Luso Academia

Início » Posts tagged 'Resolvido MHS'

Tag Archives: Resolvido MHS

1.1. Generalidades do MHS (Parte 2)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 5 .

Um MHS tem {x=5 \cos (10 \pi \ t+ \dfrac{\pi}{2})}.

Determine a velocidade máxima e a aceleração máxima deste movimento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .

O problema trata de um Movimento Harmónico Simples (MHS) cuja posição é descrita por uma função cosseno.

Nos é pedido para determinar a velocidade máxima (amplitude da velocidade) e a aceleração máxima (amplitude da aceleração).

Sendo um MHS, para obter as equações da velocidade e da aceleração, deveremos derivar a posição em função do tempo. A primeira derivada será a velocidade. A segunda derivada será a aceleração.

A amplitude da velocidade e da aceleração serão os coeficientes das funções seno ou cosseno nas equações da velocidade e aceleração.

Sendo que as grandezas estão no SI, os resultados obtidos dos cálculos também estarão no SI.

.

Pelas leis do movimento:

\displaystyle v= \dfrac{dx}{dt}

E:

\displaystyle a= \dfrac{dv}{dt}

Logo:

\displaystyle v= \dfrac{dx}{dt}=\dfrac{d [5 \cos (10 \pi \ t+ \dfrac{\pi}{2})]}{dt}

\displaystyle \Rightarrow v= [5 \cos (10 \pi \ t+ \dfrac{\pi}{2})]'

\displaystyle \Rightarrow v= 5 \cdot (10 \pi \ t+ \dfrac{\pi}{2})' \cdot [-sen (10 \pi \ t+ \dfrac{\pi}{2})]

\displaystyle \Rightarrow v= 5 \cdot 10\pi [- sen (10\pi \ t+ \dfrac{\pi}{2}) ]

\displaystyle \Rightarrow v=-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})

A partícula em oscilação harmónica atinge a velocidade máxima quando o factor da função seno ou cosseno é igual a {\pm 1}. Na velocidade, isso ocorre quando a partícula passa pela posição de equilíbrio. Neste caso, isso ocorre quando { sen (10\pi \ t+ \dfrac{\pi}{2})=\pm 1}. Para efeitos de cálculos, vamos trabalhar apenas com o valor absoluto.

Neste caso:

\displaystyle v_{max}=| -50 \pi \cdot 1|

Logo, o valor absoluto da velocidade máxima é:

\displaystyle v_{max} = \ 50 \pi \ m/s \approx \ 157,1 \ m/s

Para a aceleração:

\displaystyle a= \dfrac{dv}{dt}=\dfrac{d [-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})]}{dt}

\displaystyle \Rightarrow a= [-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})]'

\displaystyle \Rightarrow a= 50\pi \cdot (10 \pi \ t+ \dfrac{\pi}{2})' \cdot [cos (10 \pi \ t+ \dfrac{\pi}{2})]

\displaystyle \Rightarrow a=-50\pi \cdot (10 \pi) \ \cos(10\pi \ t+ \dfrac{\pi}{2} )

\displaystyle \Rightarrow a=-500\pi^2 \ \cos(10\pi \ t+ \dfrac{\pi}{2} )

A partícula em oscilação harmónica atinge a aceleração máxima quando o factor da função seno ou cosseno é igual a {\pm 1}.Na aceleração, isso ocorre quando a partícula passa pela posição de desvio máximo. Neste caso, atinge quando {\cos(10\pi \ t+ \dfrac{\pi}{2})= \pm 1 }. De igual modo, para efeitos de cálculos, vamos trabalhar apenas com o valor absoluto.

Logo, o valor absoluto da aceleração máxima é:

\displaystyle a_{max}= |-500\pi^2 \ \cdot 1 |

\displaystyle \Rightarrow a_{max}=500\pi^2 \ m/s^2 \approx 4934,8 \ m/s^2

.

Exercício 6 .

Um sistema realiza oscilações harmónicas com amplitude de { 2 \ cm} e frequência {10 \ Hz}.

Considerando que oscilação inicia na posição de equilíbrio; Determine a equação desta MHS, se descrito por uma função seno.
NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

O problema dado apresenta um MHS onde nos é dado a frequência e a amplitude. Atenção que a amplitude está em {cm} que não é a unidade no SI. Então, teremos de converte-la para o SI.

Nos é pedido para determinar a equação deste MHS.

Para determinar a equação do MHS, precisamos de conhecer a amplitude, a frequência angular e a fase inicial. Usaremos a equação geral do MHS já conhecida.

A frequência angular será determinada pela relação entre frequência angular e linear.

A fase é obtida por análise da posição inicial do movimento e a função trigonométrica a ser usada na descrição desta oscilação.

Dados

{A= \ 2 \ cm= \ 2 \cdot 10 ^{-2} \ m}

{ f= \ 10 \ Hz}

Do estudo generalizado da função seno, conhecemos o gráfico genérico da figura a seguir.

Sabemos a partir dos dados que, no momento inicial, a partícula se encontrava na posição de equilíbrio ({x=0}).

Do gráfico anterior da função seno, observamos que a função seno atinge o zero para vários ângulos ({\varphi = 0}, {\varphi = 180^o}, {\varphi = 360^o}, etc.).Qualquer um dos ângulos anteriores é válido, pois não nos deram nenhuma referência do sentido da oscilação ou da velocidade.

Neste contexto, é costume optarmos pelo primeiro valor.

Pelos argumentos apresentados anteriormente, como a oscilação inicia na posição de equilíbrio,logo { \varphi_0 = \ 0 ^o = \ 0 \ rad }

A euação geral do MHS é:

\displaystyle x= A sen (\omega \cdot t+\varphi_0)

Para escrevermos a equação, temos de saber qual é o valor de {\omega} .

Sabemos que:

\displaystyle \omega = \ 2 \cdot \pi \cdot f

Logo, substituindo {f}, temos:

\displaystyle \omega =2 \cdot \pi \cdot 10

\displaystyle \Rightarrow \omega =20 \pi \ rad/s

Neste caso, substituindo os valores na equação da oscilação,temos:

\displaystyle x= A sen (\omega \cdot t+\varphi_0)

\displaystyle \Rightarrow x= 2 \cdot 10^{-2} sen (20 \pi \cdot t+0)

\displaystyle \Rightarrow x=2 \cdot 10^{-2} \cdot sen (20 \pi \ t)

Exercício 7 .

Numa oscilação, o corpo sai de um extremo outro em { 5 \ s } e chega com uma aceleração de {10 \ cm/s^2}. Determine a equação deste MHS.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7 .

O problema trata de um MHS. Nos é dado directamente o valor da aceleração com que o corpo chega no outro extremo. Na realidade, do conhecimento do MHS, a aceleração que o corpo tem quando atinge o extremo é a aceleração máxima ou amplitude da aceleração.

Também foi fornecida uma informação do tempo de duração da oscilação. Essa informação foi dada de modo indirecto, pelo que, carece de alguma interpretação.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corto move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremos para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremos (2º Extremo, no lado oposto).
  • Sai deste 2º extremos para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração, para o MHS. Esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Para sair de um extremo ao outro, a partícula tem de fazer dois destes movimento. Então, o tempo que a partícula leva a sair de um extremo para outro corresponde então a metade do período.

.

Dados

{a_{max}= \ 10 \ cm/s^2= \ 10 \cdot 10 ^{-2} \ m/s^2= \ 0,1 \ m/s^2}

{ \dfrac{T}{2}= \ 5 \ s}

.

A equação de uma MHS é a seguinte:

\displaystyle x=A sen ( \omega t+\varphi_0)

Precisamos saber qual é o valor da amplitude A, da frequência angular {\omega} e da fase inicial { \varphi_0}.

O fenómeno pode ser analisado conforme a ilustração abaixo:

Onde:

{E_1} – Extremo 1.

{E_2} – Extremo 2.

Pela ilustração é possível observar que os { 5 \ s} levados pelo corpo para sair de um extremo para o outro corresponde à metade do período da oscilação.

Logo:

\displaystyle T=2 \cdot 5=10 \ s

Além disso,nota-se que no momento do inicio da oscilação, o corpo de encontra num dos extremos (Ver figura anterior).

A função seno atinge os extremos quando {\varphi = 90^o}, {\varphi = 207^o}, {\varphi = 450^o}, etc. Reveja o gráfico genérico da função seno.

Sabemos que podemos adoptar qualquer um dos ângulos, visto que não nos é dada nenhuma referência sobre o sentido do movimento ou a velocidade.

Então, o ângulo de fase inicial é:

\displaystyle \varphi_0= \ 90^o= \ \dfrac{\pi}{2} \ rad

Sabemos que:

\displaystyle \omega= \dfrac{2 \pi}{T}

Logo:

\displaystyle \omega= \dfrac{2 \pi}{10}= \dfrac{\pi}{5}

Falta-nos saber o valor da amplitude da oscilação.

O enunciado afirma que o corpo atinge uma aceleração de { 10 \ cm/s^2} quando chega ao outro extremo.

Lembrar que, a aceleração máxima de um movimento é:

\displaystyle a_{max}=A \omega^2

Pretendemos determinar a amplitude. Isolando a amplitude, teremos:

\displaystyle \dfrac{a_{max}}{\omega^2}= \ A

\displaystyle \Rightarrow A= \ \dfrac{a_{max}}{\omega^2}

Substituindo valores, teremos:

\displaystyle A= \ \dfrac{0,1}{(\dfrac{\pi}{5})^2}

\displaystyle \Rightarrow A= \dfrac{0,1}{( \pi / 5)^2}= 0,253 \ m

Substituindo na equação geral, temos:

\displaystyle x=A sen ( \omega t+\varphi_0)

\displaystyle \Rightarrow x = 0,253 \cdot sen ( \dfrac{ \pi}{5} t + \dfrac{\pi}{2})

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.1. Generalidades do MHS (Parte 1)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 1 .

A equação de um MHS é dada por { x=0,5 \sin 10 \pi t (SI)}.

Determina o número de ciclos feitos em { 10 \ s } de oscilação.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

A equação de um MHS é geralmente dada na forma { x= A \cdot \sin (\omega \cdot t+\varphi_0 }. .

Comparando, termo a termo, com a equação dada no enunciado, temos que:

\displaystyle A=0,5 \ m

\displaystyle w=10 \ \pi \ rad/s

\displaystyle \varphi_0=0 \ rad

As unidades dos resultados estão no SI pois o enuanciado assim indica.

Para conseguir calcular o número de ciclos feitos em { 10 \ s} precisasse saber quantas oscilações são feitas em {1 \ s} (a frequência da oscilação).

Para o MHS, {\omega} é dado por:

\displaystyle \omega=2 \pi \cdot f

Logo:

\displaystyle \omega=2 \cdot \pi \cdot f

Substituindo o valor de {\omega} dos dados, obtemos:

\displaystyle 10 \pi = 2 \cdot \pi \cdot f

Isolando {f}:

\displaystyle f= \frac{10 \pi}{2 \pi}=5 \ Hz

Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por:

\displaystyle f= \frac{N}{t}

\displaystyle \Rightarrow N= f \cdot t

substituindo valores, obtemos:

\displaystyle N=5 \cdot 10

Em { 10 \ s} de oscilações são realizados 50 ciclos.

.

Exercício 2 Uma partícula realiza um MHS, cuja equação horária é { x=5 \cos (\dfrac{\pi}{4} t } SI.

  1. Determine o período do MHS.
  2. Esboce o gráfico da velocidade em função do tempo.

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.

  1. A equação horária de um MHS pode ser dada na forma { x=A \cos(\omega t+\varphi_0)}.Comparando, termo a termo, com a equação dada no enunciado ({x=5 \cos (\dfrac{\pi}{4} t }), obtemos:

    \displaystyle \omega=\frac{\pi}{4} \ rad/s

    Sabendo que { \omega=\frac{2\pi}{T} },logo:

    \displaystyle T=\frac{2\pi}{\omega}

    Substituindo os dados:

    \displaystyle t= \frac{2\pi}{\pi /4}

    \displaystyle T=8 \ s

  2. Para se esboçar o gráfico da velocidade em função do tempo precisamos construir uma tabela que relaciona as duas grandezas({v} e {t}).Para isso, precisamos escrever a equação da velocidade em função do tempo.
    Sabe-se que a velocidade é dada pela derivada da posição em função do tempo, temos:

    \displaystyle v=\frac{dx}{dt}

    \displaystyle \Rightarrow v=\frac{d}{dt} [5 \cos(\frac{\pi}{4}t)]

    \displaystyle \Rightarrow v= -5 \cdot \frac{\pi}{4} \sin ( \frac{\pi}{4}t)

    \displaystyle v= -1,25\pi \sin (\frac{\pi}t)

A tabela será construida atribuindo diversos valores a {t} e calculando os valores correspondentes de {v}. Escolhemos os valores de {t} de 0, 2, 4, 6, 8 e 10 s.

Lançando os valores num sistema de coordenadas cartesianos {(t;v)} e interpolando os pontos, obtemos um gráfico similar ao da figura abaixo:

Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de {v} em relação a {t} é .

Exercício 3 .

Uma partícula descreve um MHS segundo a equação {x=0,5 \cos( \pi / 3+2 \pi t) }, no SI.Obtenha.

  1. A correspondente equação da velocidade.
  2. O módulo da máxima velocidade atingida por essa partícula.

NÍVEL DE DIFICULDADE: Elementar

Resolução 3 .

Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.

  1. A equação da velocidade de uma partícula em MHS é dada pela derivada da equação da posição em função do tempo, ou seja:

    \displaystyle v(t)=\frac{d}{dt}x

    \displaystyle \Rightarrow v(t)=\frac{d}{dt}[0,5 \cos(\frac{\pi}{3} +2 \pi t)]

    Derivando, obtemos:

    \displaystyle v{t}=-0,5 \cdot 2 \pi \sin( \frac{\pi}{3} +2 \pi t)

    \displaystyle \Rightarrow v_{t}=-\pi \sin(\frac{\pi}{3} +2 \pi t)

  2. A velocidade num MHS é máxima quando { \sin( \varphi_0+ \omega)=1}. Logo:

    \displaystyle v_{max}=\pi \ m/s

Exercício 4 .

Considere o MHS dado no gráfico. Escreva sua equação.

NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

O Problema ilustra o gráfico de {x(t)} de um MHS. Para escrevermos a equação deste MHS, devemos determinar em primeiro lugar os seus parâmetros ({A}, {\omega} e {\varphi_0}). Estes parâmetros são determinados no gráfico.

A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de {t} (valor de equilíbrio é 0), então a amplitude é o maior valor de x a se registar na curva.

O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida.

A equação do movimento de um MHS é dada na forma { x = A \sin (\omega t + \varphi_0)}.

Com base na análise, é possível concluir que:

A amplitude { A=3 \ cm} ou { A=0,03 \ m} .

No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é {90^o=\pi / 2 \ Rad}. Neste caso, para obter a fase inicial, teremos:

\displaystyle \omega t + \varphi_0= \pi/2

\displaystyle \Rightarrow \omega \cdot 0 + \varphi_0= \pi/2

\displaystyle \Rightarrow \ \varphi_0= \pi/2

O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação.

Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que:

\displaystyle T/2= 4 s

\displaystyle \Rightarrow \ T= 4\cdot 2

\displaystyle \Rightarrow \ T= \ 8 \ s

Sabendo que { \Rightarrow=2 \pi /T}, logo:

\displaystyle \omega =2 \pi /8

\displaystyle \Rightarrow \omega = \frac{1}{4} \pi \ rad/s

Por fim, substituindo os dados na equação da oscilação ({ x = A \sin (\omega t + \varphi_0)}), obtemos:

\displaystyle x = 0,03 \sin (\frac{1}{4} \pi t + \dfrac{\pi }{2})

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

%d bloggers like this: