}

    onde: {n_{Ar} = \ 1}. Logo, isolando {n_2}, obtemos:

    \displaystyle n_2= \frac{\bar{AE} n_1 - \bar{CD} n_{Ar}}{ \bar{BC}}= \frac{ L_1 n_1 - (L_1 - L_2 )}{ L_2}

    \displaystyle n_2 = \frac{ 125 \cdot 1,5 - (125 - 50 )}{ 50}=1,89

     

  2. Para este caso, o tempo de passagem no troço em análise será determinada pela equação do MRU, considerando a velocidade de propagação {c} e o caminho óptico..

    Neste caso, para o trem 1:

  3. \displaystyle c= \frac{ \textless AE \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{\bar{AE} n_1}{c}= \frac{125*1,5}{3\cdot10^8}= \frac{125*1,5}{3\cdot10^8}=6,25 \cdot 10^{7} s

    Para o trem 2:

    \displaystyle c= \frac{ \textless BD \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless BC \textgreater + \textless CD \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{L_2 n_2 + (L_1 - L_2) n_{Ar} }{c}= \frac{70 \cdot 1,5 + (150 - 70) \cdot 1}{3 \cdot 10^8} =5,33 \cdot 10^{7} s

    Neste caso, diferença de tempos é:

    \displaystyle |t_2 - t_1 |= | 6,25 \cdot 10^{7} - 5,33 \cdot 10^{7} | = 0,92 \cdot 10^{7} s

    Como a seguir aos pontos D e E o material é comum aos dois trens de pulsos, então esta diferença mantém-se até o final.

Exercício 5 Na figura a seguir, dois pulsos electromagnéticos são criados em simultâneo, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com índice de refração {n_{1} = \ 1,4; \ n_{2} = \ \ 1,7; \ n_{3} = \ \ 1,95; \ n_{4} = \ \ n_{5} = \ \ 1,2; \ n_{6} = \ \ 1; \ n_{7} = \ \ 1,3}.O valor de L é 25 m.Qual pulso chegará primeiro e qual é a diferença entre o tempo de chegada dos dois pulsos?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 5 \vspace{0,3cm}

Para não termos de calcular o tempo em cada porção, podemos usar o conceito de caminho óptico. Neste conceito, em vez de se considerar que o índice de refração afecta a velocidade, ele será visto como afectando apenas o percurso. Pelo que, podemos considerar que a luz sempre se propaga com a mesma velocidade {c}. Neste caso, temos apenas de calcular os dois caminhos ópticos e depois calcular os temos.

Para o pulso 1:

\displaystyle \textless l_1 \textgreater = L \cdot n_1 +L \cdot n_2 + L \cdot n_3 + L \cdot n_4 = \ L \cdot (n_1 + n_2 + n_3 + n_4)

\displaystyle \Rightarrow \textless l_1 \textgreater = \ 25 \cdot (1,4 + 1,7 + 1,95 + 1,2)=156,25 \ m

Neste caso, o tempo será obtido a seguir:

\displaystyle c= \frac{ \textless l_1 \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless l_1 \textgreater }{c}= \frac{156,25}{3\cdot10^8}=5,21 \cdot 10^{7} s

Para o pulso 2:

\displaystyle \textless l_2 \textgreater = 2L \cdot n_5 +L \cdot n_6 + L \cdot n_7 = \ L \cdot (2 n_5 + n_6 + n_7)

\displaystyle \Rightarrow \textless l_2 \textgreater = \ 25 \cdot (2 \cdot 1,2 + 1 + 1,3)=117,5 \ m

Neste caso, o tempo deste pulso será obtido a seguir:

\displaystyle c= \frac{ \textless BD \textgreater }{t_2} \Rightarrow t_2 = \frac{ \textless l_2 \textgreater }{c} = \frac{117,5}{3 \cdot 10^8} =3,92 \cdot 10^{7} s

Como a seguir a este trecho, o material é comum aos dois pulsos, então esta diferença mantém-se até o final.

Neste caso, diferença de tempos é:

\displaystyle |t_2 - t_1 |= | 3,92 \cdot 10^{7} - 5,21 \cdot 10^{7}| = 1.29 \cdot 10^{7} s

Como {t_1 \textgreater t_2 }, significa que o pulso 2 leva menos tempo a percorrer o trecho. Portanto, o pulso 2 chega primeiro.

— 1.2. Exercícios sobre Energia e Potência da Radiação —

Exercício 6 Uma onda electromagnética de frente plana de intensidade de {6 \ W/m^2} inside sobre uma superfície totalmente refletora de {40 \ cm^2} de área, posicionado perpendicularmente à direcção de propagação da onda.

Determine a força que a onda exerce sobre esta superfície.NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Quando uma OEM incide sobre uma superfície totalmente reflectora como o espelho, sua pressão de radiação será:

\displaystyle P_r = \ \frac{2I}{c} \ \ \ \ \ (3)

Por definição, a pressão é a força por unidade de área:

\displaystyle P = \ \frac{F}{A} \ \ \ \ \ (4)

Então:

\displaystyle P_r = \ \frac{2I}{c} \Rightarrow \frac{F}{A} = \ \frac{2I}{c} \Rightarrow F = \ \frac{2AI}{c}

Substituindo:

  • \displaystyle F = \ \frac{2 \cdot 40 \cdot 10^{-4} \cdot 6}{3 \cdot 10^8} = \ 1,6 \cdot 10^{-10} N

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 1 Uma onda electromagnética com frequência de 65 Hz desloca-se em um material magnético isolante que possui constante dieléctrica relativa é igual à 3,64 e a permeabilidade magnética relativa é igual à 5,18 nessa frequência. o campo eléctrico possui amplitude de {7,2 \cdot 10^{-3} \ V/m}.

  1. Calcule a velocidade de propagação da onda?
  2. Qual é o comprimento de onda?
  3. Qual é a amplitude do campo magnético?NÍVEL DE DIFICULDADE: Regular.
Resolução 1

Dados

{f = \ 65 Hz}

{\varepsilon_r = \ 3,64}

{\mu_r = \ 5,18}

{E_0 = \ 7,2 \cdot 10^{-12} \ v/m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\Pi \cdot 10^{-7} \ Wb/Am}

{\textbf{a)}v-? \ \ textbf{b)} \lambda-? \ \textbf{c)}H_0-?}

  • {v-?}Conhecemos a equação duma onda electromagnética que é:

    {\frac{\partial ^2B}{\partial t^2} = \ \frac{1}{\mu \varepsilon} \cdot \frac{\partial ^2B}{\partial x^2}}, onde {\frac{1}{\mu \varepsilon} = \ v^2} é a velocidade de propagação da onda.

\displaystyle v^2 = \ \frac{1}{\mu \ \varepsilon} \Rightarrow v = \ \sqrt{\frac{1}{\mu \varepsilon}}

{\mu} e {\varepsilon} são as constantes magnéticas e eléctricas do meio, respectivamente.

A relação entre estas e as constantes magnéticas e eléctricas relativa é a seguinte:

{\mu = \ \mu_0 \mu_r} e {\varepsilon = \ \varepsilon_0 \varepsilon_r}.

Então a velocidade de propagação da onda será:

{v = \ \frac{1}{\sqrt{\mu \varepsilon}} = \ \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}}}.

Sabe-se que:

\displaystyle c = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \ m/s

Logo:

\displaystyle v = \ \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot c = \ \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \ \frac{3 \cdot 10^8 \ m/s}{\sqrt{5,18 \cdot 3,64}} = \ 0,7 \cdot 10^8 \ m/s

  1. {\lambda-?}A onda electromagnética em questão é uma onda sinusoidal e periódica que pode ser expressa em termos dos seus campos eléctricos e magnéticos da seguinte forma:

    \displaystyle \overrightarrow {E}(x,t) = \ E_0 \cdot \cos(\omega t+ Kx) \overrightarrow{j}

    O comprimento de onde é

    \displaystyle \overrightarrow{B}(x,t) = \ B_0 \cdot \cos(\omega t+ Kx) \overrightarrow{k}

    Para as ondas, a velocidade obedece a relação:

    {v = \ \dfrac{\lambda}{T}}, e sabemos que {T = \ \frac{1}{f}}

    \displaystyle \Rightarrow \lambda = \ \frac{v}{f}

    \displaystyle \Rightarrow \lambda = \ \frac{0,7 \cdot 10^8 \ m/s}{65 \ s^{-1}} = \ 0,011 \cdot 10^8 \ m = \ 1,1 \cdot 10^6 \ m = \ 1100 \ Km

     

  2. {H_0-?}Utilizando a relação das amplitudes dos campos eléctricos e magnéticos na Onda Electromagnética (O.E.M.), temos:
  3. \displaystyle \sqrt{\varepsilon_0 \varepsilon_r} \cdot E_0 = \ \sqrt{\mu_0\mu_r} \cdot H_0

    \displaystyle H_0 = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r} E_0}{\sqrt{\mu}_0 \mu_r} = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r}}{\sqrt{\mu_0 \mu_r}} \cdot E_0

    \displaystyle \Rightarrow H_0 = \ \sqrt{\frac{\varepsilon_0 \varepsilon_r}{\mu_0 \mu_r}} \cdot E_0 = \ \sqrt{\frac{8,85 \cdot 10^{-12} \ \cdot 3,64}{4 \pi \cdot 10^{-7} \cdot 5,18}} \cdot 7,2 \cdot 10^{-3}

    \displaystyle \Rightarrow H_0 = \ 9,43 \cdot 10^{-3} \ A/m

Exercício 2 A potência irradiada pela antena de uma estação radiofónica é de 4 kW. A 4 km do transmissor foi colocada uma antena de recepção de 65 cm de comprimento. Qual é o valor de pico da f.e.m induzida por esse sinal entre as extremidades da antena receptora.

NÍVEL DE DIFICULDADE: Regular.

Resolução 2

Dados

{P = \ 4 \ kW = \ \ 4 \cdot 10^3 \ W }

{l = \ 65 \ cm = \ \ 0,65 \ m}

{r = \ 4Km = \ 4 \cdot 10^3 \ m}

{\varepsilon_{ind}-?} {\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\pi \cdot 10^{-7} \ Wb/Am}

{C = \ 3\cdot 10^8 \ m/s}

{\varepsilon = \ \oint \overrightarrow{E}d\overrightarrow{l}}

O módulo ou amplitude da f.e.m é:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l \ \ \ \ \ (1)

 

Precisamos antes determinar a amplitude do campo eléctrico {(E_0)}. Em seguida poderemos determinar {\varepsilon_ind}. A intensidade da onda é:

\displaystyle I = \ \frac{1}{2}E_0H_0 = \ \frac{1}{2}E_0(\frac{B_0}{\mu,_0}) = \ \frac{E,_0 B_0}{2\mu,_0}

Como {c = \ \frac{E_0}{B_0}\Rightarrow B_0 = \ \frac{E_0}{c}}. Então:

\displaystyle I = \ \frac{E_0 \frac{E_0}{c}}{2 \mu_0}\Rightarrow I = \ \frac{\frac{E_0}{c}}{2\mu_0} = \ \frac{E_0^2}{2c \cdot \mu_0}

Isolando {E_0}, temos:

\displaystyle E_0^2 = \ 2 \mu_0 c I \Rightarrow E_0 = \ \sqrt{2 \mu_0 c I}

A intensidade da OEM é : {I = \ \frac{P}{A} = \ \frac{P}{4 \pi r^2}}, então:

\displaystyle E_0 = \ \sqrt{2 \mu_0 c \frac{P}{4\pi \cdot r^2}} = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \ \ \ \ \ (2)

 

Substituindo esta formula na equação 1, temos:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \cdot l

\displaystyle \Rightarrow \varepsilon_{ind} = \ \frac{l}{r} \sqrt{\frac{ \mu \cdot c\cdot P}{2\pi}} = \frac{0,65 \ m}{4 \cdot 10^3 \ m} \sqrt{\dfrac{4 \pi 10^{-7} \cdot 3 \cdot 10^8 \cdot 4 \cdot 10^3}{2 \pi}}

\displaystyle \Rightarrow \varepsilon_ind = \ 0,0796 \ V

 

Exercício 3 Um condutor de resistência de 150 {\Omega} e conduz uma corrente contínua de 1 A, e emite ondas electromagnéticas, devido o aquecimento. O condutor tem 8 cm de comprimento e 0,9 nm de raio.

  1. Calcule o vector de Poynting na superfície do filamento?.
  2. Encontre as magnitudes dos campos eléctricos e magnéticos na superfície do filamento;.NÍVEL DE DIFICULDADE: Regular.
Resolução 3

Dados {R = \ 150 \Omega}

{i = \ 1A}

{l = \ 8 \ cm}

{r = \ 0,3 \ n m = \ 0,3 \cdot 10^{-3} \ m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4 \pi \cdot 10^{-7} \ Wb/Am}

{c = \ 3 \cdot 10^8 \ m/s}

.
OBS: Para distinguir intensidade da radiação da intensidade de corrente eléctrica, nomeamos {I} para Intensidade da Radiação e {i} para intensidade de corrente eléctrica.

  1. A intensidade duma O.E.M. corresponde ao valor médio do vector de poynting, assim:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| \Rightarrow |\overrightarrow{S}| = \ 2I

    A intensidade duma OEM tem relação com a potência desta onda e com a área:

    \displaystyle I = \ \frac{P}{A}

    Sabemos que a potência pode ser dada por :

    \displaystyle P = \ U \cdot i = \ (i \cdot R)i\Rightarrow P = \ i^2 \cdot R

    Para área, vamos considerar a área lateral. Modelamos o condutor como um cilindro. Então, a área lateral será: {A = \ 2 \pi \cdot r \cdot l}.

    Substituindo estas duas relações na fórmula da intensidade , temos:

    \displaystyle I = \ \frac{P}{A} = \ \frac{i^2 \cdot R}{2 \pi \cdot r \cdot l}

    Substituindo na equação do módulo vector de Poyting, obtemos:

    \displaystyle |\overrightarrow{S}| = \ 2I = \ \frac{2R \cdot i^2}{2 \pi \cdot r \cdot l} = \ \frac{2 \cdot 150 \ \Omega \cdot (1 A)^2}{2 \pi \cdot 0,9 \cdot 10^{-9} \cdot 8 \cdot 10^{-2}} = \ 1989,4 \cdot 10^3 \ W/m^2

     

  2. Sabemos que para as O.E.M.:

    \displaystyle I = \ \frac{1}{2}E_0H_0

    Mas {c = \ \frac{E_0}{B_0} \Rightarrow B_0 = \ \frac{E_0}{c}} e {H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{\mu_0 \cdot C}}

    Então:

    \displaystyle I = \ \frac{1}{2}E_0 \cdot \frac{E_0}{\mu_0 \cdot c} = \ \frac{E_0^2}{2c \cdot \mu_0}

    . Isolando {E_0} nesta equação anterior, obtemos :

    \displaystyle E_0^2 = \ 2c \cdot \mu_0 \cdot I \Rightarrow E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I}

    Já sabemos que a intensidade é:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| = \ \frac{1}{2} \cdot 1989,4 \cdot 10^3 \ W/m^2 = \ 994,7 \cdot 10^3 \ W/m^2

    Logo a amplitude do vector campo magnético será:

    \displaystyle E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I} = \ \sqrt{2 \cdot 3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7} \cdot 994,7 \cdot 10^3}

    \displaystyle E_0 = \ 27,386 \cdot 10^3 \ V/m

    Então, a intensidade do campo magnético é:

    \displaystyle H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{c \cdot \mu_0} = \ \frac{27,386 \cdot 10^3}{3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7}} = 72,64 \ A/m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 2)

Exercício 5 Converter para o SI s seguintes unidades:

  1. { 10 \ km/s }.
  2. { 20 \ polegadas }.
  3. { 25 \ km/h^2 }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 5 .

Para converter-mos no SI, vamos utilizar o sistema de “3 simples”.

  1. –    { \dfrac { 10 \ km}{s}\rightarrow \dfrac {m}{s} }Neste Caso, temos de converter apenas o numerador, de {km} para {m}.

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 10 \ km \longrightarrow x

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 10 \ km

    \displaystyle x = 10000 \ m

    Quer dizer que {10 \ km = 10000 \ m} logo, {10 \ km/s } no Sistema Internacional equivale a {10000 \ m/s }.

    .

  2. –      { 20 \ polegadas \rightarrow m }Sabemos que: { 1 \ polegada \approx 0,025 \ m } Então, usando o sistema de “3 simples”

    \displaystyle 1 \ polegada \longrightarrow 0,025 \ m

    \displaystyle 20 \ polegadas \longrightarrow x

    fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ polegada = 0,025 \ mc \cdot 20 \ polegadas

    \displaystyle x = 0,5 \ m

    Quer dizer que {20 \ polegadas} no Sistema Internacional equivale a {0,5 \ m }.

    .

  3. –    { \dfrac {25 \ km}{h^2} \rightarrow \dfrac {m}{s^2}}.Vamos começar por converter {km} em {m} e depois {h} em {s}, então: {2}

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 25 \ km \longrightarrow x

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 25 \ km

    \displaystyle x = 25000 \ m

    \displaystyle 1 \ h \longrightarrow 60 \ min

    \displaystyle 1 \ min \longrightarrow 60 \ s

    \displaystyle 1 \ h = 60 \times 60 \ s = 3600 \ s

    \displaystyle (1 \ h)^2 = (3600 \ s)^2 = 12960000 \ s^2

    \displaystyle 1 \ h^2 = 12960000 \ s^2

    Vamos substituir as equações {25 \ km = 25000 \ m} e {1 \ h^2 = 12960000 \ s^2} na expressão inicial:

    \displaystyle 25 \ km/h^2 =\dfrac {25 \ km}{h^2} = \dfrac {25000 \ m}{ 12960000 \ s^2}

    \displaystyle = \dfrac{25000 \ m}{12960000 \ s^2} =0,0019 \ m/s^2

    Quer dizer que, no SI { \dfrac {25 \ km}{h^2} = 0,0019 \ m/s^2}.

Exercício 6 Numa partícula actuam 3 forças conforme indica a figura abaixo:

Determine a força resultante sabendo que {F_1 = 3 \ N, F_2 = 5 \ N, F_3 = 8 \ N  \ e  \  \alpha = 10^o}

NÍVEL DE DIFICULDADE: Regular.

Resolução 6 .

Para sabermos a força resultante, devemos encontrar as componentes das forças aplicadas nos eixos Ox e Oy. Como as Forças primeiramente devemos traçar as correspondestes das {F_1} e {F_3} são paralelas aos eixos Ox e Oy, respectivamente, elas só têm uma componente não nula, que corresponde ao eixo a que são paralelas. A componente no outro eixo é nula. Para da força {F_2}, devemos projecta-la nos eixos e calcular as componentes para cada eixo (Ox e Oy).

Calculamos as componentes usando as razões trigonométricas:

\displaystyle F_{2x} = F_2 \sin \alpha \ ; \ F_{2y} = F_2 \cos \alpha

\displaystyle F_{2x} = 0,86 \ N \ ; \ F_{2y} = 4,92 \ N

Vamos agora Fazemos então a soma vectorial das componentes Ox e Oy:

\displaystyle \vec{F_{Rx}} = \vec{F_1} + \vec{F_{2x}} \ ; \ F_{Rx} = F_1 - F_{2x} = 3 - 0,86 = 2,14 \ N

\displaystyle \vec{F_{Ry}} = \vec{F_{2y}} - \vec{F_3} \ ; \ F_{Ry} = F_{2y} - F_3 = 4,92 - 8 = -3,08 \ N

O módulo força resultante é dada pelo teorema de Pitágoras:

\displaystyle F_R = \sqrt{F_{Rx}^2 + F_{Ry}^2}

\displaystyle F_R = \sqrt{(2,14)^2 + (-3,08)^2} = \sqrt{14,066}

\displaystyle F_R = 3,75 \ N \approx 4 \ N

Exercício 7 Se as componentes da velocidade de um móvel são {v_x = 10 \ m/s}, {v_y = 5 \ m/s} e {v_z = 2v_x + 3v_y}.

Determine: o modulo deste vector velocidade.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 7 .

Dados

{v_x = 10 \ m/s}

{v_y = 5 \ m/s}

{v_z = 2v_x + 3v_y}

{v_z\rightarrow \ ? }

{|v| \rightarrow \ ? }

Para determinar o modulo do valor velocidade, primeiramente devemos determinar o valor da coordenada da velocidade em z ({v_z}), substituindo o valor das velocidades de {v_x} e {v_y} em {v_z}.

\displaystyle v_z = 2v_x + 3v_y \Rightarrow v_z = 2 \cdot 10 + 3 \cdot 5

\displaystyle v_z = 35 \ m/s

Neste caso, a velocidade será obtida de modo seguinte:

\displaystyle |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{10^2 + 5^2 + 35^2}

\displaystyle |\vec{v}| = \sqrt{100 + 25 + 1225} = \sqrt{1350}

\displaystyle |\vec{v}| = 36,74 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Carga e Forças Eléctricas (Parte 1)

— 1. Exercícios sobre Electrostática —

 

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 1 .

Uma esfera metálica carregada negativamente tem { -25 \ \mu C } quantos eletrões em excesso foram adicionados a esta esfera? ({ q_e=-1,6 \cdot 10 ^{19} \ C }).
NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

Dados .

{ q= -25 \ \mu5=-25 \cdot 10 ^{-6} \ 6 } .

{ q_e=-1,6 \cdot 10 ^{-19} \ 6 } .

{ n \rightarrow ? } .

. A carga total é dada por:

\displaystyle q=n \cdot q_c

Onde:

{q-} é a carga eléctrica total.

{n-} é o numero de electrões em excesso ou defeito.

{q_e}= é a carga eléctrica elementar

Neste caso, isolando {n}, obtemos:

\displaystyle q= n \cdot q_c \Rightarrow n= \frac{q}{q_c}= \frac{-25 \cdot 10 ^{-6} \ 6}{-1,6 \cdot 10 ^{-19} \ 6}

\displaystyle n= \frac{25 \cdot 10 ^{-6}}{1,6 \cdot 10 ^{-19}}

\displaystyle n=1562,5 \cdot 10^{11}

.

Neste caso a esfera tem {1562,5 \cdot 10^{11}} electrões.

Exercício 2 .

Qual é a força da interação entre o núcleo e o electrão de um átomo de Hidrogénio, se o raio atómico é de { 53 \ pm}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 2 .

Dados .
{ q_p= 1,6 \cdot 10 ^{-19} \ C } .

{ q_e= -1,6 \cdot 10 ^{-19} \ C } .

{ r= 53 \ pm = 53 \cdot 10 ^{-12} \ C} .

{ k \approx \ 9 \cdot 10 ^{9} \ N \cdot m^2/C^2 }

De acordo com a lei do coulomb temos:

\displaystyle \overrightarrow{F}=k \cdot \frac{q_1 \cdot q_2}{r^2} \overrightarrow{u_r}

Em módulo:

\displaystyle F=k \cdot \frac{|q_1| \cdot |q_2|}{r^2}

O átomo de Hidrogénio, no estado fundamental, tem contem duas cargas (um electrão e um protão) e a distância entre elas é igual ao raio da orbita. Então:

\displaystyle F=k\frac{ | q_e| \cdot |q_p | }{ r^2}= 9 \cdot 10 ^{9} \frac{( 1,6 \cdot 10 ^{-19} )^2}{( 53 \cdot 10 ^{-12})^2}

\displaystyle F= 8,2 \cdot 10 ^{-8} \ N

A força de interação é de { 8,2 \cdot 10 ^{-8} \ N }.

Exercício 3 Quando duas esferas(A e B), carregadas e condutoras, com respectivamente {10 \ nC } e {-5 \ nC} e inicialmente num,a distância d, uma da outra, apresentam uma força de {50 \ m N}. Se colocadas em contacto e separadas novamente à distância inicial, qual será a força e a natureza da mesma (actração ou repulsão)?

NÍVEL DE DIFICULDADE: regular.

Resolução 3 .

Dados .

{q_{dA}=10 \ nC= \ 10 \cdot 10^{-9} \ C }

{q_{dB}=-5 \ nC= \-5 \cdot 10^{-9} \ C}

{d=d_0=d_1}

{F_0=50 \ nN= \ 50 \cdot 10^{-3} \ N}

{F_{1}-?}

Natureza{-?} .

.
Se trata de duas situações, onde a distância inicial {(d_0) } é igual a distância final {(d_1)} logo: {d=d_0=d_1}.

.

Ao colocar as esferas juntas, a carga total será a soma das cargas de cada um deles. Como ambas são condutoras, ocorre transferência de electrões de um material para outro. Esta transferência cessa quando as cargas dos dois ficam, iguais. Ao separa-los, cada uma fica com a carga obtida do equilíbrio, que no caso, é igual a metade da carga resultante. Logo:

\displaystyle q_{1A}=q_{1B}=\frac{q_{A} + q_{B}}{2}=\frac{10 \ nC \ + \ (-5 \ nC)}{2}=\frac{5 \ nC)}{2}= \ 2,5 \ nC = \ 2,5 \cdot 10^{-9} \ C

.

No inicio (situação 0), a força de que actua entre as cargas é:

\displaystyle F_0=k \frac{|q_A| \cdot |q_B|}{d^2} \Rightarrow k=\frac{d^2 \cdot F_0}{2 \cdot |q_A| \cdot |q_B|} \ \ \ \ \ (1)

Após contacto, os valores das cargas mudam e consequentemente, a força muda. A força de que actua entre as cargas nesta situação 1 é:

\displaystyle F_{1}=k \frac{(|q_{0A}| \cdot |q_{0B}|}{d^2}= k\frac{|q_{0A}| \cdot |q_{0B}|}{d^2} \ \ \ \ \ (2)

Substituindo {k} da equação 1 na equação 2, temos:

\displaystyle F_{1}=\frac{d^2 \cdot F_0}{|q_A| \cdot |q_B|} \cdot \frac{|q_{0A}| \cdot |q_{0B}|}{d^2}

\displaystyle F_{1}=\frac{50 \cdot 10^{-3}}{|10 \cdot 10^{-9}| \cdot |-5 \cdot 10^{-9}|} \cdot \frac{ (2,5 \cdot 10^{-9} )^2}{1}

Nota: Simplificamos as distâncias, pois são iguais.

\displaystyle F_{1}=6,25 \cdot 10^{-3} \ N

\displaystyle F_{1}=6,25 \ mN

Sendo que as cargas são iguais, a natureza da Força será de Repulsão.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 3)

Exercício 12 .

O gráfico da velocidade em função do tempo de um MRUV é dado abaixo. Determine o deslocamento no intervalo de 0 a 4 Segundos.

NÍVEL DE DIFICULDADE: Regular.

Resolução 12 .

Para este caso, podemos determinar o deslocamento através de dois métodos.

  1. Usando a equação de Torricelli, através dos dados no gráfico acima:

    \displaystyle 2a \cdot \Delta s= v^2-v^2_0 \Rightarrow \Delta s =\frac{v^2-v^2_0}{2a} \ \ \ \ \ (10)

    Do gráfico temos os seguintes dados:{ v_0= 20 \ m/s } e {v= 40 \ m/s }.No MRUV a aceleração média é igual a aceleração instantânea. Então, a aceleração é dada por:{ a=\frac{\Delta v}{\Delta t}=\frac{v-v_0}{t-t_0} }

    No intervalo de {0} `a { 4 \ s } : { a= \frac{40-20}{4-2} \cdot \frac{m/s}{s}=\frac{20}{4} \cdot m/s^2 }

    \displaystyle a=5 \ m/s^2

    Substituindo os dados na equação 10, obtemos:

    \displaystyle \Delta s=\frac{v^2-v^2_0}{2a}=\frac{(40)^2 - (20)^2}{2 \cdot 5}=120 \ m \Rightarrow \Delta s = 120 \ m

  2. O outro método é usando o calculo de área. Sabemos que a área debaixo da curva da velocidade em função do tempo é numericamente igual ao deslocamento (ver definição velocidade e interpretação geométrica da derivada). Para o nosso caso, a área debaixo da curva é a área de um trapézio, cujas bases maior e menor tem valores no eixo da velocidade (vertical) e a altura tem valor no eixo do tempo. Sendo assim:

    \displaystyle \Delta s = A_{Trapezio} = \frac{(B+b)}{2} \cdot h = \frac{(40+20)}{2} \cdot 4=120 m

    Logo, temos:{ \Delta s = 120 \ m }

Exercício 13 .

Um movimento descrito pelo gráfico abaixo.

Descreva o tipo de movimento dos traços AB, BC, CD e DE.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Este gráfico apresenta a variação da velocidade em função do tempo. Neste gráfico, o tipo de movimento é definido pela forma da linha do gráfico.

Se a linha do gráfico for uma recta oblíqua, então trata-se de um caso de MRUV. Será um MRUV acelerado se for inclinada com declive positivo e velocidade positiva ou com declive negativo e velocidade negativa. Será um MRUV retardado se for inclinada com declive positivo e velocidade negativa ou com declive negativo e velocidade positiva.

Se a linha for horizontal, a velocidade é constante (MRU). Este MRU pode ser progressivo (se a velocidade for positiva) ou retrógrado (se a velocidade for negativa).

  1. No traço AB (recta oblíqua): A velocidade é positiva e aumenta de { 10 \ m/s} à { 30 \ m/s } . Neste caso, a aceleração é constante e positiva neste mesmo intervalo, portanto, de A para B o movimento é um MRUV acelerado progressivo.
  2. No traço BC (Recta oblíqua): A velocidade é positiva e diminui de { 30 \ m/s} à { 0 }, a aceleração é negativa e constante no mesmo intervalo,portanto, de B para C o movimento é um MRUV retardado progressivo.
  3. No traço CD: A velocidade é negativa mas aumenta em módulo de { 0 } à { \approx -15 \ m/s} e a aceleração é constante e negativa no mesmo intervalo, portanto, de C para D o movimento é um MRUV acelerado retrógrado.
  4. No traço DE: A velocidade é negativa e constante ({\approx -15 \ m/s } , e a aceleração é nula no mesmo intervalo,portanto, o movimento é um MRU retrógrado.

.

Exercício 14 .

Dois móveis têm as seguintes equações do movimento.

  1. Móvel 1: { x_1=100+20 \ t }
  2. Móvel 2: { x_2=500-4 \ t^2 }

Determine a velocidade do móvel (2) no ponto de encontro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .

A equação do móvel(1) é uma equação do 1º grau, portanto o móvel em MRU. A equação do móvel (2) é uma equação do 2º grau, portanto o móvel (2) move-se em MRUV.

.

O objectivo é determinar a velocidade final do móvel (2) { v_2 } na posição de encontro (A).Entretanto, na posição de encontro (A) ambos os móveis ocupam a mesma posição final, isto é, { x_1=x_2 }.

Então, temos de determinar o instante de tempo em que os móveis estão na posição de encontro, para substituir este tempo na equação da velocidade.

Na posição de encontro:

\displaystyle x_1=x_2 \Rightarrow 100+20 \ t=500-4 \ t^2

Agrupando os termos semelhantes:

\displaystyle 4 \ t^2 +20 \ t +100-500=0

\displaystyle 4 \ t^2 +20 \ t -400=0

Factorizando o factor 4 na equação:

\displaystyle 4(t^2 + 5 \ t-100)=0

Então, pela lei do anulamento do produto:

\displaystyle t^2 + 5 \ t - 100= 4

Resolvendo a equação anterior com a fórmula de Bhaskara (ou fórmula resolvente) temos os seguintes dados:{ a=1 ; b=5 ; c=100 }.

\displaystyle t_{1,2}= \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}

Substituindo os dados na fórmula:

\displaystyle t_{1,2}= \frac{-5 \pm \sqrt{(5)^2 - 4 \cdot (1) \cdot (-100)}}{2 \cdot 1}

\displaystyle t_{1,2}= \frac{-5 \pm \sqrt{25 + 400}}{2}= \frac{-5 \pm \sqrt{425}}{2} = \frac{-5 \pm 20,615}{2}

Separando as partes:

\displaystyle t_1= \frac{-5+20,615}{2}= 7,807 \ s

\displaystyle t_2= \frac{-5 - 20,615}{2} = -12,807 \ s

Descartamos o { t_2 } pois ele é negativo. Neste caso, { t_{Enc}= \ 7,807 \ s }.

.

Tendo o tempo, podemos calcular a velocidade do móvel 2 neste instante. Por definição a velocidade:

\displaystyle v= \frac{dx}{dt}

Para o móvel (2),temos: { v_2= \frac{dx_2}{dt} } .

.

Substituindo a equação do movimento do móvel (2) , obtemos:

\displaystyle v_2= \frac{d(500-4 \ t^2)}{dt} = 0-8 \cdot t= -8 \ t

Portanto, durante este MRUV, a velocidade do móvel (2) é dada como: { v_2= -8 \ t } .

Para encontramos o valor numérico da velocidade no momento de encontro, devemos substituir o tempo pelo instante de encontro.

Substituindo {t} por { t_{Enc}}, obtemos: { v_2=-8 \ (t)= -8 \cdot 7,807=-62,456 \ m/s }

Portanto, a velocidade do móvel (2) na posição de encontro (A) é de : { v_2= -62,456 \ m/s }

Exercício 15 .

A velocidade inicial de um móvel é de { 10 \ km/h}. Após acelerado uniformemente, durante {10 \ s }, ganha uma velocidade de { 20 \ km /h}.

Determine a aceleração e a distância percorrida.

.

NÍVEL DE DIFICULDADE: Regular.

Resolução 15 .

Dados

,

{ v_0= 10 \ km/h } .

{ t_0=0 \ s } .

{ t=20 \ km/h } .

{ a \rightarrow ? } .

{ \Delta s \rightarrow ? }

Antes de a resolver, vamos converter as velocidades { v_0 } e v para as unidades do sistema internacional usando três simples.
Para: { v_0=10 \ km/h }

\displaystyle 36 \ km/h \rightarrow 10 \ m/s

\displaystyle 10 \ km/h \rightarrow v_0

Então:

\displaystyle v_0 \cdot 36 \ km/h= 10 \ km/h \cdot 10 \ m/s

\displaystyle \Rightarrow v_0= \frac{10 \ km/h \cdot 10 \ m/s}{36 \ km/h} =2,77 \ m/s

Para a velocidade final, fazemos o mesmo procedimento. Obtemos:

\displaystyle v=5,55 \ m/s

Com as unidades já convertidas, podemos determinar a aceleração.

Para o MRUV, a aceleração é dada por:

\displaystyle a= \frac{\Delta v}{\Delta t} = \frac{v-v_0}{t-t_0}

Substituindo os dados, obtemos:

\displaystyle a= \frac{5,55-2,77}{10-0}=0,278 \ m/s^2

A distância percorrida pode ser determinada pela equação de movimento do MRUV ou pela equação de Torricelli.

Usando a Equação de Torricelli:

\displaystyle v^2=v^2_0+2a \cdot \Delta s

Isolando { \Delta s } teremos:

\displaystyle v^2-v^2_0=2 \cdot a \cdot \Delta s \Rightarrow \Delta s= \frac{v^2-v^2_0}{2 \cdot a}

Substituindo os dados:

\displaystyle \Delta s=\frac{(5,55)^2-(2,77)^2}{2 \cdot 0,278}=41,6 \ m

Portanto a distância percorrida é:

\displaystyle \Delta s=41,6 \ m

A aceleração do móvel é:

\displaystyle a=0,278 \ m/s^2

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 2)

Exercício 8 .

O gráfico ilustra um MRU. Determine a velocidade média deste movimento?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8 .

Para o caso de MRU a velocidade média é dada, por definição como sendo:

\displaystyle v_m = \frac{\Delta x}{\Delta t} = \frac{x-x_0}{t-t_0} \ \ \ \ \ (6)

Do gráfico temos os seguintes dados:

\displaystyle \left\{\begin{array}{ccccccccc} t_0 = 0 \ s : x_0 = 10 \ m \\ t = 5 \ s : x = 40 \ m \\ \end{array}\right.

Substituindo estes valores em (1):

\displaystyle v_m =\frac{40 \ m-10 \ m}{5 \ s- 0 \ s}=\frac{30}{5}\times\frac{m}{s}

\displaystyle v_m= 6 \ m/s

Exercício 9 .

A equação de um MRU é:

\displaystyle x=10+20 \ t \ (SI)

Determine o deslocamento no intervalo de { 4 \ s \leq t \leq 7 \ s }

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Nos casos de MRU sem mudança de direcção, o deslocamento, em módulo é igual a distância percorrida no intervalo {\Delta t } definido.
Para determinarmos o deslocamento, precisamos da posição inicial e final.

No intervalo

\displaystyle 4 \ s \leq t \leq 7 \

A posição inicial é obtida da seguinte forma:

\displaystyle t= 4 \ s \Rightarrow x_0= 10+20 \times t_0=10+20 \times 40

Obtemos:

\displaystyle x_0=90 \ m

A posição final é obtida da seguinte forma:

\displaystyle t= 7 \ s \Rightarrow x=10+20 \times t=10+20 \times 7

\displaystyle x=150 \ m

O deslocamento é :

\displaystyle \vert \overrightarrow{\Delta s} \vert= \Delta x=x - x_0 =150 \ m -90 \ m

\displaystyle \Delta x = 60 \ m

Exercício 10 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .
NÍVEL DE DIFICULDADE: Elementar.

Resolução 10 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \frac{\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \frac{\Delta s}{v}

Substituindo os dados na formula anterior, obtemos:

\displaystyle \Delta t = \frac{10,000 \ m}{1,5 \ m/s} = 6,66 \times 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \times 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h\rightarrow \rightarrow 3600 \ s \\ x \rightarrow \rightarrow 6,66 \times 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \times 3600 \ s= 1 \ h \times6,66 \times 10^3 \ s

\displaystyle \Rightarrow x = \frac{1 \ h \times 6,66 \times 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 11 .

A equação horária de um móvel é { x = 100+50 \times t } . Qual séria a sua equação horária se a posição fosse dada em Km e o tempo em h?..

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Dados

{ x = 100+50 \times t } .

A equação horária, na forma escalar é dada como:

\displaystyle x= x_0+ v \times t \ \ \ \ \ (8)

A equação horária do móvel é:

\displaystyle x= 100+50 \times t \ \ \ \ \ (9)

Ao comparar-mos ambas equações, obtemos os seguintes dados:

\displaystyle \begin{array}{ccccccccc} x_0=100 \ m \\ v=50 \ m/s \\ \end{array}

Para escrever-mos a equação horária,com a posição dada em Km e o tempo dado em h, devemos transformar { x_0 = 100 \ m} e {v =50 \ m/s } nas unidades respectivas, usando o sistema (regra) de três simples.

Então temos:

\displaystyle \begin{array}{ccccccccc} 1 \ km \rightarrow  1000 \ m \\ x_0 \rightarrow  100 \ m \\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x_0 \times 1000 \ m =1 \ km \times 100 \ m

\displaystyle \Rightarrow x_0=\frac{1 \ km \times 100 \ m}{1000 \ m} x_0=0.1 \ km

E:

\displaystyle 36\ km/h \rightarrow 10 \ m/s

\displaystyle v \rightarrow 50 \ m/s

Logo:{x_0=0,1 \ km } e { v=180 \ km/h }.

Então:

Substituindo estes valores em na equação horária do MRU, obtemos:{ x=0.1+180 \times t }.

Portanto, para a posição dada em km e tempo em h, temos a equação horária:

\displaystyle x=0.1+180 \times t

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 3)

— 1. Exercícios sobre Cinemática da Partícula —

— 1.1. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —

Exercício 1 Um homem realiza uma viagem de uma cidade para outra, para atender a um compromisso. A distância entre as cidade é de 300 km. O compromisso foi marcado para as 11h15min. O homem planeia conduzir o seu carro a 100 km/h e parte às 8h00 para ter algum tempo de sobra. Ele conduz a velocidade planeada durante os primeiros 100 km, mas, em seguida, um trecho é obrigado a reduzir a velocidade para 40 km/h durante 40 km. Qual é a menor velocidade que ele deve manter no resto da viagem para chegar a tempo?
NÍVEL DE DIFICULDADE: Regular .
Resolução 1

.

Trecho a:1º trecho percorrido,na qual {\triangle x = 100 \ km }.

Trecho b: 2º trecho, na qual {\triangle x = 40 \ km }.

Trecho c: trecho restante, na qual {\triangle x = 160 \ km }

Para que se calcule a velocidade necessária para percorrer o trecho c é necessário que se conheça o tempo restante. Para isso,devemos determinar os tempos gastos para percorrer a trechos a e b. Consideraremos MRU em todos trechos, pois estamos a usar parâmetros médios.

No trecho a:

\displaystyle \triangle x_{a} = v_{a}.t_{a}

Isolando o tempo e calculando:

\displaystyle t_{a} = \dfrac{\triangle x_{a}}{v_{a}} = 1h

No trecho b :

\displaystyle \triangle x_{b} = v_{b}.t_{b}

Isolando o tempo e calculando:

\displaystyle t_{b} = \dfrac{\triangle x_{b}}{v_{b}} = 1h

Como temos tempo em horas e em minutos, temos de reduzir a uma única unidade de tempo. Neste caso, vamos converter 15 minutos em horas.

Sabemos que:

\displaystyle 1h \longrightarrow 60min

\displaystyle x \longrightarrow 15min

Fazendo a multiplicação cruzada e isolando o {x}, obtemos:

\displaystyle x = \dfrac{1h.15min}{60min} = 0,25 \ h

Como o motorista partiu as 8h e tem que chegar as 11h e 15min,ou seja,11,25h,sendo que percorreu o conjunto do techo a e b por 2h, então, restam-lhe apenas 1h e 15min, ou seja 1,25h.

Então, para o trecho c teremos :

\displaystyle \triangle x_{c} = v_{c}.t_{c} \Rightarrow v_{c} =\dfrac{_{\triangle}x_{c}}{t_{c}} = 128 \ km/h

Exercício 2 A primeira metade da distância foi percorrida por um móvel com {v_{1}}. Do tempo restante, a primeira metade foi percorrida com a velocidade {v_{2}} e na segunda metade com a velocidade {v_{3}}, sendo que o tempo gasto em percorrer a 1{ª} e a 2{ª} metade, são iguais. Determinar a velocidade média em todo o percurso.
NÍVEL DE DIFICULDADE: Complexo .
Resolução 2 .

Sendo que : { t_{2} = \dfrac{t'}{2} \hspace{1cm} e\hspace{1cm} t_{3} = \dfrac{t'}{2}} {\hspace{1cm}} onde {t'} é o tempo restante após a 1ª parte e que : { \triangle x_{2} = \triangle x_{3}=\dfrac{\triangle x'}{2} =\dfrac{\triangle x}{2}}

{\triangle x'} é o trecho restante após a 1ª parte.

Então:{ \triangle x_{1} = \triangle x_{2} + \triangle x_3}.

Usando a definição de velocidade média para o troço 1, obtemos:

\displaystyle t_{1} = \dfrac{\triangle x_{1}}{v_{1}} = \dfrac{\triangle x_{2} + \triangle x_{3}}{v_{1}}

Os deslocamentos dos trechos 2 e 3 são:

\displaystyle \triangle x_{2} = v_{2}.t_{2}=v_{2}.\dfrac{t}{2}

\displaystyle \triangle x_{3} = v_{3}.t_{2}=v_{3}.\dfrac{t}{2}

Como os trechos 2 e 3 são percorridos durante o mesmo tempo, então a velocidade média é a média aritmética das velocidades. Neste caso, a velocidade média dos trechos 2 e 3 é:

\displaystyle v_{23} = \dfrac{v_2 + v_3}{2}

O deslocamento conjunto do trecho 2-3 é igual à primeira metade:

{\triangle x_{23}=\triangle x'=\triangle x_1=\dfrac{\triangle x}{2}}

A partir da equação da velocidade média para mais de um trecho,teremos :

\displaystyle v_{m} = \dfrac{\triangle x_{1}+\triangle x_{2}+\triangle x_{3}}{t_{1}+t_{2}+t_{3}}

Neste caso, teremos :

\displaystyle v_{m} = \dfrac{\triangle x_{1}+\triangle x_{23}}{t_{1}+t_{23}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 . \triangle x_{1}+\triangle x_{1}}{\dfrac{\triangle x_1}{v_1}+\dfrac{\triangle x_23}{v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 . \triangle x_{1}+}{\dfrac{\triangle x_1}{v_1}+\dfrac{\triangle x_1}{v_{23}}}

Factorizando e simplificando {\triangle x_{1}}, obtemos:

\displaystyle v_{m} = \dfrac{2 }{\dfrac{1}{v_1}+\dfrac{1}{v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 }{\dfrac{v_{23}+v_1}{v_1 . v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2. v_1 . v_{23}}{v_{23}+v_1}

Substituindo {v_{23}} pela formula de velocidade média no troço 2-3, obtemos:

\displaystyle \Rightarrow v_{m} = \dfrac{2 v_1 . \dfrac{ v_{2}+v_3}{2}}{\dfrac{v_{2}+v_3}{2}+v_1}

Simplificando as expressões, obtemos:

\displaystyle v_{m} = \dfrac{2 v_{1}(v_{2}+v_{3})}{2v_{1}+v_{2}+v_{3}}

Exercício 3 A equação do movimento de uma partícula ao longo do eixo OX é {x=t^{3}-6 \ t^{2}-15 \ t+40} (no SI). Determine: (a) o instante em que a velocidade se anula; (b) a posição e a distância percorrida pelo ponto material até ao instante em que v=0; (c) a aceleração do ponto material no mesmo instante.
NÍVEL DE DIFICULDADE: Elementar .
Resolução 3

  1. A posição da partícula é dada por:{ x \ = \ t^{3}-6 \ t^{2}-15 \ t+40}
    A velocidade é dada por: {v=\dfrac{dx}{dt} \Rightarrow v \ = \ 3 \ t^{2}-12 \ t-15}Portanto,quando a velocidade for nula,teremos as seguintes equações:

    \displaystyle 3 \ t^{2}-12 \ t-15=0

    Simplificando por 3, teremos:

    \displaystyle t^{2}-4 \ t-5=0

    Logo:

    \displaystyle \left\{\begin{array}{cccccc} t & = & 5 \ s, \textrm{Correcta}\\ t & = & -1 \ s, \textrm{Incorrecta}\\ \end{array}\right.

  2. Para obter a posição, substituímos o tempo da função horária pelo valor dado. Neste caso, a posição em {t=5 \ s} é:

    \displaystyle x_{f}=(5)^{3}-6.(5)^{2}-15.(5)+40

    \displaystyle \Rightarrow x_{f}=-60 \ m

    A posição no instante t=0s é:

    \displaystyle x_{i}=(0)^{3}-6.(0)^{2}-15.(0)+40

    \displaystyle \Rightarrow x_{i}=40 \ m

    A distância percorrida é dada por :

    \displaystyle \Delta x = |x_{f}-x_{xi}| \Rightarrow \Delta x = |-60-40| \Rightarrow\Delta = 100 \ m

  3. A aceleração instantânea é dada por:

    \displaystyle a=\dfrac{d^{2} x}{d t^{2}} \Rightarrow a=\dfrac{d{v}}{d{t}}

    Derivando a velocidade se obtém:

    \displaystyle a=6 \ t-12

    Logo, quando { t=5 \ s}, teremos :

    \displaystyle a=6.(5)-12 \Rightarrow a \ = \ 18 \ m/s^{2}

Exercício 4 Quando a luz verde de um semáforo acende, um condutor acelera uniformemente o seu veiculo durante 6 s em {2 \ m/s^{2}}. Em seguida ele passa a ter velocidade constante. No instante em que o carro começou a se mover, ele foi ultrapassado por uma motorizada movendo-se no mesmo sentido com a velocidade constante de 10 m/s. Após quanto tempo, os dois veículos encontrar-se-ão novamente?
NÍVEL DE DIFICULDADE: Complexo .
Resolução 4 .

Dados:

{a_{1A}=2 \ m/s^{2}}

{ t_{1A}= \ 6 \ s = t_{02}}

{ x_{01A}= \ 0 \ }

{ v_{0A}=0}

{ v_B=6 \ s}

{x_{0B}=0}

  • Neste Problema temos dois veículos A e B, mas o veiculo A não tem uma única equação de movimento, visto que inicialmente faz um MRUV, mas sem seguida faz um MRU. Então vamos usar os índices 1 e 2 para distinguir as duas partes do movimento do veiculo A. Para o veiculo B isto não é necessário.A Equação de movimento para o Veiculo A (condutor) :

Na 1ª Parte, em MRUV : { x_{1A}=\dfrac{1}{2}at^{2}}

Na 2ª parte (após os 6 s de MRUV), começa um MRU : {x_{2A} = x_{02A}+ v_{02A}.t}

A equação de movimento para a motorizada (Veiculo B) é a seguinte :

Na 1ª Parte em MRU {x _{B}=v_{B}.t}

Na 2ª parte ainda em MRU): {x_{B}=x_{0B2}+ v_{B}.t}

Calculando a posição e velocidade dos 2 após os primeiros 6 segundos, obtemos:

Para o veiculo A:

{x_{f1A}=\dfrac{1}{2}at^{2}=\dfrac{1}{2}.(2).(6)^{2}\Rightarrow x_{f1A}=36 \ m}

{v_{f1A}=v_{01A}+a_1.t \Rightarrow v_{f1A}=0+2.6=12 m/s}

Para o veiculo B:

{x_{f1B}=x_{01B}+v_{1B}.t \Rightarrow x_{f1B}=0+10.(6)\Rightarrow x_{f1B}=60 \ m}

Como o veiculo B faz MRU a velocidade é constante, logo:{v_{f1B}=v_{01B}=10 \ m/s}

Como podemos observar n figura, após o tempo {t_1=6 \ s} o condutor (A) ainda não alcançou a motorizada (B). Então para determinar a posição de encontro, vamos usar as equações da 2ª parte.

{x_{2A}=x_{02A}+v_{2A}.t \Rightarrow x_{2A}=36+12 \ t}

{x_{2B}=x_{02B}+v_{2B}.t \Rightarrow x_{2B}=60+10 \ t}

O encontro ocorre quando: {x_{2A}=x_{2B}}

\displaystyle \Rightarrow 36+12 \ t =60+10 \ t

Isolando o tempo, obtemos:

\displaystyle t = 12

Atenção que este 12 segundos é após o inicio da 2ª Parte (pois reiniciamos a analise dos movimentos no final da 1ª Parte). Considerando então os {6 \ s} de duração da primeira parte, temos:

\displaystyle t = \ 12+6 =18 \ s

Exercício 5 Partindo do repouso, um veiculo mantém uma aceleração de {4 \ m/s^{2}} durante {4 \ s}. Nos {10 \ s} seguintes ele tem um movimento rectilíneo uniforme. para travar, o veiculo passa a ter um movimento uniformemente retardado com aceleração de {8 \ m/s^{2}}, até parar. Fazer um gráfico da velocidade em função do tempo e mostrar que a área limitada pela curva e pelo eixo dos tempos é igual a distância total percorrida.
NÍVEL DE DIFICULDADE: Regular .
Resolução 5

Dados:

{x_{01}=0}

{v_{01}=0 \ m/s}

{a_{1}=4 \ m/s^{2}}

{t_{1}=4 \ s }

{x_{02}=x_{f2} \longrightarrow ?}

{v_{2}=v_{f1} \longrightarrow ?}

{t_{2}= 10 \ s}

{x_{03}=x_{f2} \longrightarrow ?}

{v_{03}=v_{f2}}

{a_{3}=8 \ m/s^{2}}

{t_{3} \longrightarrow ?}

Para este problema, temos de calcular a velocidade em cada um dos trechos e os respectivos tempos. é um movimento dividido em 3 partes. UM MRUV (acelerado), um MRU e um MRUV (Retardado).

A partir da equação das velocidades, para a 1ª parte,teremos:

\displaystyle v_{f1}=v_{01} + a_1.t_1=0+4.4=16

…para a 2ª etapa: {a=0}(M.R.U):

\displaystyle \Rightarrow v_{f2}=v_{02}=v_{f1} \Rightarrow v_{f2}=16 \ m/s

…para a 3ª etapa :

\displaystyle v_{f3}=0

Como conhecemos o tempo da 1ª e da 2ª parte, para completarmos o gráfico, precisamos obter o tempo da 3ª parte. Neste caso, usando a equação da velocidade, teremos:

\displaystyle v_{f3}=v_{03} - a_{3} . t_{3}\Rightarrow 0=v_{f_{2}} - a_{3} . t_{3} \Rightarrow t_{3}=\dfrac{v_{03}}{a_{3}}=2 \ s

Com os dados obtidos marcamos os 4 pontos no gráfico de {v=f(t)} e traçamos as rectas que unem os pontos:

{(t_{01};v_{01})=(0;0)}

{(t_{02};v_{02})=(4;16)}

{(t_{03};v_{03})=(14;16)}

{(t_{f1};v_{f1})=(16;0)}

Vamos então calcular a áreas do gráfico.

A primeira região é um triângulo. Neste caso:

{ A_{1}=\dfrac{1}{2}.l.h=\dfrac{1}{2}.4.16 }

{A_{1}=32 \ m}

A primeira região é um rectângulo. Neste caso:

{A_{2}=l.h=10.16=160 \ m}

A primeira região é um rectângulo. Neste caso:

{A_{3}=\dfrac{1}{2}.l.h=\dfrac{1}{2}.16}

{A_{3}=16 \ m}

Neste caso: {A_{Total}=A_{1}+A_2+A_3=208 \ m}

Calculando os deslocamentos de cada parte, temos:

{\Delta x_{1}=\dfrac{1}{2}a_{1}{t_1}^{2}=\dfrac{1}{2}.4.(4)^{2}}

{\Delta x_{1}=32 \ m}

{ \Delta x_{2}=v_2.t_2=16.(10)}

{\Delta x_{2}=160 \ m}

{ \Delta x_{3}=v_{03}.t-\dfrac{1}{2} a_3 t^{2}}

{ \Delta x_{3}=16.(2)-\dfrac{1}{2}.8.(2)^{2}=16 \ m}

{ \Delta x_{Total}=\Delta x_{1}+\Delta x_{2} + \Delta x_{3} = 208 \ m}

Logo a área total {A_{Total}=208 \ m} é igual á distancia total { \Delta x_{Total}=208 \ m"}

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers like this: