Luso Academia

Início » Posts tagged 'Resolvido'

Tag Archives: Resolvido

1.2. Exercícios sobre sistema massa-mola (Parte 1)

— 1.2. Sistema massa-mola —

Exercício 16 .

Um corpo está pendurado em uma mola de { k= 600 \ N/m} e oscila com uma amplitude de {5 \ cm}.

Qual é a velocidade máxima desta oscilação e a massa do corpo, se o seu período for de {1 \ s} ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 16 .
Dados
{k= \ 600 \ N/m}
{A= \ 5 \ cm= \ 0,05 \ m}
{T= \ 1 \ s}
{v_M \rightarrow ?}
{m \rightarrow ?}

A velocidade máxima de um MHS é dada na forma:

\displaystyle v_M= A \cdot\omega

Por sua vez, sabemos que, para qualquer evento período:

\displaystyle \omega= \dfrac{2 \pi}{T}

Logo, substituindo na equação anterior, obtemos:

\displaystyle v_M= A \cdot \dfrac{2 \pi}{T}

\displaystyle \Rightarrow v_M=0,05 \cdot \dfrac{2 \pi}{1}

\displaystyle \Rightarrow v_M= \ 0,314 \ m/s

Para determinarmos a massa, podemos usar a relação de {\omega} para o sistema massa-mola. Sabemos que neste sistema, a relação o {\omega} é dado por:

\displaystyle \omega = \sqrt{ \dfrac{k}{m} }

Ou:

\displaystyle \omega^2 = \dfrac{k}{m}

Então, isolando a massa, obtemos:

\displaystyle m= \dfrac{k}{\omega^2}

Substituindo {\omega} pela sua relação com o período, obtemos:

\displaystyle m= \dfrac{k}{(2 \pi / T)^2}

\displaystyle \Rightarrow m= \dfrac{600}{(2 \pi / 1)^2}

\displaystyle \Rightarrow m= \ 15 \ kg

Exercício 17 .
Um corpo de { 0,1 \ kg} preso em uma mola ideal de rigidez elástica de {200 \ N/m} oscila em MHS com {5 \ cm} de amplitude. Qual é a velocidade do corpo no momento em que a energia cinética do corpo é o dobro da energia potencial?

NÍVEL DE DIFICULDADE: Regular.

Resolução 17 .
Dados
{m= \ 0,1 \ kg}
{k= \ 200 \ N/m}
{A= \ 5 \ cm= \ 0,05 m}
{m \rightarrow ?} ({E_c=2E_p})

Em qualquer ponto do percurso em uma oscilação, a energia total do corpo é a soma da energia cinética com a energia potencial do corpo naquele ponto, ou seja:

\displaystyle E_c + E_p = E_{Total} \ \ \ \ \ (1)

Pretende-se saber qual é a velocidade do corpo no ponto onde a energia cinética é o dobro da energia potencial,ou seja:

\displaystyle E_c=2 E_p \ \ \ \ \ (2)

Substituindo a equação 2 na equação 1, temos:

\displaystyle 2E_p + E_p = E_{Total}

\displaystyle 3E_p = E_{Total}

Substituindo as energias cinéticas e total pelos seus equivalentes, obtemos:

\displaystyle 3\dfrac{mv^2}{2}= \dfrac{kA^2}{2}

Isolando a velocidade, obtemos:

\displaystyle v= \sqrt{ \dfrac{k}{3m} \cdot A^2}

\displaystyle \Rightarrow v=1,29 \ m/s

Exercício 18 .
Um corpo caindo de uma altura de {10 \ cm } (em relação ao topo da mola), comprime a mola (ficando presa nesta) e inicia um MHS .Sendo a massa do corpo de {100 \ g} e a constante da mola {20 \ N/m}, determine a amplitude desta oscilação.

NÍVEL DE DIFICULDADE: Complexo.

Resolução 18 .
Dados
{h=10 \ cm= \ 0,1 \ m }
{m= \ 100 \ g= 0,1 \ kg}
{k= \ 20 \ N/m}
{g= \ 9,8 \ m/s^2}
{A \longrightarrow ?}

Na figura ilustramos o sistema em 3 situações diferentes:

  • Situação 1 – O corpo está na altura de 10 cm e a mola está relaxada. O corpo, inicialmente em repouso, cai em direcção a mola.
  • Situação 2 – O corpo chega na mola (e fica preso nela). A partir daqui a mola e o corpo movem-se como um só. até o momento do encontro, o movimento era acelerado e com aceleração constante. Após esse encontro, no corpo começa a actuar a força elástica e portanto a sua aceleração começa a diminuir. A medida em que o corpo desce, a mola se vai comprimindo mais, a força elástica vai aumentando e a aceleração do corpo diminui até zero e em seguida aumenta negativamente. Ai o corpo começa a fazer um movimento retardado.
  • Situação 3 – Após a sua velocidade reduzir até zero, o corpo pára momentaneamente (e em seguida faz o movimento de retorno a posição de equilíbrio).

Vamos adoptar a posição da situação 3 como referencial de altura.

De acordo com a ilustração do fenómeno é possível concluir que:

  • A oscilação começou no ponto de equilíbrio;
  • Na posição da situação 1 o corpo estava em repouso. Existe apenas a energia potencial gravítica (devido a altura de {h + A});
  • Na posição da situação 2, após cair aos { 10 \ cm}, o corpo está em movimento com uma velocidade definida pela altura de queda. O sistema possuí energia cinética (do corpo) e energia potencial gravítica (devido a altura {A});
  • Após comprimir a mola até ao máximo, o corpo para. Nesse momento o sistema só tem a energia potencial elástica.

Usando a descrição acima, para a situação 1, a energia do sistema será:

\displaystyle E_1=E_{c1}+E_{pel1}+E_{pgrav1}

\displaystyle \Rightarrow E_1=0+0+E_{pgrav1}

\displaystyle \Rightarrow E_1= m \cdot g \cdot (h+A)

Para a situação 2, a energia do sistema será:

\displaystyle E_2=E_{c2}+E_{pel2}+E_{pgrav2}

\displaystyle \Rightarrow E_2=E_{c2}+0+E_{pgrav2}

\displaystyle \Rightarrow E_2=\dfrac{m \cdot v_2^2}{2}+0+m \cdot g \cdot A

\displaystyle \Rightarrow E_2=\dfrac{m \cdot v_2^2}{2}+m \cdot g \cdot A

Para a situação 3, a energia do sistema será:

\displaystyle E_3=E_{c3}+E_{pel3}+E_{pgrav3}

\displaystyle \Rightarrow E_3=0+E_{pel3}+0

\displaystyle \Rightarrow E_3=E_{pel3}

\displaystyle \Rightarrow E_3=\dfrac{k \cdot A^2}{2}

Sabemos que neste movimento apenas actuam as forças de gravida e elástica, que são ambas conservativas. Então, a energia mecânica deste sistema permanece constante:

\displaystyle E_1=E_2=E_3=E

Obtemos a partir desta análise um sistema de 3 equações. Resolvendo-o, podemos obter todos os valores desconhecidos ({v_2}, {A} e {E}). Para obter a amplitude, podemos igualar as equações de {E_1} e {E_3}. Neste caso, obteremos:

\displaystyle E_1=E_3

\displaystyle \Rightarrow m \cdot g \cdot (h+A)=\dfrac{k \cdot A^2}{2}

\displaystyle \Rightarrow m \cdot g \cdot h+m \cdot g \cdot A=\dfrac{k \cdot A^2}{2}

\displaystyle \Rightarrow 0=\dfrac{k \cdot A^2}{2} - m \cdot g \cdot A - m \cdot g \cdot h

\displaystyle \Rightarrow \dfrac{k \cdot A^2}{2} - m \cdot g \cdot A - m \cdot g \cdot h =0

Substituindo os dados, obtemos:

\displaystyle \Rightarrow \dfrac{20 \cdot A^2}{2} - 0,1 \cdot 9,8 \cdot A - 0,1 \cdot 9,8 \cdot 0,1 =0

\displaystyle \Rightarrow 10 \cdot A^2 - 0,98 \cdot A - 0,098 =0

Em seguida, resolvemos a equação do segundo grau obtida pela fórmula resolvente ou por qualquer outro método conveniente.

Obtemos os seguintes resultados: {A_1=0,159 \ m} e {A_2=-061 \ m}.

como sabemos, a amplitude não pode ser negativa, então o valor aceite para amplitude deste MHS é:

\displaystyle A=0,159 \ m

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 4)

Exercício 12 .
Uma partícula realiza um MHS de período { 8 \ s} e amplitude { 10 \ cm}.
Determine:

  1. A equação da posição.
  2. A equação da velocidade.
  3. A aceleração { 1 \ s} após ela ter passado pelo extremo negativo.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

O exercício apresenta um problema simples de MHS. O objectivo é determinar as equações da posição e da velocidade, bem como a posição num instante dado. Para obter as equações da posição e da velocidade, basta encontras as constantes destas equações ({A}, {\omega} e {\varphi_0}) e substitui-las.

Para obter a aceleração no instante dado, primeiro vamos obter o instante, por análise gráfica, e em seguida vamos substituir este instante na equação da aceleração.

Dados

{A= \ 10 \ cm = \ 0,1 \ m}

{ T= \ 8 \ s}

  1. A equação da posição de uma partícula em MHS pode ser dada na forma:

    \displaystyle x= A sen ( \omega t + \varphi_0)

    Como o enunciado não diz nada sobre a situação da partícula no instante inicial { ( t=0 \ s)}, então podemos considerar que:

    \displaystyle \varphi_0= 0 \ rad

    Sabendo que { T= 8 \ s} e que {\omega =\dfrac{2\pi }{T}}, então:

    \displaystyle \omega =\dfrac{2 \pi}{8} = \dfrac{1}{4} \pi \ rad/s

    Então, substituindo os valores obtidos na equação do MHS, teremos:

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t+0)

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t)

  2. A velocidade de uma partícula é definida como a derivada da sua posição em função do tempo,ou seja:

    \displaystyle v=\dfrac{d}{dt}[0,1 sen (\dfrac{\pi}{4}t)]

    \displaystyle v=0,1 \dfrac{d (\dfrac{\pi}{4}t)}{dt} cos (\dfrac{\pi}{4}t)

    \displaystyle v=0,1 \cdot \dfrac{\pi}{4} \cdot \cos(\dfrac{\pi}{4}t)

    \displaystyle v= 0,079 \cos(\dfrac{\pi}{4}t)

  3. Para saber essa aceleração, primeiro precisamos saber quanto tempo a partícula demora, para chegar até à posição do extremo negativo, partindo da posição de equilíbrio.

    Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

    • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
    • Sai deste 1º extremo para a posição de equilíbrio.
    • Sai da posição de equilíbrio para o outro extremo (2º extremo, no lado oposto).
    • Sai deste 2º extremo para a posição de equilíbrio.

    Esta é a descrição de um ciclo completo.

    O tempo que a partícula leva a completar o ciclo acima é o período ({T}).

    Cada um dos movimentos descritos acima tem a mesma duração, para o MHS. Esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

    Do estudo generalizado da função seno, conhecemos o gráfico genérico da figura a seguir.

    Observamos então que, para atingir o extremo negativo, partindo da posição de equilíbrio, passa 3/4 do ciclo. Neste caso, o tempo que leva a completar este movimento até ao extremo negativo é {3T/4}.

    Neste caso, o instante referido no enunciado (1 segundo após passar pelo extremo negativo) será:

    \displaystyle t= \ \dfrac{3T}{4}+1 = \ \dfrac{3 \cdot 8}{4}+1 = \ 7 \ s

    Agora basta determinarmos a equação da aceleração que por definição,é a derivada da velocidade da partícula.

    \displaystyle a=\dfrac{d}{dt}[0,07 \cos(\dfrac{\pi}{4}t)]

    \displaystyle a=[0,07 \dfrac{d(\dfrac{\pi}{4}t)}{dt} sen (\dfrac{\pi}{4}t)]

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4}t)

    Fazendo { t=7 \ s}, temos:

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4} \cdot 7)

    \displaystyle a=-0,043 \ m/s^2

Exercício 13 .
Uma partícula em MHS oscila com frequência de { 10 \ Hz} entre os pontos {L} e {-L} de uma reta. No instante { t_{0}}, a partícula está no ponto { \dfrac{\sqrt{3}}{2}L} caminhando em direcção a valores inferiores, e atinge o ponto { - \dfrac{\sqrt{2}}{2}L}, no instante t. Determine o tempo gasto neste deslocamento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 13 .

O problema apresenta-nos um MHS onde é conhecida a frequência e a amplitude. Nos é pedido para determinarmos o tempo que a partícula leva para sair de uma posição para outra.

A resolução deste problema consiste em escrever a equação do MHS, e para as duas posições, formar duas equações. Em seguida, resolvemos o sistema de equações de acordo com a regra escolhida.\

Para calcularmos esse tempo, primeiro, precisamos saber como a partícula se move ao longo dessa recta. Para isso, temos que escrever a sua equação da posição.

Como a escolha do referencial de tempo não tem influência sobre os cálculos, e o problema não oferece referencial de tempo nenhum, consideraremos o instante inicial como sendo nulo: {t_0 = \ 0 \ s}.

Dados
{A= \ L}

.
{ t_0=0 } ;{ x_0=\dfrac{\sqrt{3}}{2}L }

.

{ t_1 \Rightarrow ?} ; { x_1=\dfrac{\sqrt{2}}{2}}

{ f=10 \ Hz}

A equação da posição de uma partícula em MHS pode ser dada na forma:

\displaystyle x= A sen(\omega t + \varphi_{0})

Sabemos que {\omega =2 \pi \cdot f }. Logo:

\displaystyle \omega =2 \pi \cdot 10=20 \pi \ rad/s

Logo ,temos:

\displaystyle x=A sen( \omega t + \varphi_{0})

\displaystyle x=L sen( \varphi_0 +20 \pi t)

Resta sabermos o valor de { \varphi_0 }. Apesar de não definir o valor de { \varphi_0 }, mas o problema nos dá informações da posição em certo instante. Logo, isso define o valor de { \varphi_0 }.

O exercício informa que, no instante inicial { t_0(t=0 \ s)}, a partícula se encontrava na posição { x= \dfrac{\sqrt{3}}{2}L}. Colocando na equação da posição, isso quer dizer que:

\displaystyle \dfrac{\sqrt{3}}{2}L= L sen( 20 \pi \cdot 0 + \varphi_0)

Simplificando {L}, obtemos:

\displaystyle \dfrac{\sqrt{3}}{2}= sen( 20 \pi \cdot 0 + \varphi_0)

\displaystyle \Rightarrow sen(\varphi_0)=\dfrac{\sqrt{3}}{2}

\displaystyle \Rightarrow \varphi_0= \ arcsen(\dfrac{\sqrt{3}}{2}) \ ou \ \varphi_0 = 180^o - \ arcsen(\dfrac{\sqrt{3}}{2})

\displaystyle \Rightarrow \varphi_0= 60^o \ ou \ \varphi_0= 120^o

Como, no instante {t_0} a partícula caminhava para posições negativas, ou seja, a sua posição diminuía, então escolhemos o ângulo de {120^o= \ \dfrac{2 \pi}{3} }, pois esse é que conscide a um decrescimento no gráfico da função seno.

Logo, temos que:

\displaystyle x=L sen( 20 \pi t + \dfrac{2 \pi}{3})

Agora precisamos saber o tempo t que a partícula demora para chegar até { x= - \dfrac{\sqrt{2}}{2}L}. Vamos usar a equação da posição:

\displaystyle -\dfrac{\sqrt{2}}{2} L=L sen( 20 \pi t + \dfrac{2 \pi}{3})

\displaystyle \Rightarrow sen (20 \pi t + \dfrac{2 \pi}{3})=-\dfrac{\sqrt{2}}{2}

\displaystyle 20 \pi t + \dfrac{2 \pi}{3} =arcsen(-\dfrac{\sqrt{2}}{2})

Note: {arcsen(-\dfrac{\sqrt{2}}{2})= 225^o \ ou \ 315^o}. Neste caso, como estamos a analisar um movimento oscilatório, e queremos o menor tempo, usaremos o {225^o=\dfrac{5 \pi}{4} rad}.

\displaystyle \Rightarrow 20 \pi t + \dfrac{2 \pi}{3}=\dfrac{5}{4} \pi

Isolando t, obtemos:

\displaystyle t =\dfrac{\dfrac{5 \pi}{4} - \dfrac{2 \pi}{3}}{20 \pi}

\displaystyle t=\dfrac{7}{240}

\displaystyle t=0,029 \ s

Exercício 14 O diagrama representa a elongação de um corpo em MHS em função do tempo.

  1. Determine a amplitude e o período para esse movimento.
  2. Escreva a função elongação, usando função cosseno.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .
O problema apresenta um gráfico da posição de um MHS e nos pede a amplitude, período e equação da posição deste MHS.

A amplitude é lida directamente no gráfico. O período é obtido por interpretação do gráfico, escolhendo dois pontos especiais da oscilação (extremos, posições de equilíbrio, etc.). Com estes dados, após determinação da fase inicial ({\varphi_0}), é possível escrever a equação deste MHS.

  1. Precisamos primeiro recolher os dados a partir do gráfico. Observe a figura:

    No gráfico, observamos claramente que {A= \ 5 \ m}.

    Também podemos notar o tempo que o corpo leva a sair de um extremo ao outro. Ele está num extremo no instante {t= \ 2 \ s} e no outro no instante {t= \ 6 \ s}. Neste caso, o corpo demorou {4\ s} para sair de um extremo ao outro. Sabemos que, num MHS, o tempo que o corpo leva a sair de um extremo para o outro é igual a metade do período. Logo:

    \displaystyle \dfrac{T}{2} = 4\ s

    \displaystyle \Rightarrow T = 4\cdot2

    \displaystyle \Rightarrow T = 8\ s

  2. A função da elongação pode ser dada na forma {x = A .sen (\omega t + \varphi_0)} ou {x = A .cos(\omega t + \varphi_0)}.

    Sabemos que {\omega =2 \pi / T }. Logo:

    \displaystyle \omega =2 \pi / 8= \ \pi / 4 \ rad/s

    Sendo que em {t = 0}, o corpo se encontra na posição de equilíbrio,então, substituindo na equação da posição (o enunciado pede para usarmos função cosseno), obtemos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos(\dfrac{\pi}{4} .0 + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos( \varphi_0)

    \displaystyle \Rightarrow cos( \varphi_0)=0

    \displaystyle \Rightarrow \varphi_0= \ arccos(0) \ ou \ \varphi_0= \ 360^o - \ arccos(0)

    \displaystyle \Rightarrow \varphi_0= 90^o \ ou \ \varphi_0= 270^o

    Considerando que no gráfico dado, na posição inicial e nos instantes imediatamente a seguir, o corpo desce (movimenta-se para o sentido negativo), então, com base no gráfico genérico da função cosseno, escolheremos o valor de {90^o= \dfrac{\pi}{2} rad }.

    Então, substituindo na equação do MHS, temos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle x = 5 .cos(\dfrac{\pi}{4} t + 90^o)

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.3. Exercícios sobre Polarização da Luz (Parte 1)

— 1.3. Exercícios sobre Polarização da Luz —

Exercício 7 Duas películas polarizadas tem seus eixos de transmissão cruzados de tal forma que nenhuma luz é transmitida. Uma terceira película inserida entre elas com seu eixo de transmissão fazendo um ângulo de {45^o} em relação a cada um dos eixos. A combinação é mostrada na figura ao lado.Suponha que cada película ideal. Encontre a fracção da luz que é transmitida pelo sistema.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7 .

Neste problema, analisamos a passagem da luz em filtros polarizadores. Esta passagem obedece a lei de Malus. A luz passa por um polarizador, e em por outros dois polarizadores (chamamos {P_1}, {P_2} e {P_3}). Incide luz natural em {P_1}. Após a passagem neste polarizador, já teremos luz linearmente polarizada, na direcção vertical. Em seguida, essa luz linearmente polarizada incide num segundo polarizador ({P_2}). Ao passar por este polarizador, a luz transmitida tem intensidade que obedece a lei de Malus, e portanto, é proporcional ao ângulo entre estes dois polarizadores (ou entre a direcção de polarização da luz incidente e o eixo do polarizador em questão). No terceiro polarizador, acontece o mesmo.

Dados

{\theta_{1} \ = \ 0^{o}}

{\theta_{2} \ = \ 45^{o}}

{\theta_{3} \ = \ 90^{o}}

{\dfrac{I_{f}}{I_0} \ - \ ?}

Utilizamos a lei de Malus e os conhecimentos de geometria, podemos determinar a fracção da Luz transmitida pelo sistema. O polarizado {P_{1} \ } está colocado a {0^{o}} com as componentes paralelas da Luz, então Depois deste polarizadores só passa as componentes paralelas da Luz, ou seja {50 \%} da intensidade da Luz.

Então, a intensidade após o primeiro polarizador será:

\displaystyle I_{1} \ = \ 0,5 \cdot I_{0}

A intensidade da Luz depois do polarizador {P_{2}} é determinado pela lei de Malus.

Conforme vimos pelo gráfico, o ângulo entre {P_{1}} e {P_{2}} é:

\displaystyle \theta_{12}= |\theta_{1}-\theta_{2}|

Neste caso, a intensidade após o segundo polarizador será:

\displaystyle I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{12})

\displaystyle \Rightarrow I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{2} \ - \ \theta_{1})

Obs: Não se usou o modulo pois a função cosseno é par.

Por fim a intensidade da Luz depois do terceiro polarizador e que Por conseguinte será a intensidade da Luz transmitida pelo sistema, também é determinado pela Lei Malus.

De acordo com a figura, ângulo formado entre {P_{2}} e {P_{3}} é:

\displaystyle \theta_{23}= |\theta_{2}-\theta_{3}|

Deste modo, a intensidade após o terceiro polarizador será:

\displaystyle I_{3} \ = \ I_{f} \ = \ I_{2} \cdot cos^{2} \ (\theta_{23} )

\displaystyle \Rightarrow I_{3} \ = \ I_{f} \ = \ I_{2} \cdot cos^{2} \ (\theta_{3} \ - \ \theta_{2})

Neste caso, a passagem de luz pelo sistema é definida pelas seguintes equações:

\displaystyle \left\{\begin{array}{cccccc} I_{1} \ = \ 0,5 \ (I_{0})\\ I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{2} \ - \ \theta_{1})\\ I_{3} \ = \ I_{2} \cdot cos^{2} \ (\theta_{3} \ - \ \theta_{2})\\ \end{array}\right.

Substituindo as equações 1 na equação 2 e sem seguida substituindo a equação 2 na equação 3, obtemos:

\displaystyle I_{3} \ = \ I_{f} \ = \ I_{2} \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ [I_{1} \ cos^{2} \ (\theta_{2} \ - \ \theta_{1})] \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ cos^{2} \ (\theta_{2} \ - \ \theta_{1}) \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (\theta_{2} \ - \ \theta_{1}) \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (45^{o} \ - \ 0^{o})] \ cos \ (90^{o} \ - \ 45^{o})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (45^{o} \ - \ 0^{o})] \ cos \ (90^{o} \ - \ 45^{o})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos \ 45^{o} \ . \ cos \ 45^{o})^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos^2 \ 45^{o} \ )^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos \ 45^{o})^{4}

\displaystyle \Rightarrow I_{f} \ = \ 125 \cdot I_{o}

Então, passando {I_0} para o membro esquerdo da equação acima, obtemos:

\displaystyle \dfrac{I_{f}}{I_{o}} \ = \ 0,125=\dfrac{1}{8}

A fracção da intensidade da Luz transmitida pelo sistema é de {\dfrac{1}{8}} ({12,5 \ \% }).

Exercício 8 Um feixe de luz não polarizada incide sobre duas placas polarizadas super expostas. Qual deverá ser ângulo entre os eixos dos polarizadores para que intensidade do feixe transmitido seja um terço da intensidade do feixe incidente?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

O problema tem a ver com o fenómeno de polarização da Luz. A luz passa por duas placas polarizadas, que formam um certo ângulo. A condição de calculo é que intensidade da luz após passar as placas seja um terço da intensidade da luz antes de passar as placas.

Neste caso, é-nos dada uma relação de forma indirecta: a razão entre a intensidade da luz depois dos polarizadores e a intensidade inicial.

Dados

{\dfrac{I_{2}}{I_{0}} \ = \ \dfrac{1}{3} }

Considerarmos {I_{0}} a intensidade da luz incidida ao primeiro polarizador, {I_{1}} A intensidade da luz que emerge do primeiro polarizador e incide no segundo polarizador e e {I_{2}} a intensidade da luz que emerge do segundo polarizador.

De acordo com o funcionamento dos filtros polarizadores ideais, quando a luz natural incide nele, é transmitida apenas {50 \% } da sua intensidade. Então, teremos:

\displaystyle I_{1} \ = \ \dfrac{1}{2} \ I_{0}

Pela lei de Malus sabe-se que :

\displaystyle I_{2} \ = \ I_{1} \cdot cos^{2} \alpha

Substituindo {I_2} pela relação anterior de {I_{1}}, teremos:

\displaystyle I_{2} \ = \dfrac{1}{2} \cdot I_{0}\cdot cos^{2} \alpha

Passando o {I_0} para o membro esquerdo, obtemos:

\displaystyle \dfrac{I_{2}}{I_0} \ = \dfrac{1}{2} \cdot cos^{2} \alpha

Então:

\displaystyle cos^2 \alpha \ = 2 \cdot \dfrac{I_{2}}{I_{1}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{2 \cdot \dfrac{I_{2}}{I_{1}}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{2 \cdot \dfrac{1}{3}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{\dfrac{2}{3}}

Nota: Antes da raiz, deveria ter sinal {\pm }, porém, como estamos apenas interessados na amplitude do ângulo, desprezamos o sinal negativo.

Insolando {\alpha}, obtemos:

\displaystyle \alpha \ = \ arccos \left(\sqrt{\dfrac{2}{3}}\right)

\displaystyle \Rightarrow \alpha \ \approx 35,3^o

O ângulo entre as direcções de polarização das Placas para que a intensidade do feixe transmitido seja um terço do feixe incidido, deve ser de {35^{o}}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Carga, Forças Eléctricas (Parte 4)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 10 Um conjunto de 4 cargas iguais, de {5 \ \mu C} estão dispostas da base de uma pirâmide de base quadrada, dada na figura.

{a= \ h= \ 20 \ mm}.

Qual deverá ser a massa da carga de prova (de valor igual) para que ela flutue em equilíbrio dinâmico?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 10 .

O exercício nos apresenta uma carga de prova {(q_{o})} que está acima de um arranjo quadrado de cargas, formando assim uma pirâmide. As cargas se encontram nos vértices da pirâmide.

A carga flutua por interacção electrostática. Sendo que todas as cargas são positivas, existem forças repulsivas constantes entre as cargas.Dados

{K \approx \ 9 \cdot 10^9 \ Nm^2/C^2}

{H= \ a= \ 20 \ mm= \ 20 \cdot 10^{-3} m}

{q_0=q_1=q_2=q_3=q_4= \ 5 \ \mu C= \ 5 \cdot 10^{-6} \ C}

{m-?}

.

Sendo que a figura geométrica é regular e simétrica, a distancia entre a carga {q_0} com as outras cargas é igual. Chamamos a esta distancia de {d}.

Veja a figura abaixo.

Considerando o triângulo rectângulo formado entre as cargas {q_1}, {q_2} e o centro do quadrado da base {O}, teremos:

\displaystyle b^2+b^2=a^2

\displaystyle \Rightarrow 2 \cdot b^2=a^2

\displaystyle \Rightarrow \cdot b^2=\dfrac{a^2}{2}

Isolando {b}, teremos:

\displaystyle b=\sqrt{\dfrac{a^2}{2}}

Analisando o triângulo rectângulo formado pelas cargas {q_1}, {q_0} e o centro do quadrado da base {O}, teremos:

\displaystyle b^2+h^2=d^2

Ou:

\displaystyle d^2=b^2+h^2

\displaystyle \Rightarrow d^2= \dfrac{a^2}{2}+a^2

\displaystyle \Rightarrow d^2= \dfrac{3a^2}{2}

Na carga {q_0} actuam ao todo 4 forças repulsivas, da sua interacção com as outras cargas (1, 2, 3 e 4).

Chamamos a estas forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}}.

Então:

\displaystyle F_{01}=F_{02}=F_{03}=F_{04}

O facto de as distâncias serem todas iguais e de as cargas terem o mesmo valor absoluto, pela lei de Coulomb, nos leva a concluir que as forças electrostáticas de repulsão entre {q_0} e as outras cargas (1, 2, 3 e 4) são todas iguais.

Os seus módulos serão:

\displaystyle F_{01} \ = F_{02} \ = F_{03} \ =F_{04} \ = \ k\dfrac{|q_{1}|.|q_{0}|}{d^{2}}

Substituindo {d^2}, teremos:

\displaystyle F_{01} = \ k\dfrac{|q_{1}|.|q_{0}|}{3a^{2}/2}

Calculando:

\displaystyle F_{01} = \ 9 \cdot 10^9 \dfrac{5 \cdot 10^{-6} \cdot 5 \cdot 10^{-6}}{3(20 \cdot 10^{-3}) ^{2}/2}

\displaystyle \longleftrightarrow F_{01} = 375 \ N

Lembre que:

\displaystyle F_{01} \ = F_{02} \ = F_{03} \ =F_{04}

\displaystyle \Rightarrow F_{01} \ = F_{02} \ = F_{03} \ =F_{04} \ = 375 \ N

As forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}}, além de terem o mesmo modulo, são todas respectivamente paralelas a diagonal formada pelo segmento que une as cargas que as originam. Neste caso, pela simetria do problema, todas estas diagonais formam o mesmo ângulo {\theta} com o plano horizontal {xOy}.

Neste caso, todas estas forças formarão também o mesmo ângulo {\theta} com o plano horizontal {xOy}.

Se inserirmos um sistema de coordenadas cartesiano em {q_0} e projectarmos as forças, as projecções destas forças no plano {xOy} vão anular-se mutuamente.

Na figura, só representamos as projecções para {F_{03}} e para {F_{04}}. Pela simetria do problema, poderemos deduzir as outras.

O eixo {x} foi traçado de modo a ser paralelo a diagonal que contem {q_1} e {q_3}.

O eixo {y} foi traçado de modo a ser paralelo a diagonal que contem {q_4} e {q_2}.

O eixo {x} foi traçado de modo a ser paralelo a vertical que contem o ponto O e {q_0}.

Neste caso:

  • {F_{01}} pertence ao plano {xOz},
  • {F_{02}} pertence ao plano {yOz},,
  • {F_{03}} pertence ao plano {xOz},
  • {F_{04}} pertence ao plano {zOz}.

As componentes horizontais (no plano {xOy}) anulam-se:

  • {F_{01x}} anula {F_{03x}},
  • {F_{02y}} anula {F_{04y}}.

Sobram apenas as componentes verticais. As projecçõpes verticais das forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}} podem ser calculadas pelas seguintes relação:

\displaystyle F_{01z}=F_{01z} \sin \theta

Temos de obter o ângulo {\theta}. Considerando o triângulo rectângulo formado pelas cargas {q_1}, {q_0} e o centro do quadrado da base {O}, teremos:

\displaystyle tg \theta = \dfrac{h}{b} \Rightarrow \theta = arctg \dfrac{h}{b}

Substituindo {h} e {b} pelos seus valores, obtemos:

\displaystyle \theta = arctg \dfrac{a}{a/\sqrt{2}}

\displaystyle \Rightarrow \theta = arctg \sqrt{2}

\displaystyle \Rightarrow \theta = 54,7^o

Sabemos que, pela simetria do problema {F_{01z}=F_{02z}=F_{03z}=F_{04z}}. Então:

\displaystyle F_{01z}=F_{01} \sin \theta = 375 cos 54,7^o

\displaystyle F_{01z}=216,7 \ N

As resultante das componentes verticais será igual a força eléctrica resultante em {q_0}, que chamamos de {F_{el}}.

Neste caso:

\displaystyle F_{el}=F_{01z} + F_{02z} +F_{03z} + F_{04z}

\displaystyle F_{el}=4 \cdot F_{01z}

\displaystyle F_{el}=4 \cdot 216,7

\displaystyle F_{el}=866,8 \ N

Para quê a carga de prova flutue em equilíbrio dinâmico é necessário que a força eletrostática resultante que atua nela seja igual a força de gravidade:

\displaystyle F_{el} \ = \ F_{g}

Então:

\displaystyle F_{el} \ = \ m \ . \ g

Ou:

\displaystyle \ m \ . \ g = F_{el}

\displaystyle \Rightarrow m \ = \dfrac{F_{el}}{g}

\displaystyle \Rightarrow m \ = \dfrac{866,8}{9,8}

\displaystyle \Rightarrow m \ = \ 88,44 \ kg

Exercício 11 Uma carga de prova {q_0= \ 10 \ \mu C} de massa depressível, esta presa numa mola também de massa depressível, com constante {K'= \ 10 \ N/m}, conforme a figura abaixo.

Uma outra carga {q_1 \ =50 \ \mu C} é fixada abaixo desta. qual devera ser a distância entre as cargas para que a mola seja comprimida em 3 cm.

NÍVEL DE DIFICULDADE: Regular.

Resolução 11 .

O sistema apresenta um arranjo de cargas, onde a carga {q_0} está presa a uma mola. Actuam nela a força eléctrica {F_{01}} e a força elástica {(F_k)}.

A mola está comprimida devido a força de repulsão. A massa da mola é depressível. {K'}-constante elástica e {K}– constante electrostática. O uso de {K'} em vez do habitual {K} para a constante elástica da mola é para distingui-lo da constante electrostática do meio {K}.

As duas cargas são positivas, logo a força de interacção entre elas é de repulsão. Esta força tenderá a comprimir a mola. A compressão termina quando se atinge o equilíbrio entre a força deformadora (força eléctrica) e a força restauradora (força elástica).

Aplicaremos a condição de equilíbrio, substituiremos a força eléctrica pela relação obtida da lei de Coulomb, e isolaremos a distância d.

Dados

{K'= \ 10 \ N/m}

{K \approx \ 9 \cdot 10^9 \ Nm^2/C^2}

{x= \ 3 \ cm= \ 3 \cdot 10^{-2}}

{q_0= \ 10 \ \mu C= \ 10 \cdot 10^{-6} \ C}

{q_1= \ 50 \ \mu C= \ 50 \cdot 10^{-6} \ C}

{d-?}

Sabemos que, pela lei de Hook:

\displaystyle F_{k}=K' \cdot x (

Sabemos também, pela Lei de Coulomb, que:

\displaystyle F_{01}=K\dfrac{|q_0| \cdot |q_1|}{d^2}

.

Considerando que na carga {q_0} as duas forças estão em equilíbrio, temos:

\displaystyle \vec{F_{k}}+\vec{F_{01}}=0

Em módulo, teremos:

\displaystyle F_{k}-F_{01}=0

\displaystyle \Rightarrow F_{k}=F_{01}

Substituindo as forças pelas suas relações, temos:

\displaystyle K' \cdot x=K\dfrac{|q_0| \cdot |q_1|}{d^2}

Passando o {d^2} no membro esquerdo e a {K' \cdot x} para o membro direito, obtemos:

\displaystyle d^2=\dfrac{K \cdot |q_0| \cdot |q_1|}{K' \cdot x}

\displaystyle \Rightarrow d=\sqrt{\dfrac{K \cdot |q_0| \cdot |q_1|}{K' \cdot x}}

Substituindo os valores:

\displaystyle \Rightarrow d=\sqrt{\dfrac{9 \cdot 10^9 \cdot 10 \cdot 10^{-6} \cdot 50 \cdot 10^{-6}}{10 \cdot (3 \cdot 10^{-2})}}

\displaystyle d= \ 3, 87 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Carga, Forças Eléctricas e Campo Eléctrico(Parte 3)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 7 .

O sistema abaixo mostra três cargas { q_1= \ -1,5 \ \mu C }; { q_2= \ 5 \ \mu C } e { q_3= \ 10 \ \mu C }.

Qual é a força resultante sobre {q_2}.

.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7

.

Dados .

{ q_1= \ -1,5 \ \mu C = \ -1,5 \cdot 10 ^{-6} \ C } .

{ q_2= \ 5 \ \mu C = \ 5 \cdot 10^6 \ C } .

{ q_3= \ 10 \ \mu C = \ 10 \cdot 10 ^{-6} \ C }

O exercícios nós pede para calcular a força resultante { q_2}.

O sistema apresenta um conjunto de 3 cargas. Neste caso, as forças na carga em questão surgem devido a interacção com as outras duas cargas.

Então, temos 2 forças de interacção. A natureza da interacção depende do sinal das cargas. A interacção entre { q_2} e { q_1} é de atracção, pois ambas têm sinais opostos. A interacção entre { q_2} e { q_3} é de repulsão, pois ambas têm sinais iguais.

Denotamos por {\vec{F_{12}}} e {\vec{F_{21}}} as forças de interacção entre { q_2} e { q_1}.

Denotamos por {\vec{F_{32}}} e {\vec{F_{23}}} as forças de interacção entre { q_2} e { q_3}.

Veja a figura.

neste caso calculamos em cada caso:

Então, observamos que em { q_2} actua duas forças: {\vec{F_{21}}} e {\vec{F_{23}}}.

Para calcular o valor dos módulos destas forças vamos usar a formula obtida pela lei de Coulomb.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_3} temos:

\displaystyle F_{23}= K \dfrac{| q_2 | | q_3 |}{r_{23}^2}= \dfrac{9 \cdot 10^9 \cdot 5 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(3 \cdot 10 ^{-3} )^2}

\displaystyle F_{23}= \ 5 \cdot 10^4 \ N

A distancia {r_{23}} foi obtida pela diferença das coordenadas de cada carga: {r_{23}= \ |x_3-x_2|= \ 7-4= \ 3 m}.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

\displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{r_{12}^2}=\dfrac{9 \cdot 10^9 \ 1,5 \cdot 10 ^{-6} \cdot 5 \cdot 10 ^{-6}}{(6 \cdot 10 ^{-3} )^2}

\displaystyle F_{21}= 0,1875 \cdot 10^{-4} \ N

Como tem duas forças que interagem em {q_2} podemos calcular a força resultante em {q_1}.

No caso, as duas forças têm mesmo sentido e mesma direcção. Então, não existe necessidade de projectarmos ou usarmos a lei dos cossenos. A força resultante será obtida pela soma dos módulos dos vectores obtidos:

\displaystyle F_{r2}=F_{23} + F_{21}=50.000+1.875=51.184 \ N

Exercício 8 Um sistema apresenta três cargas dispostas nos vértices de um quadrado de aresta a=0,02 mm. Sendo: {q_1=q_2=q_3= \ 10 \ \mu C}, qual será:

  1. O campo eléctrico no outro vértice?
  2. A força na carga {q_2}?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 8

O problema nos pede para determinar o Campo eléctrico no ponto O e a força eléctrica resultante na carga {q_2}.

Para obter o campo eléctrico no ponto {O}, devemos ter em conta que o campo eléctrico obedece ao principio de super posição. Neste caso, o campo eléctrico provocado por um sistemas de cargas é igual á soma (vectorial, visto que o campo eléctrico é uma grandeza vectorial dos campos produzidos por cada carga. (Nota: aqui, quando nos referimos ao campo eléctrico, estamos a falar da sua intensidade).
Para o efeito, temos de achar o campo eléctrico produzidos por cada carga no ponto {O}, para termos o campo resultante neste ponto.

No caso de forças, temos de analisar todas as interacções de {q_2}. Neste caso, são duas: A interacção entre { q_2} e { q_1}, e a interacção entre { q_2} e { q_3}.

Então, temos 2 forças de interacção. A natureza da interacção depende do sinal das cargas. A interacção entre { q_2} e { q_1} é de repulsão, pois ambas têm mesmo sinal. A interacção entre { q_2} e { q_3} também é de repulsão, pois ambas têm sinais iguais.

Denotamos por {\vec{F_{12}}} e {\vec{F_{21}}} as forças de interacção entre { q_2} e { q_1}.

Denotamos por {\vec{F_{32}}} e {\vec{F_{23}}} as forças de interacção entre { q_2} e { q_3}.

Dados

{a = 0,02 \ mm = 0,02 \cdot 10^{-3} }

{q_1 = q_2 = q_3 = 10 \ \mu C=10 \cdot 10^{-6} \ C}

{ K=8,99 \cdot 10^9 \ Nm^2/C^2}

{ E_{R}-? }

{F_{q_{2}}-? }

.

  1. Para calcularmos o campo eléctrico resultante no ponto {O}, vamos calcular o campo produzido por cada carga e fazer a soma vectorial deles. Como as direcções e sentidos têm importância na soma vectorial, devemos, além de calcular os módulos, representar e determinar geometricamente os ângulos entre estes vectores. Traçando os campos eléctricos no ponto {O}, todos apontando para o sentido oposto as cargas que os origina (visto que as cargas são positivas), observamos que teremos neste 3 campos eléctricos: {\vec{E_1}}, {\vec{E_2}} e {\vec{E_3}}, sendo que o primeiro é vertical e apontando para baixo, o segundo é oblíquo, dirigido paralelamente a diagonal do quadrado e o terceiro é horizontal apontando para a direita. Veja figura.

    A diagonal de um quadrado faz um ângulo de {45^o} com as suas arestas.

    Pela relação do campo criado por uma carga pontual temos:

    \displaystyle E= K \dfrac{q}{r^2}

    Então para o caso da carga {q_1}, temos:

    \displaystyle E_1=K \dfrac{q_1}{r_1^2}=K \dfrac{q_1}{a^2}

    \displaystyle \Rightarrow E_1 =9 \cdot 10^9 \cdot \dfrac{10 \cdot 10^{-6}}{(0,02 \cdot 10^{-3})^2}= 2,25 \cdot 10^{14} \ N/C

    Para o caso da carga {q_3}, não precisamos fazer o cálculo, pois { E_3 = E_1 }, por ter mesmo valor de carga e mesmas distâncias.

    Para o caso da carga {q_2}, temos:

    \displaystyle E_2 = K \cdot \dfrac{q_2}{r_2^2} = K \cdot \dfrac{q_2}{b^2}

    Para tal, temos de obter uma relação para {b}.

    Usando o teorema de Pitágoras,temos:

    \displaystyle b^2=a^2 + a^2

    \displaystyle \Rightarrow b=\sqrt{a^2 + a^2}

    \displaystyle \Rightarrow b=\sqrt{2 \cdot a^2}= \sqrt{2} a

    Logo, voltando a {E_2}, temos:

    \displaystyle E_2 = K \cdot \dfrac{q_2}{(\sqrt{2} a)^2}

    \displaystyle \Rightarrow E_2=9 \cdot 10^9 \cdot \dfrac{10 \cdot 10^{-6}}{(0,02 \cdot 10^{-3} \cdot \sqrt{2})^2}=1,125 \cdot 10^{14} \ N/C

    Para calcularmos o campo resultante, trabalharemos com o método de projecções. Como s campo eléctrico {E_2}, vamos obter as suas projecções em {Ox} e em {Oy}.

    \displaystyle E_{Rx}=E_3+E_{2x}

    \displaystyle E_{Ry}=E_1 + E_{2y}

    Substituindo as projecções pelos seus equivalentes, obtemos:

    \displaystyle E_{Rx}=E_3+E_{2} \cdot \cos 45^o

    \displaystyle E_{Ry}=E_1 + E_{2} \cdot \sin 45^o

    Neste caso, o módulo do vector resultante será:

    \displaystyle E_R=\sqrt{ E_{Rx}^{2} + E_{Ry}^{2}}

    \displaystyle \Rightarrow E_R=\sqrt{(E_3+E_{2} \cdot \cos 45^o)^2 + (E_1 + E_{2} \cdot \sin 45^o)^2}

    Substituindo os valores obtidos anteriormente, obtemos:

    \displaystyle E_{R}=\sqrt{( 2,25 \cdot 10^{14}+1,125 \cdot 10^{14} \cdot \cos 45^o)^2 + ( 2,25 \cdot 10^{14} + 1,125 \cdot 10^{14} \cdot \sin 45^o)^2}

    \displaystyle E_{R}= \ 4,31 \cdot 10^{14} \ N/C

  2. Para determinamos a Forças resultante na carga {q_2}, devemos representar as forças que actuam nela, conforme explicação anterior. Veja a figura.
    De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

    \displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{a^2}=\dfrac{9 \cdot 10^9 \ 10 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(0,02 \cdot 10 ^{-3} )^2}

    \displaystyle F_{21}= 2,25 \cdot 10^9 \ N

    Para interacção da carga {q_2} em {q_3}, não é necessário calcular, pois as cargas que interagem são iguais e estão colocadas a igual distância. Neste caso, temos:

    \displaystyle F_{23}= F_{21}= 2,25 \cdot 10^9 \ N

    Para achar a força resultante, visto que temos a soma de dois vectores perpendiculares entre si, aplicaremos o teorema de Pitágoras. Pelo teorema de Pitágoras, temos:

    \displaystyle F_{q_{2}}=\sqrt{F^{2}_{23} + F^{2}_{21}}

    Como {F_{23}= F_{21}}, então:

    \displaystyle F_{q_{2}}=\sqrt{F^{2}_{23} + F^{2}_{23}}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2 \ F^{2}_{23}}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2} \ F_{23}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2} \ 2,25 \cdot 10^9

    \displaystyle \Rightarrow F_{q_{2}}=3,18 \cdot 10^9

Exercício 9 Um sistema apresenta três cargas dispostas nos vértices de um quadrado de aresta a=0,02 mm. As cargas são: {q_1=q_2=q_3=10 \ \mu C}.

Qual carga(módulo e sinal) deve ser colocado no vértice do quadrado para que a força eléctrica resultante em {q_2} seja igual a zero?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 9 .

Dados

{q_1 =q_2 =q_3 = \ 10 \ \mu C= \ 10 \cdot 10^{-6} \ C}

{q_4-? }

{F_{q_{2}}=0}
A resolução deste problema possui dois caminhos e dois modos:

Modo 1: Calcular a força eléctrica que as cargas actuais exercem no na carga {q_2}. Em seguida calcular, pela lei de Coulomb, qual carga provocaria uma força tal que anulasse esta força.

Modo 1: Representar o sistema de 4 cargas e representar as 3 forças na carga {q_2}. Aplicar a resultante na carga {q_2}, através das componentes e com a condição de que a força deve ser nula, calcular essa carga desconhecida.

Além dos dois modos, há ainda duas variantes de parâmetros: Podemos resolver considerando a Força eléctrica ou considerando o campo eléctrico.

Vamos resolver este problema considerando o 1º modo e usando a força eléctrica.

Primeiro, vamos calcular a força eléctrica resultante na carga {q_2} no sistema, antes da adição da carga {q_4}

Para determinamos a força resultante na carga {q_2} dos efeitos de {q_1} e {q_3} ({F_{2,13}}), devemos representar as forças que actuam nela, conforme explicação anterior. Veja a figura.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

\displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{a^2}=\dfrac{9 \cdot 10^9 \ 10 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(0,02 \cdot 10 ^{-3} )^2}

\displaystyle F_{21}= 2,25 \cdot 10^9 \ N

Para interacção da carga {q_2} em {q_3}, não é necessário calcular, pois as cargas que interagem são iguais e estão colocadas a igual distância. Neste caso, temos:

\displaystyle F_{23}= F_{21}= 2,25 \cdot 10^9 \ N

Para achar a força resultante dos efeitos de {q_1} e {q_3}, visto que temos a soma de dois vectores perpendiculares entre si, aplicaremos o teorema de Pitágoras. Pelo teorema de Pitágoras, temos:

\displaystyle F_{2,13}=\sqrt{F^{2}_{23} + F^{2}_{21}}

Como {F_{23}= F_{21}}, então:

\displaystyle F_{2,13}=\sqrt{F^{2}_{23} + F^{2}_{23}}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2 \ F^{2}_{23}}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2} \ F_{23}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2} \ 2,25 \cdot 10^9

\displaystyle \Rightarrow F_{2,13}=3,18 \cdot 10^9

Portanto, {F_{2,13}} é a força resultante dos efeitos de {q_1} e {q_3} sobre {q_2}.

Para que a resultante em {q_2} seja zero, é necessário adicionar no vértice {O} uma carga {q_4} que produza em {q_2} uma força ({F_{24}}) de igual módulo, mas de sentido oposto.

Neste caso, já concluímos que a carga {q_4} deve ser negativa.

O seu módulo dever ser:

\displaystyle F_{24} = F_{2,13}

\displaystyle K\dfrac{| q_2 | | q_4|}{b^2} = F_{2,13}

A diagonal do quadrado {b} é obtida da aplicação do Teorema de Pitágoras no triângulo que ele forma com as duas arestas do quadrado.

\displaystyle b^2=a^2 + a^2

\displaystyle \Rightarrow b=\sqrt{a^2 + a^2}

\displaystyle \Rightarrow b=\sqrt{2 \cdot a^2}= \sqrt{2} a

Então:

\displaystyle K\dfrac{| q_2 | | q_4|}{(\sqrt{2} a )^2} = F_{2,13}

Então, isolando o modulo de {q_4}, obtemos:

\displaystyle | q_4| = \dfrac{ F_{2,13}(\sqrt{2} a )^2}{K \cdot| q_2 | }

\displaystyle \Rightarrow | q_4| = \dfrac{ 3,18 \cdot 10^9 (\sqrt{2} 0,02 \ \ \cdot 10^{-3} )^2}{ 9 \cdot 10^{9}\cdot 10 \cdot 10^{-6} }

\displaystyle \Rightarrow | q_4| = 2,83 \cdot 10^{-5} \ C

Então:

\displaystyle q_4 = \ - 2,83 \cdot 10^{-5} \ C

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Carga e Forças Eléctricas (Parte 2)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 4 .

A soma de duas cargas é igual 0. Quando colocadas afastadas em {1 \ mm } a força electrostático entre elas fica igual a {100 \ mN}.

Determine o valor destas cargas .

NÍVEL DE DIFICULDADE: Regular.

Resolução 4 .

Dados

{ q_1+q_2=0 } .

{F=100 \ mN = 0,1 \ N } .

{ K= 9 \cdot 10^9 \dfrac{Nm^2}{C^2} } .

{ d=1 \ mm = \ 1 \cdot 10 ^{-3} \ m } .

{ q_1 \rightarrow ? } .

{ q_2 \rightarrow ? }

Este problema apresenta uma situação de aplicação directa da Lei de Coulomb.

São dadas duas cargas de valores desconhecidos, e definidas duas condições: soma algébrica das cargas e força electrostática.

Uma vez que não temos os valores das duas cargas eléctricas, mais temos a força é essa distância podemos criar um sistema de equação para encontrarmos as duas cargas.

O facto de a soma ser igual a zero, já implica que as cargas têm sinais opostos. Vamos pressupor que a carga {q_1} é positiva e que {q_2} é negativa. Este procedimento será relevante na eliminação do módulo na formula afecta a Lei de Coulomb.

\displaystyle \left\{\begin{array}{ccc} q_1 +q_2=0\\ \\ k\dfrac{| q_1 | | q_2 |}{(r)^2}=0,1\\ \end{array}\right.

Nota que, a primeira equação deriva da condição de que a soma seja zero. A segundo equação provém da igualdade entre a relação da força pela Lei de Coulomb e o valor da força dado no enunciado.

Substituindo valores para as constantes e dos dados, temos:

\displaystyle \left\{\begin{array}{ccc} q_1 +q_2=0\\ 9 \cdot 10^9 \dfrac{| q_1 | | q_2 |}{(1 \cdot 10 ^{-3})^2}=0,1 \\ \\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1 +q_2=0\\ \\ 9 \cdot 10^9 \dfrac{| q_1 | | q_2 |}{1 \cdot 10 ^{-6}}=0,1\\ \end{array}\right.

Resolvendo, temos:

\displaystyle \left\{\begin{array}{ccc} q_1 +q_2=0\\ \\ 9 \cdot 10^{15} | q_1 | | q_2 | =0,1\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1 +q_2=0 \\ \\ | q_1 | | q_2 | = \dfrac{0,1}{9 \cdot 10^{15}}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1 +q_2=0 \\ \\ | q_1 | | q_2 | = \dfrac{1 \cdot 10 ^{-1}}{9 \cdot 10^15}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1 +q_2=0 \\ \\ | q_1 | | q_2 | =\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1= -q_2 \\ \\ | q_1 \cdot q_2 | ==\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

Substituindo {q_1} da primeira equação na segunda, teremos:

\displaystyle \left\{\begin{array}{ccc} --- \\ \\ | -q_2 \cdot q_2 | =\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} --- \\ \\ | -q^2_2 | =\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

Eliminando o módulo, temos:

\displaystyle \left\{\begin{array}{ccc} --- \\ \\ q^2_2 = =\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} --- \\ \\ |q_2| = \sqrt{\dfrac{1 \cdot 10 ^{-16}}{9}}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} --- \\ \\ |q_2| \approx 3,33 \cdot 10^{-3} \ C\\ \end{array}\right.

Eliminando o modulo de {q_2}, obtemos:

\displaystyle \left\{\begin{array}{ccc} --- \\ \\ q_2 = - 3,33 \cdot 10^{-3} \ C\\ \end{array}\right.

Como {q_1= -q_2}, então:

\displaystyle q_1=3,33 \cdot 10^{-3} \ C

Exercício 5 Um conjunto de cargas colocadas nos vértices de um triângulo equilátero de {50 \ \mu m} de aresta, tem todas {10 \ \mu C}. Qual é a força resultante em qualquer carga dos vértices?

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .

Dados

{q_1=q_2=q_3=10 \ \mu C=10 \cdot 10^{-6} \ C }

{a=50 \ \mu m=50 \cdot 10^{-6} \ m }

{F_{r_{q3}}-? }

{K=9 \cdot 10^9 \ Nm^2/C^2 }

O problema apresenta um sistema de 3 cargas (num plano). A disposição das cargas é tal que forma um Triângulo Equilátero.

Da geometria plana, sabemos que o triângulo equilátero tem todos os lados e ângulos internos iguais. O valor dos ângulos internos é sempre de {60^o}.

Devemos fazer a figura, inserir um sistema de coordenadas. escolher uma das cargas e indicar as interacções das forças nesta carga.

Como as cargas são todas do mesmo sinal a força entre elas é sempre de repulsão. Escolhemos a carga {q_3} para análise.

A partir da figura, observamos que actuam na carga {q_3} duas forças: {F_{13}} (Força de interacção entre as cargas 1 e 3) e {F_{23}} (força de interacção entre as cargas 2 e 3.

Essas forças estão na direcção da linha que une as cargas em questão e representamo-las como setas que saem da carga naquelas direcções. Como as forças são de repulsão, o sentido escolhido é o sentido que tende a afastar as cargas.

Como temos adição de dois vectores, podemos optar por um dos dois métodos: lei dos cossenos ou decomposição em projecções.

Neste exercício, faremos a decomposição em projecções (por livre escolha).

A força {\vec{F_{23}}} é um vector paralelo ao eixo {Ox}. Não precisa ser projectado.

A força {\vec{F_{13}}} , por não ser paralela ao eixo {Ox} nem ao eixo {Oy}, vamos projecta-la. Dá origem então as projecções {\vec{F_{13x}}} e {\vec{F_{13y}}}.

A partir da figura temos:

Sabemos que {F_{23}=F_{13}=F}, porque tem as mesma cargas e a mesmas distâncias. Então, pela lei de Coulomb, temos:

\displaystyle \Rightarrow F_{23}=\dfrac{K \cdot |q_2| \cdot |q_3|}{a^2}=\dfrac{9 \cdot 10^{9} (10 \cdot 10^{-6})^2}{(50 \cdot 10^{-6})^2}

Resolvendo, temos:

\displaystyle F_{23}=36 \cdot 10^{10} \ N =F_{13}=F

Os ângulos da força {\vec{F_{13}}} se obtêm por análise gráfica. Considerando o axioma de rectas concorrentes, concluímos que o ângulo entre {\vec{F_{13}}} e o eixo {Ox} é {60^o}. O ângulo de {\vec{F_{13}}} com o eixo {Oy} é o complementar de {60^o}, portanto, {30^o}. Neste método, o vector resultante é obtido pelas resultantes em cada eixo.

Neste caso, a projecções resultantes são:

\displaystyle F_{Rx}=F_{23} + F_{13} \cdot \sin 30^o=F + F \cdot \cos 60^o

\displaystyle F_{Ry}=F_{13} \cdot \cos 30^o= \ F \cdot \sin 60^o

Neste caso, usando o teorema de Pitágoras, teremos:

\displaystyle F_{r_{q3}}=\sqrt{(F_{Rx} )^2 + (F_{Ry} )^2 }

\displaystyle \Rightarrow F_{r_{q3}}=\sqrt{(F + F \cdot \cos 60^o)^2 + (F \cdot \sin 60^o)^2 }

\displaystyle \Rightarrow F_{r_{q3}}=\sqrt{[F(1 + \cos 60^o)]^2 + (F \cdot \sin 60^o)^2 }

\displaystyle \Rightarrow F_{r_{q3}}=\sqrt{[36 \cdot 10^{10}(1 + \cos 60^o)]^2 + (36 \cdot 10^{10} \cdot \sin 60^o)^2 }

\displaystyle F_{r_{q3}}=62,35\cdot 10^{10} \ N

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)

 — 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —

 

Exercício 10 A massa de um átomo de Urânio é de {4,0\cdot10^{-26} \ kg}. Quantos átomos de urânio existem em {8 \ g} de Urânio puro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

É um problema cujo método de resolução é muito comum (3 simples).

Vamos começar por converter todas as grandezas para as mesmas unidades.

Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor({k = 10^3}):

\displaystyle 4,0\cdot10^{-26} \ kg = 4,0 \cdot 10^{-26}\cdot 10^{3} \ g = \ 4,0\cdot10^{-23} \ g

Em seguida, fazemos a relação de proporção.

Chamamos de {x} ao número de átomos que pretendemos calcular. Neste caso:

\displaystyle 1 \ atomo \longrightarrow 4,0\cdot10^{-23} \ g

\displaystyle x \longrightarrow 8,0 \ g

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 4,0 \cdot10^{-23} \ g = 1 \ atomos(u) \cdot 8,0 \ g

Isolando o x, obtemos:

\displaystyle x = \frac{1 \ atomo(u)\cdot 8,0 \ g}{4,0\cdot10^{-23} \ g}

Resolvendo, temos:

\displaystyle x = 2,0\cdot 10^{23} \ atomos

Em {8 \ g} de urânio puro, existem {2,0\cdot 10^{23}} átomos de Urânio.

 

 

Exercício 12 Determine a partir da representação dada, o vector {\vec{c} \ = 3 \ \vec{a} \ + 2 \ \vec{b}} .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

Podemos resolver este exercício utilizando a regra do paralelogramo.

Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles.

A resolução aqui é feita apenas graficamente.

Desta feita, aplicando a regra do paralelogramo, teremos:

  • Em primeiro lugar, vamos traçar os vectores {3 \ \vec{a} } e { 2 \ \vec{b}}. Para tal, vamos na extremidade de {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Na extremidade deste segundo {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Neste caso, teremos o vector {3 \ \vec{a} }. Para o caso do vector { 2 \ \vec{b}}, o procedimento é análogo. Vamos na extremidade de {\vec{b}}, traçar outro vector idênticos à {\vec{b}}.Neste caso, teremos o vector {2 \ \vec{b} }. Veja a figura a seguir.

  • Em seguida, na extremidade do vector {3\vec{a}} traçamos uma imagem do vector {2\vec{b}} e na extremidade do vector {2\vec{b}} traçamos uma imagem do vector {3\vec{a}}.Veja a figura a seguir.

  • Em seguida, traçamos o vector resultante que terá como origem o ponto onde ambas origem dos dois vectores ({3 \vec{a}} e {2 \vec{b}}) se encontravam, e terá como extremidade o ponto de intercessão das extremidades das imagens ({3 \vec{a'}} e {2 \vec{b'}}).

    Então, na figura anterior, obtemos o vector {\vec{c}}.

 

 

Exercício 13 Determine a distância entre os corpos A e B na figura:

Resolução 13

Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir.

Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano.

A Relação é:

\displaystyle d(A;B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Neste caso, {x_A=5; \ y_A=15; \ x_B= 25; \ y_B=5}.

Então, substituindo os valores na relação anterior, teremos:

\displaystyle d(A;B)=\sqrt{(25-5)^2+(5-15)^2}

Resolvendo, teremos:

\displaystyle d(A;B) = \sqrt{(20)^{2} \ + \ (-10)^{2}}

\displaystyle d(A;B) = \ 22,36 \ m

Logo, a distância entre os corpos A e B é igual a {22,36 \ m}.

 

 

Exercício 14

Sendo {\vec{v_{1}} \ = \ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ + \ 4 \vec{e_{z}}} e {\vec{v_{2}} \ = \ 5 \vec{e_{y}} \ - \ 2 \vec{e_{z}}} Determine o módulo de {\vec{v} \ = \ \vec{v_{1}} \ + \ \vec{v_{2}}}

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 14 Para determinarmos o módulo do vector {\vec{v}}, é necessário que se conheça ou que se determine o vector {\vec{v}}

Sendo este vector{(\vec{v})} a soma entre os vectores {\vec{v_{1}}} e {\vec{v_{2}}}, teremos:

\displaystyle \vec{v} \ = \vec{v_{1}} \ + \ \vec{v_{2}}

Substituindo as componentes, obtemos:

\displaystyle \vec{v} \ = (\ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ +?\ 4 \vec{e_{z}}) \ + \ (5 \vec{e_{y}} \ - \ 2 \vec{e_{z}})

Efectuando a operação, teremos:

\displaystyle \vec{v} \ = \ 3 \vec{e_{x}} \ + \ 7 \vec{e_{y}} + \ 2 \vec{e_{z}}

Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes.

Então, podemos determinar o módulo do vector {\vec{v}} a partir da seguinte relação:

\displaystyle |\vec{v}| \ = \ \sqrt{x^{2} \ + \ y^{2} \ + \ z^{2}}

Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector {\vec{v}} , teremos:

\displaystyle |\vec{v}| \ = \ \sqrt{(3)^{2} \ + \ (7)^{2} \ + (2)^{2}}

Resolvendo:

\displaystyle |\vec{v}| \ = \ 7,87

Logo, o vector {\vec{v}} tem o módulo igual a {7,87} unidades.

Note: No calculo do módulo de {\vec{v}} não usamos os vectores {e_{x}, \ e_{y}, \ e \ e_{z}}. Estes vectores são unitários. Só servem para indicar as direcções.

 

Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?

NÍVEL DE DIFICULDADE: Regular.

Resolução 15

Este exercício é um problema simples de Geometria Analítica.

Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações.

Consideramos que {x \ } é o módulo de um dos vectores e {\ y}O módulo de outro vector, então:

  • {x \ + \ y \ = \ 7} De acordo com a primeira condição dada no problema.

Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura.

Se { | \vec{v_{1}}|= \ x}, {|\vec{v_{2}} | = \ y} e o {|\vec{v}|=5}, então, pelo Teorema de Pitágoras, teremos :

{x^{2} \ + \ y^{2} \ = \ (5)^{2}}

Formando um sistema de equações com duas equações obtidas das condições, teremos:

\displaystyle \left\{\begin{array}{cccccc} x & + y & = & 7\\ x^{2} & + & y^{2} & = & 25\\ \end{array}\right.

Isolando {y} na equação 1 substituindo na equação 2, teremos:

\displaystyle \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & y^{2} & = & 25 \end{array}\right. \Rightarrow \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & (7 \ - \ x)^{2} & \ = \ & 25 \end{array}\right.

\displaystyle \Rightarrow x^{2} \ + \ (7 \ - \ x)^{2} \ = \ 25

Desfazendo a diferença de quadrado e efectuando as operações, teremos:

\displaystyle x^{2} \ - \ 7 \ x \ + \ 12 \ = \ 0

Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos:

\displaystyle x_{1,2} \ = \dfrac{-b \pm \ \sqrt{b^{2} \ - \ 4 \ a \ c}}{2 \ a}

,onde {a \ = \ 1} , {b \ = \ - \ 7} e {c \ = \ 12}.

Substituindo os valores e resolvendo, teremos como resultado {x_{1} \ = \ 3} e {x_{2} \ = \ 4}

Substituindo os valores de {x_{1}} e de {x_{2}} na primeira equação do sistema, e calculando os valores correspondentes de {y}, teremos as seguintes valores para {y } : {y_1 \ = \ 4 \ e \ y_2 \ = \ 3}

Logo, temos como solução : s = { \left\{\begin{array}{cccccc} (x = 4, &y = 3)\\ (x = 3, &y = 4) \end{array}\right. }

Ambas as as soluções são aceitáveis e permutadas entre si.

Desta feita, dois vectores são: {4 \ m \ e \ 3 \ m}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 2)

 

Exercício 11 Três espelhos interceptam-se em ângulos rectos.Um feixe de luz atinge o primeiro deles com um ângulo {\theta} (ver figura ao lado) .a)Mostre que quando esse raio é refletido pelos outros dois espelhos e cruza o raio original,o ângulo entre esses dois raios será {\alpha = \ \ 180^{o}-2\theta} e determine o ângulo {\theta} para o qual os dois raios serão perpendiculares quando se cruzam?

.NÍVEL DE DIFICULDADE: Regular.

.

Resolução 11 .

Redesenhando a figura. Na figura o ponto de intersecção entre o raio incidente e o primeiro espelho espelho chamamos de {B}.

O raio que se reflecte deste ponto vai incidir no outro ponto do segundo espelho, que chamamos de {C}.

Raio reflectido do ponto {C} vai incidir no outro ponto do terceiro espelho que chamamos de {D}.

O raio reflectido do ponto {D} vai cruzar-se com o raio incidente num ponto que chamamos {A}.

O ângulo de incidência e reflexão no ponto {C} chamamos de {z}. O complementar de {z} chamamos de {\varphi}.

O ângulo de incidência e reflexão no ponto {D} chamamos de {\beta}. O complementar de {\beta} chamamos de {\Psi}.

O complementar de {\theta} chamas de {\chi}.

Marcamos ainda os .s é eficaz conforme indicado na figura.

Da figura, no ponto B, analisando entre o espelho e a sua normal, temos:

\displaystyle \chi \ + \theta = \ \ 90^{o}

pelo triângulo BHC, pelo teorema da soma dos ângulos internos, temos temos :

\displaystyle \chi \ + \varphi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \chi \ + \varphi = \ \ 90^{o}

Subtraindo ambas equações dos passos anteriores, obtemos :

\displaystyle \varphi = \ \theta

Pelo teorema de ângulos internos no triângulo CDG, temos :

\displaystyle \varphi \ + \Psi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \varphi \ + \Psi = \ \ 90^{o}

Pelo teorema de ângulos internos no triângulo ADF, temos :

\displaystyle y \ + \ 90^{o} \ + \Psi = \ \ 180^{o} \Rightarrow

\displaystyle y \ + \Psi = \ \ 90^{o}

Subtraindo esta última pela equação do passo anterior, obtemos :

\displaystyle y = \ \varphi

Como {\varphi = \ \theta}, obtermos:

\displaystyle y = \ \theta

No quadrilátero {ABCD} temos :

\displaystyle 2y \ + \alpha = \ \ 180^{o} \Rightarrow \alpha = \ \ 180^{o} \ - \ 2y

Substituindo {y = \ \theta}, obtemos:

\displaystyle \alpha = \ 180^{o} \ - \ 2\theta

Exercício 12 Um feixe de luz emitido por um laser,incide sobre a superfície da água de um aquário,como representado nesta figura :

O fundo desse aquário é espelhado ,a profundidade da agua é de 40 cm e o ângulo de incidência do feixe de luz é de {50^{o}}. Qual é a distância entre os pontos A e C da figura?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 12 .

Dados

{n_{agua} = \ \ 1,33}

{h = \overline{BO}= \ \ 40 \ cm}

{\varphi = \ \ 50^{o}}

{ \overline{AC} \rightarrow \ ?}

.

No problema, a luz incide a partir do ar para a água. Toca na água no ponto A e refracta-se na água. É reflectida no ponto B(no espelho que está no fundo) e retorna à superfície de separação água-ar. No ponto C, faz refracção novamente para o Ar.

Para acharmos a distância AC devemos calcular o ângulo que o feixe de luz faz com a normal na água (usando a lei de Snell-Descartes), e combinando estes valores com a profundidade, no triângulo ABC.

.

Redesenhando a figura,temos :

Pela lei de Snell, no ponto A, podemos determinar o ângulo de refração. Temos :

\displaystyle n_{ar} \ sen 50^{o} = \ \ n_{agua} \ . sen \theta

Isolando o seno, no membro esquerdo, temos:

\displaystyle sen \theta = \ \dfrac{n_{ar} \ sen 50^{o}}{n_{agua}} = \ \dfrac{1. \ sen 50^o}{1,33}

\displaystyle \Rightarrow \theta =\ arcsen({ \dfrac{1. \ sen 50^o}{1,33}}) = \ 35,15^{o}

Se considerarmos o ponto médio do segmento {\overline{AB}}, que chamamos de {D}, então o triângulo ABD é rectângulo. O ângulo interno do vértice B é igual a {\theta } e {\overline{AD}=\overline{AC}/2}. Então:

\displaystyle tg \theta= \ \dfrac{\overline{AD}}{\overline{BD}} = \ \dfrac{\dfrac{\overline{AC}}{2}}{h} = \ \dfrac{\overline{AC}}{2h}

\displaystyle \Rightarrow \overline{AC} = \ 2h \ . \ tg \theta

Substituindo valores, obtemos:

\displaystyle \overline{AC} = \ 2 \ . \ 40 \ cm \ . \ tg \ (35,15^o) \Rightarrow \overline{AC} = \ 56,37 \ cm

.

Exercício 13 Um rapaz em repouso na rua,vê sua imagem reflectida por um espelho plano preso verticalmente na traseira de um autocarro que se afasta com a velocidade escalar constante de {20 \ m/s}. Qual é a velocidade de afastamento da imagem em relação ao rapaz?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 13 Neste problema temos de analisar não só a velocidade com o espelho se afasta do rapaz, mas também a velocidade com que a sua imagem (que o espelho produz) se afasta dele.

O melhor raciocínio mais simplificado, consiste em estabelecer o espelho como referencial de analise e depois achar a velocidade relativa.

A medida que o autocarro se move para a direita, automaticamente o espelho também se move para a direita. como o movimento é relativo, podemos considerar que o autocarro e o espelho estão em repouso e o rapaz ({AB}) é que se está a mover no sentido oposto (para a esquerda), com a mesma velocidade.

Se o rapaz, que é o nosso objecto óptico({AB}), se move para esquerda com velocidade v, então a sua imagem formada pelo espelho ({A'B'}) se afasta do espelho para direita com velocidade {v'}.

Vamos estabelecer as equações do movimento no 1ª referencial (com origem no espelho) e depois amos fazer a transformação de Galileu par o 2º Referencial (com origem no rapaz). Veja a figura.

Pela lei da reflexão, em qualquer momento:

\displaystyle \Delta x_{e} = \Delta x_{i}

Portanto :

\displaystyle -v \cdot t = v' \cdot t

\displaystyle \Rightarrow -v = v'

\displaystyle \Rightarrow |v| = |v'|

Então , neste referencial (Referencial 1), temos:

\displaystyle x_{Rap-Ref1}=x_{0Rap} - v. t

\displaystyle x_{Esp-Ref1}=0

\displaystyle x_{Rap-Ref1}=x_{0Rap} + v.t

.

Se estabelecermos um novo referencial (no rapaz), então este referencial 1 (com origem no espelho) está em movimento em relação ao novo referencial 2 (com origem no rapaz), com velocidade v.

A transformação de galileu diz que: {x_{Ref2}=x_{Ref 1} - v. t}.

Então para o rapaz( que no referencial 1 estava em movimento regressivo com velocidade v) teremos:

\displaystyle x_{Rap-Ref2}=x_{Rap-Ref 1} + v. t

\displaystyle x_{Rap-Ref2}=(x_{0Rap}-v.t) + v. t

\displaystyle x_{Rap-Ref2}=x_{0Rap}

Neste novo referencial, o rapaz está repouso.

.

Para o espelho/autocarro( que no referencial 1 estava em repouso na origem) teremos:

\displaystyle x_{Esp-Ref2}=x_{Esp-Ref 1} + v. t

\displaystyle x_{Esp-Ref2}=0 + v. t

\displaystyle x_{Esp-Ref2}= v. t

Neste novo referencial, o espelho/autocarro estão em movimento com velocidade v (conforme enunciado).

Para a imagem (que no referencial 1 estava em movimento progressivo com velocidade v) teremos:

\displaystyle x_{Im-Ref2}=x_{Im-Ref 1} + v. t

\displaystyle x_{Im-Ref2}=(x_{0Im}+v.t) + v. t

\displaystyle x_{Im-Ref2}= x_{0Im} + 2 v t

Neste novo referencial,imagem está em movimento com velocidade 2v .

Neste caso, a velocidade da imagem é:

\displaystyle v_{im}= \ 2.v= \ 2.20=40 \ m/s

Exercício 14 Um nativo de uma aldeia pesca em uma lagoa de água transparente. Para isso usa uma lança. Ao observar um peixe, ele atira a sua lança na direcção em que o observa. O jovem está fora da água e o peixe está em 1 m abaixo da superfície. O peixe está a uma distancia horizontal de {0,9 \ m} do ponto aonde a lança atinge a superfície da água. Para essas condições determine :

a)O ângulo {\alpha},de incidência da luz na superfície da agua-ar.

b)O ângulo {\beta} que a lança faz com a superfície da água quando tenta alcançar o peixe.

c)A profundidade aparente y,da superfície da água em que o nativo vê o peixe.

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 14

Dados

{n_{ar} = \ \ 1}

{n_{agua} = \ \ 1,33}

{\alpha \ - \ ?}

{\beta \ - \ ?}

{y = \ \overline{DE} - \ ?}

Neste problema, temos analise baseadas na refracção da luz. O Peixe está no Ponto O nativo, na beira do rio, vê como se o peixe estivesse no ponto D (que é a imagem virtual do ponto C) formada pela refracção da luz na superfície. O ponto A é o ponto onde ocorre a refracção. O ângulo {\alpha} é o ângulo de incidência da luz que sai do peixe e incide no ponto A. O ângulo {\theta } é o ângulo de refracção da luz no ponto A. ângulo {\beta } é complementar de {\theta}

  1. Para encontramos o ângulo {\alpha}, vamos aplicar a relação para as razões trigonométricas no triângulo rectângulo ABC. Sendo {\overline{AB}} cateto adjacente, {\overline{BC}} cateto oposto e{\overline{AC}} a hipotenusa, teremos:

    \displaystyle tg \alpha = \ \dfrac{\overline{BC}}{\overline{AB}} = \ \dfrac{0,9}{1}

    \displaystyle \Rightarrow \alpha =arctg ( \ \dfrac{0,9}{1})= \ 41,99^{o}

    \displaystyle \alpha = \ 41,99^{o}

  2. Como {\beta} é o complementar de {\theta}, então, acharemos primeiro o {\theta} e com ele acharemos o {\beta}. O {\theta} será obtido pela lei da refracção:

    \displaystyle n_{ar} \ sen \theta = \ \ n_{agua} \ sen \alpha

    Insolando o seno de { \theta }, temos:

    \displaystyle \ sen \theta = \ \ \dfrac{ \ n_{agua} \ . \ sen \alpha}{n_{ar}} = \ \dfrac{ \ 1,33. \ sen(41,99)}{1}

    Neste caso:

    \displaystyle \theta = arcsen ( \dfrac{1,33. \ sen(41,99)}{1})

    \displaystyle \Rightarrow \theta = \ \ 62,85^{o}

    Como {\theta \ + \beta = \ \ 90^{o}}, então:

    \displaystyle \beta = \ \ 90^{o} \ - \theta = \ \ 90^{o} \ - \ 62,85^{o}

    \displaystyle \Rightarrow \beta = \ 27,15^{o}

  3. A profundidade aparente do peixe, neste caso, corresponde ao segmento {\overline{DE}}. Para achar o seu valor, usaremos o triângulo ADE. Para este triângulo, temos:

    \displaystyle tg \beta = \ \dfrac{\overline{DE}}{\overline{AE}} \ \dfrac{y}{x}

    \displaystyle \Rightarrow y = \ x \ tg \ (\beta)

    \displaystyle \Rightarrow y = \ 0,9\ tg \ ( 27,15^{o})

    \displaystyle y = \ 0,46 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 1)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 1 .

A equação de um MHS é dada por { x=0,5 \sin 10 \pi t (SI)}.

Determina o número de ciclos feitos em { 10 \ s } de oscilação.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

A equação de um MHS é geralmente dada na forma { x= A \cdot \sin (\omega \cdot t+\varphi_0 }. .

Comparando, termo a termo, com a equação dada no enunciado, temos que:

\displaystyle A=0,5 \ m

\displaystyle w=10 \ \pi \ rad/s

\displaystyle \varphi_0=0 \ rad

As unidades dos resultados estão no SI pois o enuanciado assim indica.

Para conseguir calcular o número de ciclos feitos em { 10 \ s} precisasse saber quantas oscilações são feitas em {1 \ s} (a frequência da oscilação).

Para o MHS, {\omega} é dado por:

\displaystyle \omega=2 \pi \cdot f

Logo:

\displaystyle \omega=2 \cdot \pi \cdot f

Substituindo o valor de {\omega} dos dados, obtemos:

\displaystyle 10 \pi = 2 \cdot \pi \cdot f

Isolando {f}:

\displaystyle f= \frac{10 \pi}{2 \pi}=5 \ Hz

Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por:

\displaystyle f= \frac{N}{t}

\displaystyle \Rightarrow N= f \cdot t

substituindo valores, obtemos:

\displaystyle N=5 \cdot 10

Em { 10 \ s} de oscilações são realizados 50 ciclos.

.

Exercício 2 Uma partícula realiza um MHS, cuja equação horária é { x=5 \cos (\dfrac{\pi}{4} t } SI.

  1. Determine o período do MHS.
  2. Esboce o gráfico da velocidade em função do tempo.

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.

  1. A equação horária de um MHS pode ser dada na forma { x=A \cos(\omega t+\varphi_0)}.Comparando, termo a termo, com a equação dada no enunciado ({x=5 \cos (\dfrac{\pi}{4} t }), obtemos:

    \displaystyle \omega=\frac{\pi}{4} \ rad/s

    Sabendo que { \omega=\frac{2\pi}{T} },logo:

    \displaystyle T=\frac{2\pi}{\omega}

    Substituindo os dados:

    \displaystyle t= \frac{2\pi}{\pi /4}

    \displaystyle T=8 \ s

  2. Para se esboçar o gráfico da velocidade em função do tempo precisamos construir uma tabela que relaciona as duas grandezas({v} e {t}).Para isso, precisamos escrever a equação da velocidade em função do tempo.
    Sabe-se que a velocidade é dada pela derivada da posição em função do tempo, temos:

    \displaystyle v=\frac{dx}{dt}

    \displaystyle \Rightarrow v=\frac{d}{dt} [5 \cos(\frac{\pi}{4}t)]

    \displaystyle \Rightarrow v= -5 \cdot \frac{\pi}{4} \sin ( \frac{\pi}{4}t)

    \displaystyle v= -1,25\pi \sin (\frac{\pi}t)

A tabela será construida atribuindo diversos valores a {t} e calculando os valores correspondentes de {v}. Escolhemos os valores de {t} de 0, 2, 4, 6, 8 e 10 s.

Lançando os valores num sistema de coordenadas cartesianos {(t;v)} e interpolando os pontos, obtemos um gráfico similar ao da figura abaixo:

Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de {v} em relação a {t} é .

Exercício 3 .

Uma partícula descreve um MHS segundo a equação {x=0,5 \cos( \pi / 3+2 \pi t) }, no SI.Obtenha.

  1. A correspondente equação da velocidade.
  2. O módulo da máxima velocidade atingida por essa partícula.

NÍVEL DE DIFICULDADE: Elementar

Resolução 3 .

Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.

  1. A equação da velocidade de uma partícula em MHS é dada pela derivada da equação da posição em função do tempo, ou seja:

    \displaystyle v(t)=\frac{d}{dt}x

    \displaystyle \Rightarrow v(t)=\frac{d}{dt}[0,5 \cos(\frac{\pi}{3} +2 \pi t)]

    Derivando, obtemos:

    \displaystyle v{t}=-0,5 \cdot 2 \pi \sin( \frac{\pi}{3} +2 \pi t)

    \displaystyle \Rightarrow v_{t}=-\pi \sin(\frac{\pi}{3} +2 \pi t)

  2. A velocidade num MHS é máxima quando { \sin( \varphi_0+ \omega)=1}. Logo:

    \displaystyle v_{max}=\pi \ m/s

Exercício 4 .

Considere o MHS dado no gráfico. Escreva sua equação.

NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

O Problema ilustra o gráfico de {x(t)} de um MHS. Para escrevermos a equação deste MHS, devemos determinar em primeiro lugar os seus parâmetros ({A}, {\omega} e {\varphi_0}). Estes parâmetros são determinados no gráfico.

A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de {t} (valor de equilíbrio é 0), então a amplitude é o maior valor de x a se registar na curva.

O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida.

A equação do movimento de um MHS é dada na forma { x = A \sin (\omega t + \varphi_0)}.

Com base na análise, é possível concluir que:

A amplitude { A=3 \ cm} ou { A=0,03 \ m} .

No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é {90^o=\pi / 2 \ Rad}. Neste caso, para obter a fase inicial, teremos:

\displaystyle \omega t + \varphi_0= \pi/2

\displaystyle \Rightarrow \omega \cdot 0 + \varphi_0= \pi/2

\displaystyle \Rightarrow \ \varphi_0= \pi/2

O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação.

Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que:

\displaystyle T/2= 4 s

\displaystyle \Rightarrow \ T= 4\cdot 2

\displaystyle \Rightarrow \ T= \ 8 \ s

Sabendo que { \Rightarrow=2 \pi /T}, logo:

\displaystyle \omega =2 \pi /8

\displaystyle \Rightarrow \omega = \frac{1}{4} \pi \ rad/s

Por fim, substituindo os dados na equação da oscilação ({ x = A \sin (\omega t + \varphi_0)}), obtemos:

\displaystyle x = 0,03 \sin (\frac{1}{4} \pi t + \dfrac{\pi }{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 1)

— 2. Exercícios sobre Geométrica —

— 2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos —

Exercício 7 Supondo que o objecto B,no instante inicial está em movimento com a velocidade de {1 \ m/s},na direcção indicada. Após quanto tempo será visível pelo espelho de vidro,pelo observador no ponto A?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 7 .

O problema a seguir trata de um problema de Campo de Visão. Pretendemos determinar após quanto tempo o corpo B é visível ao observador do ponto A, pelo espelho na parede.

.

Considerando as dimensões indicadas pelos quadriculados, e a posição do ponto A, podemos traçar os raios luminosos que partem do ponto A e se reflectem no espelho. Os raios que vão definir o campo de visão serão os raios que incidem nas extremidades do espelho. No caso os raios (1) e (2).

Traçamos os seus raios reflectidos pelo espelho, obedecendo a lei da reflexão, de modos que formem os mesmos ângulos. Neste caso, traçamos os raios (1′) e (2′) respeitando a simetria do problema. Veja a figura a seguir:

.

Neste caso, o campo de visão do observador A é a região compreendida entre os raios (1′) e (2′).

.

O Corpo B será visível pelo observador A no momento em que entra no campo de visão de A. Considerando que o corpo B se move e direcção horizontal, ele entrará no campo de visão de A, quando atingir o ponto P, que é o ponto de intercessão entre a linha da sua trajectória e o raio reflectido (1′).

Para calcularmos o tempo, devemos achar primeiramente a distancia percorrida por ele (corpo B) até chegar ao ponto P. No gráfico, podemos observar que esta distancia igual a 2 metros. Então:

{\Delta x = \ 2 m.}

Então, como estamos a avaliar o movimento como um todo, usamos as equações do MRU. Logo:

\displaystyle v = \ \dfrac{\Delta x}{\Delta t} \Rightarrow \Delta t = \ \dfrac{\Delta x}{v} = \

\displaystyle \Rightarrow \Delta t = \dfrac{2 \ m}{1 \ m/s} \Rightarrow \Delta t = \ \ 2 s

Exercício 8 Dois espelhos planos estão dispostos de modo a formar um ângulo de {30^o} entre eles, conforme a figura abaixo. Um raio luminoso incide sobre um dos espelhos, formando um ângulo de {70^o} com a superfície. Este raio reflecte-se neste espelho e depois se reflecte no outro espelho, e cruza o raio incidente formando um ângulo {\alpha}. Qual é o valor deste ângulo{\alpha}?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

Em primeiro lugar, devemos devemos dar nome aos pontos de referência:

  • O raio incidente identificamo-lo por 1;
  • O raio reflectido do primeiro espelho, que vai para o segundo espelho, identificamo-lo por 2;
  • O raio que sai do segundo espelho e cruza novamente com raio 1, identificamo-lo por 3;
  • O ponto de intersecção do raio 1 com o primeiro espelho, identificamo-lo por A;
  • O ponto intersecção do raio 2 com o segundo espelho, identificamo-lo por B;
  • O ponto de intersecção do raio 3 com raio 1, identificamo-lo por D;
  • O ponto de cruzamento dos dois espelhos, identificamo-lo por C.
  • O ângulo formado entre o raio 1 e o raio 2, identificamo-lo por {\beta};
  • O ângulo formado entre o raio 2 2 o espelho 1, identificamo-lo por {\varphi};
  • O ângulo formado entre o raio 2 e o segundo espelhos, identificamo-lo por {\gamma};
  • o ângulo formado entre o raio 2 e o raio 3, identificamo-lo por {\delta};
  • o ângulo formado entre o raio 3 e o espelho 2, identificamo-lo por {\gamma '}.

Queremos determinar {\alpha}, pela geometria sabemos que rectas concorrentes(rectas que se cruzam) formam dois ângulos iguais e opostos, então:

\displaystyle \alpha = \ \alpha'

Podemos determinar {\alpha'} pelo triângulo ABD. Sabemos que a soma dos ângulos internos de um triângulo qualquer é igual à {180^o}, então:

\displaystyle \alpha' + \beta + \delta = \ 180^o

O raio 1 forma um ângulo de {70^o} com o espelho {E_1} e pela lei da reflexão, por analogia, o raio 2 também forma um ângulo de {70^o} com o mesmo espelho( {\varphi = \ 70^o}).

A soma destes três ângulos {(\varphi, \ \beta \ e \ 70^o} dá um ângulo de {180^0}, então:

\displaystyle \varphi + \beta+ 70^o = \ 180^o

\displaystyle \Rightarrow \beta = \ 180^o - 70^o - \varphi = \ 180^o - 70^o - 70^o \Rightarrow \beta = \ 40^o

No triângulo ABC, {\gamma} é um dos ângulos do mesmo triângulo e, como já sabemos, a soma dos três ângulos deste triângulo é igual a {180^o}. Assim podemos determinar {\gamma}:

\displaystyle \varphi + \gamma + 30^o = \ 180^o

\displaystyle \Rightarrow \gamma = \ 180^o-30^o- \varphi = \ 180^o-30^o-70^o \Rightarrow \gamma = \ 80^o

Como {\gamma} é o ângulo formado pelo raio 2 e o espelho 2, pela lei de reflexão, por analogia, este ângulo é igual ao ângulo formado pelo raio 3 e o espelho 2 {\gamma'}. Desta forma podemos determinar {\delta};

\displaystyle \gamma + \delta + \gamma ' = \ 180^o \Rightarrow \delta = \ 180^o - \gamma -\gamma ' = \ 180^o - 80^o - 80^o \Rightarrow \delta = \ 20^o

Tendo já conhecido os valores de {\beta} e {\delta} podemos determinar {\alpha '} que consequentemente será igual à {\alpha}.

\displaystyle \alpha ' + \delta + \beta = \ 180^o

\displaystyle \Rightarrow \alpha ' = \ 180^o - \delta - \beta = \ 180^o - 20^o - 40^o \Rightarrow \alpha ' = \ 120^o

\displaystyle \alpha ' = \ \alpha, \ logo: \ \alpha = \ 120^o

Exercício 9

Considere a figura baixo em que um ponto A está situado em frente de um espelho plano. Qual é a distância entre a imagem do ponto A e o ponto B, na figura, considerando as dimensões da escala indicada?

NÍVEL DE DIFICULDADE: Regular.

Resolução 9

E primeiro lugar, devemos localizar a imagem de A. Para esboçar a imagem, seguimos o seguinte raciocínio:

  1. Tracemos dois raios incidentes partindo do ponto A, que incidem no espelho 1 e 2;
  2. Sabemos que por ser um espelho plano os raios vão se reflectir sob o mesmo ângulo. Traçamos então os raios reflectidos 1′ e 2′;
  3. A partir da prolongação dos raios reflectidos pelo espelho podemos determinar a posição da imagem. Está imagem, de acordo com a formação da imagem me espelhos planos, estará à mesma distancia do espelho a que o objecto A se encontra. Neste caso a imagem estará a {1 m} de distância do espelho.

.

A distância entre a imagem de A (A’) e o ponto B é o segmento:{\overline{A'B}}.

Considerando a escala em quadriculado, podemos considerar o triângulo rectângulo (A’BP). Neste caso, {\overline{A'B}} é a hipotenusa do triângulo rectângulo.

Então:

\displaystyle \overline{A'B}^2 = \ \overline{A'P}^2+\overline{PB}^2

\displaystyle \overline{A'B} = \ \sqrt{8^2+3^2}

\displaystyle \overline{A'B} = \ \sqrt{73}

\displaystyle \overline{A'B} = \ 8,544 m

Exercício 10 A distância entre A e o espelho plano {E_1} é de 20 cm. A distância entre o mesmo ponto e o outro espelho plano {E_2} é de 40 cm. Sendo o ângulo {\theta = \ 30^o}. Determine a distância entre a posição da imagem do ponto A formada pelo espelho {E_1} e a imagem do mesmo ponto formada pelo espelho {E_2}.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10

Em primeiro lugar devemos encontrar as imagens formadas pelos espelhos {E_1} e {E_2}.

Sabemos que, nos espelhos planos, a imagem é formada no lado oposto ao espelho, na direcção da perpendicular ao espelho que passa pelo objecto em causa (A) e fica situada a uma distância igual a distância entre objecto e o espelho.

Usando isso, podemos encontrar uma imagem do objecto a ser formado pelo espelho {E_1} (que designamos de {4}) e pelo espelho {E_2} (que designamos {C}.

O ponto de intersecção entre a linha que sai do objecto até a imagem B (Segmento {\overline{AB}}) e o próprio espelho {E_1} identificamos por {B'}.

O ponto de intersecção entre a linha que sai do objecto até a imagem C (Segmento {\overline{AC}}) e o próprio espelho {E_2} identificamos por {C'}.

Então pela formação de imagens em espelhos planos sabemos que {\overline{AB'}=\overline{B'B}} e que {\overline{AC'}=\overline{C'C}}.

A distância que deseja determinar corresponde ao segmento {\overline{BC}}.

Consideremos {\overline{AB} = \ a}, distância entre o objecto e a imagem formada pelo espelho {E_1}, e {\overline{BC} = \ d}, distância entre as duas imagens.

As imagens são formadas pela prolongação dos raios incididos perpendicularmente aos espelhos. Neste caso o ângulo entre cada espelho e o seu respectivo raio incidido é igual à {90^o}.

Por se tratar de espelhos planos, a distância entre cada imagem e o espelho que forma esta imagem é igual à distância entre o objecto e o respectivo espelho. Então:

\displaystyle \overline{BB'} = \ \overline{AB'} = \ 20 \ cm \Rightarrow \overline{AB} = \ a = \ 2\overline{AB'} = \ 2 \cdot 20 \ cm = \ 40 \ cm

\displaystyle \overline{CC'} = \ \overline{AC'} = \ 40 \ cm \Rightarrow \overline{AC} = \ b = \ 2\overline{AC'} = \ 2 \cdot 40 \ cm = \ 80 \ cm

Podemos determinar {\overline{BC} = \ d} pela lei dos cossenos:

\displaystyle d^2 = \ a^2+b^2-2ab \cos \alpha

Mas precisamos antes determinar {\alpha}. {\alpha} é um dos ângulos internos do quadrilátero AB’C’D. Pela geometria, sabemos que a soma dos ângulos internos de um quadrilátero é igual à {360^o}. Então:

\displaystyle \theta + 90^o + \alpha + 90^o = \ 360^o \Rightarrow \alpha = \ 360^o - 180^o - \theta

Sabendo que {\theta = \ 30^o}, teremos:

\displaystyle \alpha = \ 360^o - 180^o -30^o \Rightarrow \alpha = \ 150^o

Assim, já podemos calcular o valor da distância entre as imagens formadas pelos dois espelhos:

\displaystyle d^2 = \ a^2 + b^2 - 2ab \cos \alpha\Rightarrow d = \ \sqrt{a^2+b^2-2ab \cos \alpha}

\displaystyle a = \ 40 \ cm, \ b = \ 80 \ cm , \ \alpha = \ 150^o

Então:

\displaystyle d = \ \sqrt{(40)^2 + (80)^2 - 2 \cdot 40 \cdot 80 \ \cdot (\cos 150^o)}= 116,37 \ cm

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers gostam disto: