Luso Academia

Início » Posts tagged 'Resolvido Óptica'

Tag Archives: Resolvido Óptica

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação (Parte 2)

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 4 Dois trens de pulso de certa radiação electromagnética são criados simultaneamente, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com comprimento de {L_1 = \ 125 \ m} e {L_2 = \ 70 \ m}. O trem de pulso 1 passa pelo material de índice de refração {n_1}. O trem de pulso 2 passa pelo material de índice {n_2}.

  1. Sendo que a parte externa é o ar, e { n_1 = \ 1,5}, qual deverá ser o valor de {n_2} para que os pulsos cheguem ao mesmo tempo na tela.
  2. Qual é a diferença entre o tempo de chegada dos dois pulsos no caso em que {n_2 = \ 1,5}.

NÍVEL DE DIFICULDADE: Regular.

 

Resolução 4

    1. .
  1. Para que os trens de pulsos das ondas cheguem na tela ao mesmo tempo é os caminhos ópticos sejam iguais. Como temos 3 materiais, é necessário apenas comparar o trajecto aonde há diferença de índices de refração. Neste caso, o trem pulso 1 passa pelo material de índice de refração {n_1}. Analisaremos o trajecto de B-E. O trem de pulso 2 passa pelo material de índice {n_2} e depois passa por um percurso de ar, até chegar ao ponto D que está alinhado com o ponto E. Analisaremos o trajecto B-C-D.

    A condição para que cheguem ao mesmo tempo é que os caminhos ópticos sejam iguais. Note que o caminho óptico é defino pela relação:

    \displaystyle \textless AB \textgreater = \int_{A}^{B} n \cdot dl

    Para meios em que { n=const \ \Rightarrow \textless AB \textgreater = \bar{AB} \cdot n }.

    Então:

    \displaystyle \textless AE \textgreater = \textless BD \textgreater \Rightarrow \textless AE \textgreater = \textless BC \textgreater + \textless CD \textgreater

    \displaystyle \Rightarrow \bar{AE} n_1 = \bar{BC} n_2 + \bar{CD} n_{Ar}

    onde: {n_{Ar} = \ 1}. Logo, isolando {n_2}, obtemos:

    \displaystyle n_2= \frac{\bar{AE} n_1 - \bar{CD} n_{Ar}}{ \bar{BC}}= \frac{ L_1 n_1 - (L_1 - L_2 )}{ L_2}

    \displaystyle n_2 = \frac{ 125 \cdot 1,5 - (125 - 50 )}{ 50}=1,89

     

  2. Para este caso, o tempo de passagem no troço em análise será determinada pela equação do MRU, considerando a velocidade de propagação {c} e o caminho óptico.

    .

    Neste caso, para o trem 1:

  3.  

    \displaystyle c= \frac{ \textless AE \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{\bar{AE} n_1}{c}= \frac{125*1,5}{3\cdot10^8}= \frac{125*1,5}{3\cdot10^8}=6,25 \cdot 10^{7} s

    Para o trem 2:

    \displaystyle c= \frac{ \textless BD \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless BC \textgreater + \textless CD \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{L_2 n_2 + (L_1 - L_2) n_{Ar} }{c}= \frac{70 \cdot 1,5 + (150 - 70) \cdot 1}{3 \cdot 10^8} =5,33 \cdot 10^{7} s

    Neste caso, diferença de tempos é:

    \displaystyle |t_2 - t_1 |= | 6,25 \cdot 10^{7} - 5,33 \cdot 10^{7} | = 0,92 \cdot 10^{7} s

    Como a seguir aos pontos D e E o material é comum aos dois trens de pulsos, então esta diferença mantém-se até o final.

Exercício 5 Na figura a seguir, dois pulsos electromagnéticos são criados em simultâneo, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com índice de refração {n_{1} = \ 1,4; \ n_{2} = \ \ 1,7; \ n_{3} = \ \ 1,95; \ n_{4} = \ \ n_{5} = \ \ 1,2; \ n_{6} = \ \ 1; \ n_{7} = \ \ 1,3}.O valor de L é 25 m.Qual pulso chegará primeiro e qual é a diferença entre o tempo de chegada dos dois pulsos?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 5 \vspace{0,3cm}

Para não termos de calcular o tempo em cada porção, podemos usar o conceito de caminho óptico. Neste conceito, em vez de se considerar que o índice de refração afecta a velocidade, ele será visto como afectando apenas o percurso. Pelo que, podemos considerar que a luz sempre se propaga com a mesma velocidade {c}. Neste caso, temos apenas de calcular os dois caminhos ópticos e depois calcular os temos.

Para o pulso 1:

\displaystyle \textless l_1 \textgreater = L \cdot n_1 +L \cdot n_2 + L \cdot n_3 + L \cdot n_4 = \ L \cdot (n_1 + n_2 + n_3 + n_4)

\displaystyle \Rightarrow \textless l_1 \textgreater = \ 25 \cdot (1,4 + 1,7 + 1,95 + 1,2)=156,25 \ m

Neste caso, o tempo será obtido a seguir:

\displaystyle c= \frac{ \textless l_1 \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless l_1 \textgreater }{c}= \frac{156,25}{3\cdot10^8}=5,21 \cdot 10^{7} s

Para o pulso 2:

\displaystyle \textless l_2 \textgreater = 2L \cdot n_5 +L \cdot n_6 + L \cdot n_7 = \ L \cdot (2 n_5 + n_6 + n_7)

\displaystyle \Rightarrow \textless l_2 \textgreater = \ 25 \cdot (2 \cdot 1,2 + 1 + 1,3)=117,5 \ m

Neste caso, o tempo deste pulso será obtido a seguir:

\displaystyle c= \frac{ \textless BD \textgreater }{t_2} \Rightarrow t_2 = \frac{ \textless l_2 \textgreater }{c} = \frac{117,5}{3 \cdot 10^8} =3,92 \cdot 10^{7} s

Como a seguir a este trecho, o material é comum aos dois pulsos, então esta diferença mantém-se até o final.

Neste caso, diferença de tempos é:

\displaystyle |t_2 - t_1 |= | 3,92 \cdot 10^{7} - 5,21 \cdot 10^{7}| = 1.29 \cdot 10^{7} s

Como {t_1 \textgreater t_2 }, significa que o pulso 2 leva menos tempo a percorrer o trecho. Portanto, o pulso 2 chega primeiro.

— 1.2. Exercícios sobre Energia e Potência da Radiação —

Exercício 6 Uma onda electromagnética de frente plana de intensidade de {6 \ W/m^2} inside sobre uma superfície totalmente refletora de {40 \ cm^2} de área, posicionado perpendicularmente à direcção de propagação da onda.

Determine a força que a onda exerce sobre esta superfície.NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Quando uma OEM incide sobre uma superfície totalmente reflectora como o espelho, sua pressão de radiação será:

\displaystyle P_r = \ \frac{2I}{c} \ \ \ \ \ (3)

Por definição, a pressão é a força por unidade de área:

\displaystyle P = \ \frac{F}{A} \ \ \ \ \ (4)

Então:

\displaystyle P_r = \ \frac{2I}{c} \Rightarrow \frac{F}{A} = \ \frac{2I}{c} \Rightarrow F = \ \frac{2AI}{c}

Substituindo:

  • \displaystyle F = \ \frac{2 \cdot 40 \cdot 10^{-4} \cdot 6}{3 \cdot 10^8} = \ 1,6 \cdot 10^{-10} N

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 1 Uma onda electromagnética com frequência de 65 Hz desloca-se em um material magnético isolante que possui constante dieléctrica relativa é igual à 3,64 e a permeabilidade magnética relativa é igual à 5,18 nessa frequência. o campo eléctrico possui amplitude de {7,2 \cdot 10^{-3} \ V/m}.

  1. Calcule a velocidade de propagação da onda?
  2. Qual é o comprimento de onda?
  3. Qual é a amplitude do campo magnético?NÍVEL DE DIFICULDADE: Regular.
Resolução 1

Dados

{f = \ 65 Hz}

{\varepsilon_r = \ 3,64}

{\mu_r = \ 5,18}

{E_0 = \ 7,2 \cdot 10^{-12} \ v/m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\Pi \cdot 10^{-7} \ Wb/Am}

{\textbf{a)}v-? \ \ textbf{b)} \lambda-? \ \textbf{c)}H_0-?}

  • {v-?}

    Conhecemos a equação duma onda electromagnética que é:

    {\frac{\partial ^2B}{\partial t^2} = \ \frac{1}{\mu \varepsilon} \cdot \frac{\partial ^2B}{\partial x^2}}, onde {\frac{1}{\mu \varepsilon} = \ v^2} é a velocidade de propagação da onda.

\displaystyle v^2 = \ \frac{1}{\mu \ \varepsilon} \Rightarrow v = \ \sqrt{\frac{1}{\mu \varepsilon}}

{\mu} e {\varepsilon} são as constantes magnéticas e eléctricas do meio, respectivamente.

A relação entre estas e as constantes magnéticas e eléctricas relativa é a seguinte:

{\mu = \ \mu_0 \mu_r} e {\varepsilon = \ \varepsilon_0 \varepsilon_r}.

Então a velocidade de propagação da onda será:

{v = \ \frac{1}{\sqrt{\mu \varepsilon}} = \ \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}}}.

Sabe-se que:

\displaystyle c = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \ m/s

Logo:

\displaystyle v = \ \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot c = \ \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \ \frac{3 \cdot 10^8 \ m/s}{\sqrt{5,18 \cdot 3,64}} = \ 0,7 \cdot 10^8 \ m/s

  1. {\lambda-?}

    A onda electromagnética em questão é uma onda sinusoidal e periódica que pode ser expressa em termos dos seus campos eléctricos e magnéticos da seguinte forma:

    \displaystyle \overrightarrow {E}(x,t) = \ E_0 \cdot \cos(\omega t+ Kx) \overrightarrow{j}

    O comprimento de onde é

    \displaystyle \overrightarrow{B}(x,t) = \ B_0 \cdot \cos(\omega t+ Kx) \overrightarrow{k}

    Para as ondas, a velocidade obedece a relação:

    {v = \ \dfrac{\lambda}{T}}, e sabemos que {T = \ \frac{1}{f}}

    \displaystyle \Rightarrow \lambda = \ \frac{v}{f}

    \displaystyle \Rightarrow \lambda = \ \frac{0,7 \cdot 10^8 \ m/s}{65 \ s^{-1}} = \ 0,011 \cdot 10^8 \ m = \ 1,1 \cdot 10^6 \ m = \ 1100 \ Km

     

  2. {H_0-?}

    Utilizando a relação das amplitudes dos campos eléctricos e magnéticos na Onda Electromagnética (O.E.M.), temos:

  3.  

    \displaystyle \sqrt{\varepsilon_0 \varepsilon_r} \cdot E_0 = \ \sqrt{\mu_0\mu_r} \cdot H_0

    \displaystyle H_0 = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r} E_0}{\sqrt{\mu}_0 \mu_r} = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r}}{\sqrt{\mu_0 \mu_r}} \cdot E_0

    \displaystyle \Rightarrow H_0 = \ \sqrt{\frac{\varepsilon_0 \varepsilon_r}{\mu_0 \mu_r}} \cdot E_0 = \ \sqrt{\frac{8,85 \cdot 10^{-12} \ \cdot 3,64}{4 \pi \cdot 10^{-7} \cdot 5,18}} \cdot 7,2 \cdot 10^{-3}

    \displaystyle \Rightarrow H_0 = \ 9,43 \cdot 10^{-3} \ A/m

Exercício 2 A potência irradiada pela antena de uma estação radiofónica é de 4 kW. A 4 km do transmissor foi colocada uma antena de recepção de 65 cm de comprimento. Qual é o valor de pico da f.e.m induzida por esse sinal entre as extremidades da antena receptora.

NÍVEL DE DIFICULDADE: Regular.

Resolução 2

Dados

{P = \ 4 \ kW = \ \ 4 \cdot 10^3 \ W }

{l = \ 65 \ cm = \ \ 0,65 \ m}

{r = \ 4Km = \ 4 \cdot 10^3 \ m}

{\varepsilon_{ind}-?} {\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\pi \cdot 10^{-7} \ Wb/Am}

{C = \ 3\cdot 10^8 \ m/s}

{\varepsilon = \ \oint \overrightarrow{E}d\overrightarrow{l}}

O módulo ou amplitude da f.e.m é:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l \ \ \ \ \ (1)

 

Precisamos antes determinar a amplitude do campo eléctrico {(E_0)}. Em seguida poderemos determinar {\varepsilon_ind}. A intensidade da onda é:

\displaystyle I = \ \frac{1}{2}E_0H_0 = \ \frac{1}{2}E_0(\frac{B_0}{\mu,_0}) = \ \frac{E,_0 B_0}{2\mu,_0}

Como {c = \ \frac{E_0}{B_0}\Rightarrow B_0 = \ \frac{E_0}{c}}. Então:

\displaystyle I = \ \frac{E_0 \frac{E_0}{c}}{2 \mu_0}\Rightarrow I = \ \frac{\frac{E_0}{c}}{2\mu_0} = \ \frac{E_0^2}{2c \cdot \mu_0}

Isolando {E_0}, temos:

\displaystyle E_0^2 = \ 2 \mu_0 c I \Rightarrow E_0 = \ \sqrt{2 \mu_0 c I}

A intensidade da OEM é : {I = \ \frac{P}{A} = \ \frac{P}{4 \pi r^2}}, então:

\displaystyle E_0 = \ \sqrt{2 \mu_0 c \frac{P}{4\pi \cdot r^2}} = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \ \ \ \ \ (2)

 

Substituindo esta formula na equação 1, temos:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \cdot l

\displaystyle \Rightarrow \varepsilon_{ind} = \ \frac{l}{r} \sqrt{\frac{ \mu \cdot c\cdot P}{2\pi}} = \frac{0,65 \ m}{4 \cdot 10^3 \ m} \sqrt{\dfrac{4 \pi 10^{-7} \cdot 3 \cdot 10^8 \cdot 4 \cdot 10^3}{2 \pi}}

\displaystyle \Rightarrow \varepsilon_ind = \ 0,0796 \ V

 

Exercício 3 Um condutor de resistência de 150 {\Omega} e conduz uma corrente contínua de 1 A, e emite ondas electromagnéticas, devido o aquecimento. O condutor tem 8 cm de comprimento e 0,9 nm de raio.

  1. Calcule o vector de Poynting na superfície do filamento?.
  2. Encontre as magnitudes dos campos eléctricos e magnéticos na superfície do filamento;.

    NÍVEL DE DIFICULDADE: Regular.

Resolução 3

Dados {R = \ 150 \Omega}

{i = \ 1A}

{l = \ 8 \ cm}

{r = \ 0,3 \ n m = \ 0,3 \cdot 10^{-3} \ m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4 \pi \cdot 10^{-7} \ Wb/Am}

{c = \ 3 \cdot 10^8 \ m/s}

.
OBS: Para distinguir intensidade da radiação da intensidade de corrente eléctrica, nomeamos {I} para Intensidade da Radiação e {i} para intensidade de corrente eléctrica.

  1. A intensidade duma O.E.M. corresponde ao valor médio do vector de poynting, assim:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| \Rightarrow |\overrightarrow{S}| = \ 2I

    A intensidade duma OEM tem relação com a potência desta onda e com a área:

    \displaystyle I = \ \frac{P}{A}

    Sabemos que a potência pode ser dada por :

    \displaystyle P = \ U \cdot i = \ (i \cdot R)i\Rightarrow P = \ i^2 \cdot R

    Para área, vamos considerar a área lateral. Modelamos o condutor como um cilindro. Então, a área lateral será: {A = \ 2 \pi \cdot r \cdot l}.

    Substituindo estas duas relações na fórmula da intensidade , temos:

    \displaystyle I = \ \frac{P}{A} = \ \frac{i^2 \cdot R}{2 \pi \cdot r \cdot l}

    Substituindo na equação do módulo vector de Poyting, obtemos:

    \displaystyle |\overrightarrow{S}| = \ 2I = \ \frac{2R \cdot i^2}{2 \pi \cdot r \cdot l} = \ \frac{2 \cdot 150 \ \Omega \cdot (1 A)^2}{2 \pi \cdot 0,9 \cdot 10^{-9} \cdot 8 \cdot 10^{-2}} = \ 1989,4 \cdot 10^3 \ W/m^2

     

  2. Sabemos que para as O.E.M.:

    \displaystyle I = \ \frac{1}{2}E_0H_0

    Mas {c = \ \frac{E_0}{B_0} \Rightarrow B_0 = \ \frac{E_0}{c}} e {H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{\mu_0 \cdot C}}

    Então:

    \displaystyle I = \ \frac{1}{2}E_0 \cdot \frac{E_0}{\mu_0 \cdot c} = \ \frac{E_0^2}{2c \cdot \mu_0}

    . Isolando {E_0} nesta equação anterior, obtemos :

    \displaystyle E_0^2 = \ 2c \cdot \mu_0 \cdot I \Rightarrow E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I}

    Já sabemos que a intensidade é:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| = \ \frac{1}{2} \cdot 1989,4 \cdot 10^3 \ W/m^2 = \ 994,7 \cdot 10^3 \ W/m^2

    Logo a amplitude do vector campo magnético será:

    \displaystyle E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I} = \ \sqrt{2 \cdot 3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7} \cdot 994,7 \cdot 10^3}

    \displaystyle E_0 = \ 27,386 \cdot 10^3 \ V/m

    Então, a intensidade do campo magnético é:

    \displaystyle H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{c \cdot \mu_0} = \ \frac{27,386 \cdot 10^3}{3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7}} = 72,64 \ A/m

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers like this: