Luso Academia

Início » Posts tagged 'problemas de física'

Tag Archives: problemas de física

1.2. Exercícios sobre sistema massa-mola (Parte 2)

Exercício 1 Um móvel executa MHS e obedece a função horária {x = 3 \cdot cos(0,5 \pi t + \pi)}, no SI.
  1. Determine o tempo necessário para que este móvel vá da posição de equilíbrio para a posição de elongação máxima.
  2. Obtenha o valor da aceleração no instante {t = 1 \ s}.

Nível de dificuldade: Regular.

Resolução 1 .
  1. Sabemos que num MHS o tempo que o corpo leva a sair do extremo para a posição de equilíbrio ou vice-versa é igual a um quarto do período {t= \dfrac{T}{4}}. Neste caso, precisamos calcular o período e depois calcular o {t}.
    Na equação obtemos que:

    \displaystyle \omega=0,5 \pi \ rad/s

    Mas sabemos que { \omega= \dfrac{2 \pi}{T}}. Então:

    \displaystyle \omega=0,5 \pi

    \displaystyle \Rightarrow \dfrac{2 \pi}{T}=0,5 \pi

    \displaystyle \Rightarrow \dfrac{2}{T}=0,5

    \displaystyle \Rightarrow 2 = 0,5 T

    \displaystyle \Rightarrow T = \dfrac{2}{0,5}

    \displaystyle \Rightarrow T = 4 \ s

    Neste caso, o tempo é:

    \displaystyle t= \dfrac{T}{4}

    \displaystyle \Rightarrow t = 1 \ s

  2. Precisamos saber primeiro a função da aceleração desse movimento, que é dada pela segunda derivada da posição em função do tempo, ou seja

    \displaystyle a = \dfrac{d^2x}{dt^2}

    Logo:

    \displaystyle a = \dfrac{d}{dt} \Bigg[ \dfrac{d x}{dt} \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg[ \dfrac{d}{dt}[3 \cos(0,5 \pi t + \pi)] \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg [-3 \cdot 0,5 \pi sen (0,5 \pi t + \pi) \Bigg]

    \displaystyle a = \dfrac{d}{dt} \Bigg [-1,5 \cdot \pi sen (0,5 \pi t + \pi) \Bigg]

    \displaystyle a = -1,5 \pi \cdot0,5 \pi \cos(0,5 \pi t + \pi)

    \displaystyle a = -0,75 \pi^2 \cdot \cos(0,5 \pi t + \pi)

    Considerando {t = 1 \ s}, logo:

    \displaystyle a = -0,75 \pi^2 \cdot \cos(0,5 \pi \cdot 1 + \pi)

    \displaystyle a = 0

Exercício 2 Na figura ao lado, dois blocos ({m = 2 \ kg} e {M = 16 \ kg}) e uma mola ({k = 250 \ N/m}) estão dispostos em uma superfície horizontal sem atrito. O sistema oscila em MHS com amplitude de {10 \ cm}. Qual deverá ser o coeficiente de atrito mínimo para que o bloco menor fique na eminência de deslizar sobre o bloco maior ?

Nível de dificuldade: Regular.

Resolução 2 .

Dados:

{m=2 \ kg}

{M=16 \ kg}

{k=250 \ N/m}

{A=10 \ cm = 0,1 \ m}

{ \mu \longrightarrow ? } (eminência de cair).

Para que o bloco menor fique fique em repouso relativo ao bloco maior, deslizando conjuntamente com ele, (na iminência de deslizar sobre bloco maior, mas não deslizando) é necessário que haja uma igualdade entre a força que o bloco maior aplica ao bloco menor (determinada a partir da aceleração) e a força de atrito existente na superfície de contacto entre eles (1ª Lei de Newton).

\displaystyle Diagrama \ do \ corpo \ livre

Como estamos a tratar de um MHS, a força aplicada pelo bloco de baixo ao bloco de cima é:

\displaystyle F_M = m \cdot a_{mhs}

Onde {a_{mhs}} é a aceleração do MHS.

Logo:

\displaystyle F_M = F_a

\displaystyle m \cdot a_{mhs} = \mu \cdot N

Como o bloco {m} não está inclinado nem em relação a horizontal, logo:

\displaystyle N = m \cdot g

Então:

\displaystyle F_M = F_a

\displaystyle \Rightarrow m \cdot a_{mhs} = \mu \cdot m \cdot g

\displaystyle a_{mhs} = \mu \cdot g

Nota: O enunciado não sugere que o bloco deslize, mas sim que ele fique prestes a deslizar. Esta situação só pode ser analisada quando os dois blocos atingem o extremo. Neste ponto a força exercida pela mola é máxima e consequentemente a {a_{mhs}} também é máxima. logo:

\displaystyle a_{mhs} = A \cdot \omega^2

Num sistema massa-mola:

\displaystyle \omega^2 = { \dfrac{k}{m_{sist}}}

Além disso, a frequência angular não depende somente do bloco {m}, mas sim dos dois, pois a mola desloca os dois em conjunto. Então:

\displaystyle \omega^2 = { \dfrac{k}{m + M}}

\displaystyle a_{mhs} = \mu \cdot g

Voltando a igualdade entre as forças, teremos:

\displaystyle A \cdot \omega^2 = \mu \cdot g

\displaystyle A \cdot \dfrac{k}{m + M} = \mu \cdot g

\displaystyle \mu = \dfrac{A \cdot k}{g(m + M)}

\displaystyle \mu = \dfrac{0,1 \cdot 250}{9,8(16 + 2)}

\displaystyle \mu = 0,142

Exercicío 3 Um corpo de {60 \ g}, preso a uma extremidade de uma mola ideal ({k = 3,2 \ N/m}) comprimida de {32 \ cm}, é abandonado do repouso na posição “A” da figura. A partir desse instante o corpo inicia o MHS. Despreze o atrito e adote o ponto de equilíbrio do corpo (ponto O) e sentido para a direita como referencial. Nessas condições, determine a equação da posição e da velocidade desse MHS.

 

Nível de dificuldade: Regular.

Resolução 3 .

 

Dados

{k = 3,2 \ N/m}

{A = 32 \ cm = 0,32 \ m}

{m = 60 \ g = 0,06 \ kg}

O corpo inicialmente se encontra no extremo negativo (de acordo com a figura inicial). Estando neste extremo, de acordo com a situação (mola comprimida) ao ser solto vai movimentar-se para a posição de equilíbrio e continuar a oscilar. Veja o gráfico analítico abaixo:

A equação geral da posição de um MHS é:

\displaystyle x = Asen ( \omega t + \varphi_0)

Considere o gráfico genérico da função {x=sen (\varphi)}.

Para a função {sen} o extremo negativo é atingido para a fase {- \dfrac{ \pi}{2}} ou { \dfrac{3 \pi}{2}}.

Sendo que a oscilação começa a partir do extremo negativo (Ponto A), logo { \varphi_0 = - \dfrac{ \pi}{2}}.

Sabemos que, num sistema corpo-mola:

\displaystyle \omega = \sqrt{ \dfrac{k}{m}}

Então:

\displaystyle \omega = \sqrt{ \dfrac{3,2}{0,06}} = 7,30 rad/s

Logo, substituindo na equação geral, obtemos:

\displaystyle x = 0,32sen \ (7,30 \ t - \dfrac{ \pi}{2}) \ [SI]

A velocidade de um movimento é dada como a derivada da equação da posição, ou seja:

\displaystyle v = \dfrac{dx}{dt}

Logo:

\displaystyle v = \dfrac{d}{dt} \Big[0,32sen \ (7,30 \ t - \dfrac{ \pi}{2}) \Big]

\displaystyle v = 0,32 \cdot 7,30 \cdot \cos \ (7,30 \ t - \dfrac{ \pi}{2})

\displaystyle v = 2,337 \cos \ (7,3 \ t - \dfrac{ \pi}{2}) \ [SI]

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Carga, Forças Eléctricas (Parte 4)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 10 Um conjunto de 4 cargas iguais, de {5 \ \mu C} estão dispostas da base de uma pirâmide de base quadrada, dada na figura.

{a= \ h= \ 20 \ mm}.

Qual deverá ser a massa da carga de prova (de valor igual) para que ela flutue em equilíbrio dinâmico?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 10 .

O exercício nos apresenta uma carga de prova {(q_{o})} que está acima de um arranjo quadrado de cargas, formando assim uma pirâmide. As cargas se encontram nos vértices da pirâmide.

A carga flutua por interacção electrostática. Sendo que todas as cargas são positivas, existem forças repulsivas constantes entre as cargas.Dados

{K \approx \ 9 \cdot 10^9 \ Nm^2/C^2}

{H= \ a= \ 20 \ mm= \ 20 \cdot 10^{-3} m}

{q_0=q_1=q_2=q_3=q_4= \ 5 \ \mu C= \ 5 \cdot 10^{-6} \ C}

{m-?}

.

Sendo que a figura geométrica é regular e simétrica, a distancia entre a carga {q_0} com as outras cargas é igual. Chamamos a esta distancia de {d}.

Veja a figura abaixo.

Considerando o triângulo rectângulo formado entre as cargas {q_1}, {q_2} e o centro do quadrado da base {O}, teremos:

\displaystyle b^2+b^2=a^2

\displaystyle \Rightarrow 2 \cdot b^2=a^2

\displaystyle \Rightarrow \cdot b^2=\dfrac{a^2}{2}

Isolando {b}, teremos:

\displaystyle b=\sqrt{\dfrac{a^2}{2}}

Analisando o triângulo rectângulo formado pelas cargas {q_1}, {q_0} e o centro do quadrado da base {O}, teremos:

\displaystyle b^2+h^2=d^2

Ou:

\displaystyle d^2=b^2+h^2

\displaystyle \Rightarrow d^2= \dfrac{a^2}{2}+a^2

\displaystyle \Rightarrow d^2= \dfrac{3a^2}{2}

Na carga {q_0} actuam ao todo 4 forças repulsivas, da sua interacção com as outras cargas (1, 2, 3 e 4).

Chamamos a estas forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}}.

Então:

\displaystyle F_{01}=F_{02}=F_{03}=F_{04}

O facto de as distâncias serem todas iguais e de as cargas terem o mesmo valor absoluto, pela lei de Coulomb, nos leva a concluir que as forças electrostáticas de repulsão entre {q_0} e as outras cargas (1, 2, 3 e 4) são todas iguais.

Os seus módulos serão:

\displaystyle F_{01} \ = F_{02} \ = F_{03} \ =F_{04} \ = \ k\dfrac{|q_{1}|.|q_{0}|}{d^{2}}

Substituindo {d^2}, teremos:

\displaystyle F_{01} = \ k\dfrac{|q_{1}|.|q_{0}|}{3a^{2}/2}

Calculando:

\displaystyle F_{01} = \ 9 \cdot 10^9 \dfrac{5 \cdot 10^{-6} \cdot 5 \cdot 10^{-6}}{3(20 \cdot 10^{-3}) ^{2}/2}

\displaystyle \longleftrightarrow F_{01} = 375 \ N

Lembre que:

\displaystyle F_{01} \ = F_{02} \ = F_{03} \ =F_{04}

\displaystyle \Rightarrow F_{01} \ = F_{02} \ = F_{03} \ =F_{04} \ = 375 \ N

As forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}}, além de terem o mesmo modulo, são todas respectivamente paralelas a diagonal formada pelo segmento que une as cargas que as originam. Neste caso, pela simetria do problema, todas estas diagonais formam o mesmo ângulo {\theta} com o plano horizontal {xOy}.

Neste caso, todas estas forças formarão também o mesmo ângulo {\theta} com o plano horizontal {xOy}.

Se inserirmos um sistema de coordenadas cartesiano em {q_0} e projectarmos as forças, as projecções destas forças no plano {xOy} vão anular-se mutuamente.

Na figura, só representamos as projecções para {F_{03}} e para {F_{04}}. Pela simetria do problema, poderemos deduzir as outras.

O eixo {x} foi traçado de modo a ser paralelo a diagonal que contem {q_1} e {q_3}.

O eixo {y} foi traçado de modo a ser paralelo a diagonal que contem {q_4} e {q_2}.

O eixo {x} foi traçado de modo a ser paralelo a vertical que contem o ponto O e {q_0}.

Neste caso:

  • {F_{01}} pertence ao plano {xOz},
  • {F_{02}} pertence ao plano {yOz},,
  • {F_{03}} pertence ao plano {xOz},
  • {F_{04}} pertence ao plano {zOz}.

As componentes horizontais (no plano {xOy}) anulam-se:

  • {F_{01x}} anula {F_{03x}},
  • {F_{02y}} anula {F_{04y}}.

Sobram apenas as componentes verticais. As projecçõpes verticais das forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}} podem ser calculadas pelas seguintes relação:

\displaystyle F_{01z}=F_{01z} \sin \theta

Temos de obter o ângulo {\theta}. Considerando o triângulo rectângulo formado pelas cargas {q_1}, {q_0} e o centro do quadrado da base {O}, teremos:

\displaystyle tg \theta = \dfrac{h}{b} \Rightarrow \theta = arctg \dfrac{h}{b}

Substituindo {h} e {b} pelos seus valores, obtemos:

\displaystyle \theta = arctg \dfrac{a}{a/\sqrt{2}}

\displaystyle \Rightarrow \theta = arctg \sqrt{2}

\displaystyle \Rightarrow \theta = 54,7^o

Sabemos que, pela simetria do problema {F_{01z}=F_{02z}=F_{03z}=F_{04z}}. Então:

\displaystyle F_{01z}=F_{01} \sin \theta = 375 cos 54,7^o

\displaystyle F_{01z}=216,7 \ N

As resultante das componentes verticais será igual a força eléctrica resultante em {q_0}, que chamamos de {F_{el}}.

Neste caso:

\displaystyle F_{el}=F_{01z} + F_{02z} +F_{03z} + F_{04z}

\displaystyle F_{el}=4 \cdot F_{01z}

\displaystyle F_{el}=4 \cdot 216,7

\displaystyle F_{el}=866,8 \ N

Para quê a carga de prova flutue em equilíbrio dinâmico é necessário que a força eletrostática resultante que atua nela seja igual a força de gravidade:

\displaystyle F_{el} \ = \ F_{g}

Então:

\displaystyle F_{el} \ = \ m \ . \ g

Ou:

\displaystyle \ m \ . \ g = F_{el}

\displaystyle \Rightarrow m \ = \dfrac{F_{el}}{g}

\displaystyle \Rightarrow m \ = \dfrac{866,8}{9,8}

\displaystyle \Rightarrow m \ = \ 88,44 \ kg

Exercício 11 Uma carga de prova {q_0= \ 10 \ \mu C} de massa depressível, esta presa numa mola também de massa depressível, com constante {K'= \ 10 \ N/m}, conforme a figura abaixo.

Uma outra carga {q_1 \ =50 \ \mu C} é fixada abaixo desta. qual devera ser a distância entre as cargas para que a mola seja comprimida em 3 cm.

NÍVEL DE DIFICULDADE: Regular.

Resolução 11 .

O sistema apresenta um arranjo de cargas, onde a carga {q_0} está presa a uma mola. Actuam nela a força eléctrica {F_{01}} e a força elástica {(F_k)}.

A mola está comprimida devido a força de repulsão. A massa da mola é depressível. {K'}-constante elástica e {K}– constante electrostática. O uso de {K'} em vez do habitual {K} para a constante elástica da mola é para distingui-lo da constante electrostática do meio {K}.

As duas cargas são positivas, logo a força de interacção entre elas é de repulsão. Esta força tenderá a comprimir a mola. A compressão termina quando se atinge o equilíbrio entre a força deformadora (força eléctrica) e a força restauradora (força elástica).

Aplicaremos a condição de equilíbrio, substituiremos a força eléctrica pela relação obtida da lei de Coulomb, e isolaremos a distância d.

Dados

{K'= \ 10 \ N/m}

{K \approx \ 9 \cdot 10^9 \ Nm^2/C^2}

{x= \ 3 \ cm= \ 3 \cdot 10^{-2}}

{q_0= \ 10 \ \mu C= \ 10 \cdot 10^{-6} \ C}

{q_1= \ 50 \ \mu C= \ 50 \cdot 10^{-6} \ C}

{d-?}

Sabemos que, pela lei de Hook:

\displaystyle F_{k}=K' \cdot x (

Sabemos também, pela Lei de Coulomb, que:

\displaystyle F_{01}=K\dfrac{|q_0| \cdot |q_1|}{d^2}

.

Considerando que na carga {q_0} as duas forças estão em equilíbrio, temos:

\displaystyle \vec{F_{k}}+\vec{F_{01}}=0

Em módulo, teremos:

\displaystyle F_{k}-F_{01}=0

\displaystyle \Rightarrow F_{k}=F_{01}

Substituindo as forças pelas suas relações, temos:

\displaystyle K' \cdot x=K\dfrac{|q_0| \cdot |q_1|}{d^2}

Passando o {d^2} no membro esquerdo e a {K' \cdot x} para o membro direito, obtemos:

\displaystyle d^2=\dfrac{K \cdot |q_0| \cdot |q_1|}{K' \cdot x}

\displaystyle \Rightarrow d=\sqrt{\dfrac{K \cdot |q_0| \cdot |q_1|}{K' \cdot x}}

Substituindo os valores:

\displaystyle \Rightarrow d=\sqrt{\dfrac{9 \cdot 10^9 \cdot 10 \cdot 10^{-6} \cdot 50 \cdot 10^{-6}}{10 \cdot (3 \cdot 10^{-2})}}

\displaystyle d= \ 3, 87 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 2)

 

Exercício 11 Três espelhos interceptam-se em ângulos rectos.Um feixe de luz atinge o primeiro deles com um ângulo {\theta} (ver figura ao lado) .a)Mostre que quando esse raio é refletido pelos outros dois espelhos e cruza o raio original,o ângulo entre esses dois raios será {\alpha = \ \ 180^{o}-2\theta} e determine o ângulo {\theta} para o qual os dois raios serão perpendiculares quando se cruzam?

.NÍVEL DE DIFICULDADE: Regular.

.

Resolução 11 .

Redesenhando a figura. Na figura o ponto de intersecção entre o raio incidente e o primeiro espelho espelho chamamos de {B}.

O raio que se reflecte deste ponto vai incidir no outro ponto do segundo espelho, que chamamos de {C}.

Raio reflectido do ponto {C} vai incidir no outro ponto do terceiro espelho que chamamos de {D}.

O raio reflectido do ponto {D} vai cruzar-se com o raio incidente num ponto que chamamos {A}.

O ângulo de incidência e reflexão no ponto {C} chamamos de {z}. O complementar de {z} chamamos de {\varphi}.

O ângulo de incidência e reflexão no ponto {D} chamamos de {\beta}. O complementar de {\beta} chamamos de {\Psi}.

O complementar de {\theta} chamas de {\chi}.

Marcamos ainda os .s é eficaz conforme indicado na figura.

Da figura, no ponto B, analisando entre o espelho e a sua normal, temos:

\displaystyle \chi \ + \theta = \ \ 90^{o}

pelo triângulo BHC, pelo teorema da soma dos ângulos internos, temos temos :

\displaystyle \chi \ + \varphi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \chi \ + \varphi = \ \ 90^{o}

Subtraindo ambas equações dos passos anteriores, obtemos :

\displaystyle \varphi = \ \theta

Pelo teorema de ângulos internos no triângulo CDG, temos :

\displaystyle \varphi \ + \Psi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \varphi \ + \Psi = \ \ 90^{o}

Pelo teorema de ângulos internos no triângulo ADF, temos :

\displaystyle y \ + \ 90^{o} \ + \Psi = \ \ 180^{o} \Rightarrow

\displaystyle y \ + \Psi = \ \ 90^{o}

Subtraindo esta última pela equação do passo anterior, obtemos :

\displaystyle y = \ \varphi

Como {\varphi = \ \theta}, obtermos:

\displaystyle y = \ \theta

No quadrilátero {ABCD} temos :

\displaystyle 2y \ + \alpha = \ \ 180^{o} \Rightarrow \alpha = \ \ 180^{o} \ - \ 2y

Substituindo {y = \ \theta}, obtemos:

\displaystyle \alpha = \ 180^{o} \ - \ 2\theta

Exercício 12 Um feixe de luz emitido por um laser,incide sobre a superfície da água de um aquário,como representado nesta figura :

O fundo desse aquário é espelhado ,a profundidade da agua é de 40 cm e o ângulo de incidência do feixe de luz é de {50^{o}}. Qual é a distância entre os pontos A e C da figura?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 12 .

Dados

{n_{agua} = \ \ 1,33}

{h = \overline{BO}= \ \ 40 \ cm}

{\varphi = \ \ 50^{o}}

{ \overline{AC} \rightarrow \ ?}

.

No problema, a luz incide a partir do ar para a água. Toca na água no ponto A e refracta-se na água. É reflectida no ponto B(no espelho que está no fundo) e retorna à superfície de separação água-ar. No ponto C, faz refracção novamente para o Ar.

Para acharmos a distância AC devemos calcular o ângulo que o feixe de luz faz com a normal na água (usando a lei de Snell-Descartes), e combinando estes valores com a profundidade, no triângulo ABC.

.

Redesenhando a figura,temos :

Pela lei de Snell, no ponto A, podemos determinar o ângulo de refração. Temos :

\displaystyle n_{ar} \ sen 50^{o} = \ \ n_{agua} \ . sen \theta

Isolando o seno, no membro esquerdo, temos:

\displaystyle sen \theta = \ \dfrac{n_{ar} \ sen 50^{o}}{n_{agua}} = \ \dfrac{1. \ sen 50^o}{1,33}

\displaystyle \Rightarrow \theta =\ arcsen({ \dfrac{1. \ sen 50^o}{1,33}}) = \ 35,15^{o}

Se considerarmos o ponto médio do segmento {\overline{AB}}, que chamamos de {D}, então o triângulo ABD é rectângulo. O ângulo interno do vértice B é igual a {\theta } e {\overline{AD}=\overline{AC}/2}. Então:

\displaystyle tg \theta= \ \dfrac{\overline{AD}}{\overline{BD}} = \ \dfrac{\dfrac{\overline{AC}}{2}}{h} = \ \dfrac{\overline{AC}}{2h}

\displaystyle \Rightarrow \overline{AC} = \ 2h \ . \ tg \theta

Substituindo valores, obtemos:

\displaystyle \overline{AC} = \ 2 \ . \ 40 \ cm \ . \ tg \ (35,15^o) \Rightarrow \overline{AC} = \ 56,37 \ cm

.

Exercício 13 Um rapaz em repouso na rua,vê sua imagem reflectida por um espelho plano preso verticalmente na traseira de um autocarro que se afasta com a velocidade escalar constante de {20 \ m/s}. Qual é a velocidade de afastamento da imagem em relação ao rapaz?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 13 Neste problema temos de analisar não só a velocidade com o espelho se afasta do rapaz, mas também a velocidade com que a sua imagem (que o espelho produz) se afasta dele.

O melhor raciocínio mais simplificado, consiste em estabelecer o espelho como referencial de analise e depois achar a velocidade relativa.

A medida que o autocarro se move para a direita, automaticamente o espelho também se move para a direita. como o movimento é relativo, podemos considerar que o autocarro e o espelho estão em repouso e o rapaz ({AB}) é que se está a mover no sentido oposto (para a esquerda), com a mesma velocidade.

Se o rapaz, que é o nosso objecto óptico({AB}), se move para esquerda com velocidade v, então a sua imagem formada pelo espelho ({A'B'}) se afasta do espelho para direita com velocidade {v'}.

Vamos estabelecer as equações do movimento no 1ª referencial (com origem no espelho) e depois amos fazer a transformação de Galileu par o 2º Referencial (com origem no rapaz). Veja a figura.

Pela lei da reflexão, em qualquer momento:

\displaystyle \Delta x_{e} = \Delta x_{i}

Portanto :

\displaystyle -v \cdot t = v' \cdot t

\displaystyle \Rightarrow -v = v'

\displaystyle \Rightarrow |v| = |v'|

Então , neste referencial (Referencial 1), temos:

\displaystyle x_{Rap-Ref1}=x_{0Rap} - v. t

\displaystyle x_{Esp-Ref1}=0

\displaystyle x_{Rap-Ref1}=x_{0Rap} + v.t

.

Se estabelecermos um novo referencial (no rapaz), então este referencial 1 (com origem no espelho) está em movimento em relação ao novo referencial 2 (com origem no rapaz), com velocidade v.

A transformação de galileu diz que: {x_{Ref2}=x_{Ref 1} - v. t}.

Então para o rapaz( que no referencial 1 estava em movimento regressivo com velocidade v) teremos:

\displaystyle x_{Rap-Ref2}=x_{Rap-Ref 1} + v. t

\displaystyle x_{Rap-Ref2}=(x_{0Rap}-v.t) + v. t

\displaystyle x_{Rap-Ref2}=x_{0Rap}

Neste novo referencial, o rapaz está repouso.

.

Para o espelho/autocarro( que no referencial 1 estava em repouso na origem) teremos:

\displaystyle x_{Esp-Ref2}=x_{Esp-Ref 1} + v. t

\displaystyle x_{Esp-Ref2}=0 + v. t

\displaystyle x_{Esp-Ref2}= v. t

Neste novo referencial, o espelho/autocarro estão em movimento com velocidade v (conforme enunciado).

Para a imagem (que no referencial 1 estava em movimento progressivo com velocidade v) teremos:

\displaystyle x_{Im-Ref2}=x_{Im-Ref 1} + v. t

\displaystyle x_{Im-Ref2}=(x_{0Im}+v.t) + v. t

\displaystyle x_{Im-Ref2}= x_{0Im} + 2 v t

Neste novo referencial,imagem está em movimento com velocidade 2v .

Neste caso, a velocidade da imagem é:

\displaystyle v_{im}= \ 2.v= \ 2.20=40 \ m/s

Exercício 14 Um nativo de uma aldeia pesca em uma lagoa de água transparente. Para isso usa uma lança. Ao observar um peixe, ele atira a sua lança na direcção em que o observa. O jovem está fora da água e o peixe está em 1 m abaixo da superfície. O peixe está a uma distancia horizontal de {0,9 \ m} do ponto aonde a lança atinge a superfície da água. Para essas condições determine :

a)O ângulo {\alpha},de incidência da luz na superfície da agua-ar.

b)O ângulo {\beta} que a lança faz com a superfície da água quando tenta alcançar o peixe.

c)A profundidade aparente y,da superfície da água em que o nativo vê o peixe.

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 14

Dados

{n_{ar} = \ \ 1}

{n_{agua} = \ \ 1,33}

{\alpha \ - \ ?}

{\beta \ - \ ?}

{y = \ \overline{DE} - \ ?}

Neste problema, temos analise baseadas na refracção da luz. O Peixe está no Ponto O nativo, na beira do rio, vê como se o peixe estivesse no ponto D (que é a imagem virtual do ponto C) formada pela refracção da luz na superfície. O ponto A é o ponto onde ocorre a refracção. O ângulo {\alpha} é o ângulo de incidência da luz que sai do peixe e incide no ponto A. O ângulo {\theta } é o ângulo de refracção da luz no ponto A. ângulo {\beta } é complementar de {\theta}

  1. Para encontramos o ângulo {\alpha}, vamos aplicar a relação para as razões trigonométricas no triângulo rectângulo ABC. Sendo {\overline{AB}} cateto adjacente, {\overline{BC}} cateto oposto e{\overline{AC}} a hipotenusa, teremos:

    \displaystyle tg \alpha = \ \dfrac{\overline{BC}}{\overline{AB}} = \ \dfrac{0,9}{1}

    \displaystyle \Rightarrow \alpha =arctg ( \ \dfrac{0,9}{1})= \ 41,99^{o}

    \displaystyle \alpha = \ 41,99^{o}

  2. Como {\beta} é o complementar de {\theta}, então, acharemos primeiro o {\theta} e com ele acharemos o {\beta}. O {\theta} será obtido pela lei da refracção:

    \displaystyle n_{ar} \ sen \theta = \ \ n_{agua} \ sen \alpha

    Insolando o seno de { \theta }, temos:

    \displaystyle \ sen \theta = \ \ \dfrac{ \ n_{agua} \ . \ sen \alpha}{n_{ar}} = \ \dfrac{ \ 1,33. \ sen(41,99)}{1}

    Neste caso:

    \displaystyle \theta = arcsen ( \dfrac{1,33. \ sen(41,99)}{1})

    \displaystyle \Rightarrow \theta = \ \ 62,85^{o}

    Como {\theta \ + \beta = \ \ 90^{o}}, então:

    \displaystyle \beta = \ \ 90^{o} \ - \theta = \ \ 90^{o} \ - \ 62,85^{o}

    \displaystyle \Rightarrow \beta = \ 27,15^{o}

  3. A profundidade aparente do peixe, neste caso, corresponde ao segmento {\overline{DE}}. Para achar o seu valor, usaremos o triângulo ADE. Para este triângulo, temos:

    \displaystyle tg \beta = \ \dfrac{\overline{DE}}{\overline{AE}} \ \dfrac{y}{x}

    \displaystyle \Rightarrow y = \ x \ tg \ (\beta)

    \displaystyle \Rightarrow y = \ 0,9\ tg \ ( 27,15^{o})

    \displaystyle y = \ 0,46 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 1)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 1 .

A equação de um MHS é dada por { x=0,5 \sin 10 \pi t (SI)}.

Determina o número de ciclos feitos em { 10 \ s } de oscilação.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

A equação de um MHS é geralmente dada na forma { x= A \cdot \sin (\omega \cdot t+\varphi_0 }. .

Comparando, termo a termo, com a equação dada no enunciado, temos que:

\displaystyle A=0,5 \ m

\displaystyle w=10 \ \pi \ rad/s

\displaystyle \varphi_0=0 \ rad

As unidades dos resultados estão no SI pois o enuanciado assim indica.

Para conseguir calcular o número de ciclos feitos em { 10 \ s} precisasse saber quantas oscilações são feitas em {1 \ s} (a frequência da oscilação).

Para o MHS, {\omega} é dado por:

\displaystyle \omega=2 \pi \cdot f

Logo:

\displaystyle \omega=2 \cdot \pi \cdot f

Substituindo o valor de {\omega} dos dados, obtemos:

\displaystyle 10 \pi = 2 \cdot \pi \cdot f

Isolando {f}:

\displaystyle f= \frac{10 \pi}{2 \pi}=5 \ Hz

Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por:

\displaystyle f= \frac{N}{t}

\displaystyle \Rightarrow N= f \cdot t

substituindo valores, obtemos:

\displaystyle N=5 \cdot 10

Em { 10 \ s} de oscilações são realizados 50 ciclos.

.

Exercício 2 Uma partícula realiza um MHS, cuja equação horária é { x=5 \cos (\dfrac{\pi}{4} t } SI.

  1. Determine o período do MHS.
  2. Esboce o gráfico da velocidade em função do tempo.

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.

  1. A equação horária de um MHS pode ser dada na forma { x=A \cos(\omega t+\varphi_0)}.Comparando, termo a termo, com a equação dada no enunciado ({x=5 \cos (\dfrac{\pi}{4} t }), obtemos:

    \displaystyle \omega=\frac{\pi}{4} \ rad/s

    Sabendo que { \omega=\frac{2\pi}{T} },logo:

    \displaystyle T=\frac{2\pi}{\omega}

    Substituindo os dados:

    \displaystyle t= \frac{2\pi}{\pi /4}

    \displaystyle T=8 \ s

  2. Para se esboçar o gráfico da velocidade em função do tempo precisamos construir uma tabela que relaciona as duas grandezas({v} e {t}).Para isso, precisamos escrever a equação da velocidade em função do tempo.
    Sabe-se que a velocidade é dada pela derivada da posição em função do tempo, temos:

    \displaystyle v=\frac{dx}{dt}

    \displaystyle \Rightarrow v=\frac{d}{dt} [5 \cos(\frac{\pi}{4}t)]

    \displaystyle \Rightarrow v= -5 \cdot \frac{\pi}{4} \sin ( \frac{\pi}{4}t)

    \displaystyle v= -1,25\pi \sin (\frac{\pi}t)

A tabela será construida atribuindo diversos valores a {t} e calculando os valores correspondentes de {v}. Escolhemos os valores de {t} de 0, 2, 4, 6, 8 e 10 s.

Lançando os valores num sistema de coordenadas cartesianos {(t;v)} e interpolando os pontos, obtemos um gráfico similar ao da figura abaixo:

Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de {v} em relação a {t} é .

Exercício 3 .

Uma partícula descreve um MHS segundo a equação {x=0,5 \cos( \pi / 3+2 \pi t) }, no SI.Obtenha.

  1. A correspondente equação da velocidade.
  2. O módulo da máxima velocidade atingida por essa partícula.

NÍVEL DE DIFICULDADE: Elementar

Resolução 3 .

Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.

  1. A equação da velocidade de uma partícula em MHS é dada pela derivada da equação da posição em função do tempo, ou seja:

    \displaystyle v(t)=\frac{d}{dt}x

    \displaystyle \Rightarrow v(t)=\frac{d}{dt}[0,5 \cos(\frac{\pi}{3} +2 \pi t)]

    Derivando, obtemos:

    \displaystyle v{t}=-0,5 \cdot 2 \pi \sin( \frac{\pi}{3} +2 \pi t)

    \displaystyle \Rightarrow v_{t}=-\pi \sin(\frac{\pi}{3} +2 \pi t)

  2. A velocidade num MHS é máxima quando { \sin( \varphi_0+ \omega)=1}. Logo:

    \displaystyle v_{max}=\pi \ m/s

Exercício 4 .

Considere o MHS dado no gráfico. Escreva sua equação.

NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

O Problema ilustra o gráfico de {x(t)} de um MHS. Para escrevermos a equação deste MHS, devemos determinar em primeiro lugar os seus parâmetros ({A}, {\omega} e {\varphi_0}). Estes parâmetros são determinados no gráfico.

A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de {t} (valor de equilíbrio é 0), então a amplitude é o maior valor de x a se registar na curva.

O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida.

A equação do movimento de um MHS é dada na forma { x = A \sin (\omega t + \varphi_0)}.

Com base na análise, é possível concluir que:

A amplitude { A=3 \ cm} ou { A=0,03 \ m} .

No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é {90^o=\pi / 2 \ Rad}. Neste caso, para obter a fase inicial, teremos:

\displaystyle \omega t + \varphi_0= \pi/2

\displaystyle \Rightarrow \omega \cdot 0 + \varphi_0= \pi/2

\displaystyle \Rightarrow \ \varphi_0= \pi/2

O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação.

Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que:

\displaystyle T/2= 4 s

\displaystyle \Rightarrow \ T= 4\cdot 2

\displaystyle \Rightarrow \ T= \ 8 \ s

Sabendo que { \Rightarrow=2 \pi /T}, logo:

\displaystyle \omega =2 \pi /8

\displaystyle \Rightarrow \omega = \frac{1}{4} \pi \ rad/s

Por fim, substituindo os dados na equação da oscilação ({ x = A \sin (\omega t + \varphi_0)}), obtemos:

\displaystyle x = 0,03 \sin (\frac{1}{4} \pi t + \dfrac{\pi }{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 5)

Exercício 20 Uma chita pode acelerar de {0} a {96 \ km} em {2 \ s}, enquanto um carro, em média atinge a mesma velocidade final em {4,5 \ s}. Calcular as acelerações média dos dois. NÍVEL DE DIFICULDADE: Elemntar.
Resolução 20 .

A conversão de {96 \ km} para {m/s}, é feita pela regra de 3 simples conforme os exercícios anteriores.

Para a Chita, temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 2 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{2}=13,4 \ m/s^2

Para o carro,temos:

{v_o = 0}.

{v = 96 \ km/h \approx 26,7 \ m/s}.

{\Delta t = 4,5 \ s}.

Então, usando a fórmula de aceleração média, obtemos:

\displaystyle a_{med} = \frac{v-v_0}{\Delta t} = \frac{26,7-0}{4,5} = 5,9 \ m/s^2

.

Exercício 21 Um móvel fazendo a trajectória rectilínea {A-B-C}, tem a velocidade dada no gráfico ao lado.

Determinar:

  1. A velocidade média deste movimento.
  2. A aceleração média do mesmo.

NÍVEL DE DIFICULDADE: Regular.

Resolução 21 .

Diante de um problema gráfico ({v\cdot t}), é válido lembrar que área de baixo da curva determina o espaço total percorrido pelo móvel. No gráfico {v\cdot t}, a inclinação da recta, determina à aceleração.

  1. Para determinar a velocidade média, precisamos conhecer o deslocamento total e o tempo total. O tempo pode ser obtido directamente no gráfico. Para o deslocamento, ele deve ser calculado. Podemos usar dois raciocínios: o calculo da área ou a determinação dos parâmetros cinemáticos deste movimento. Para efeitos de familiarização, dado que temos dois tempos de movimentos ( Um MRUV acelerado de A para B e um MRUV retardado de B para C), vamos usar os dois métodos. Vamos usar a determinação de parâmetros para o movimento de A para B e vamos usar o cálculo de área de B para C. Em qualquer dos casos, os dois métodos são válidos. Cabe a quem resolve escolher.
    1. Determinando a aceleração de {A\longrightarrow B} (Determinação dos parâmetros):

      \displaystyle \left.\begin{array}{cccccccc} t_o = 0 \ s, v_o = 20 \ m/s\\ t= 40 \ s, v = 60 \ m/s\\ \end{array}\right\} \Rightarrow a = \frac{\Delta v}{\Delta t} = \frac{60 - 20}{40 - 0} = 0,5 \ m/s^2

    2. Determinando do correspondente deslocamento {A\longrightarrow B}:

      \displaystyle s = s_o + v_o\cdot t + \frac{1}{2}a\cdot t^2

      \displaystyle s = (20)(40) + \frac{1}{2}(0,5)(40)^2

      \displaystyle s = 1200 \ m

    3. Determinando o espaço percorrido {B\longrightarrow C} (cálculo de área):

      \displaystyle s_{\Delta} = Area = \frac{20\cdot 40}{2} = 600 \ m

    4. Neste caso, o deslocamento total é:

      \displaystyle \Delta s = 1200 + 600 = 1800 \ m

    5. Logo, a velocidade média será:

      \displaystyle v_{med} = \frac{\Delta s}{\Delta t} = \frac{1800}{60} = 30 \ m/s

  2. Aceleração média.

    \displaystyle a_{med} = \frac{v_{final}-v_{0}}{\Delta t} = \frac{0-20}{60} \approx -0,33 \ m/s^2

Exercício 22 Uma pessoa caminha {100 \ m} em {12 \ s} numa certa direcção e depois caminha na direção oposta passando {50 \ m} durante {30 \ s}. Calcule (a) a velocidade média definida pelo caminho percorrido e (b) a velocidade média definida pelo deslocamento. NÍVEL DE DIFICULDADE: Regular.
Resolução 22 .

Para o problema em questão, devemos entender a diferença entre deslocamento e distância percorrida. O deslocamento é o vector que une a posição inicial à posição final de um móvel, sem se importar pelo trajecto do mesmo. O seu modulo equivale a distancia entre a origem e o destino do móvel. A distancia percorrida é o somatório escalar de todo o caminho percorrido pelo móvel, levando em conta a sua trajectoria e eventuais mudanças de direcção.

Na figura, observamos que o móvel sai da posição {x_1}, vai para a posição {x_2} e depois vai (em sentido oposto) para a posição {x_3}. Se tomarmos {x_1=0}, então {x_2=100 \ m} e {x_3=50 m} (recuando 50 m a partir de {x_2}).

Neste caso o deslocamento será {\Delta x= x_3 - x_1 = \ 50 - 0= \ 50m}.

A distancia percorrida será: {d= \ d_1+d_2= \ 100+50= \ 150 \ m}.

  • A velocidade média definida pelo caminho percorrido será:

    \displaystyle v_{med} = \dfrac{d}{\Delta t} = \dfrac{150}{30 + 12}

    \displaystyle v_{med} = 3,75 \ m/s

  • A velocidade média definida pelo deslocamento será:

    \displaystyle v_{med} = \dfrac{\Delta x}{\Delta t} = \dfrac{50}{30+12}

    \displaystyle v_{med} \approx 1,19 \ m/s

.. Note que é a duração de todo o movimento, e como o tempo não recua, então sempre {\Delta t = \ 30+12= \ 42 \ s}. Estes tempos refere-se a intervalos de tempo, por isso somamos. Se fossem instantes de tempo, deveríamos subtrair.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)

Exercício 13 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Dados .

{ v= \dfrac {5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \cdot t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \cdot t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \cdot t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s} é:

\displaystyle x= 5 + 2,5 \cdot 25= 67,5 \ m

\displaystyle x=67,5 \ m

Exercício 17 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 17 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \dfrac {\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \dfrac {\Delta s}{v}

Substituindo os dados na fórmula anterior, obtemos:

\displaystyle \Delta t = \dfrac {10,000 \ m}{1,5 \ m/s} = 6,66 \cdot 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \cdot 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h \rightarrow 3600 \ s \\ x \rightarrow 6,66 \cdot 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 3600 \ s= 1 \ h \cdot 6,66 \cdot 10^3 \ s

\displaystyle \Rightarrow x = \dfrac {1 \ h \cdot 6,66 \cdot 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante {t_1} está {x_1 = 3,0\cdot 10^{12} \ m}, em relação ao sol. Um ano depois, está em {x_2 = 2,1\cdot 10^{12} \ m}. Achar o seu deslocamento e a sua velocidade média.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 19 .

Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal.

\displaystyle Deslocamento

\displaystyle \Delta x = x_1 - x_2

\displaystyle \Delta x = 3,0\cdot 10^{12} - 2,1\cdot 10^{12}

\displaystyle \Delta x = 0,9\cdot 10^{12} \ m

\displaystyle \Delta x = 9,0\cdot 10^{8} \ km

\displaystyle Intervalo \ de \ tempo

\displaystyle \Delta t = 1 \ ano = 365 \ dia

\displaystyle \Delta t = 8760 \ h

A velocidade média será:

\displaystyle v_{med} = \frac{\Delta x}{\Delta t} = \frac{9,0\cdot 10^8 \ km}{8760 \ h}

\displaystyle v_{med} = 1,02\cdot 10^5 \ km/h

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  • Deixe a sua interacção nos comentários deste Post;
  • Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  • Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

Exercício 1 .

Dois vectores têm módulos 3 e 5 unidades.

  1. Qual deverá ser o ângulo entre eles para que o vector resultante tenha módulo de 4 unidades?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

  1. Consideremos que os vectores de módulo 3 e 5 unidades são os vectores {\overrightarrow{u} e \overrightarrow{v}}, respetivamente, e o vector resultante de módulos 4 unidades é o vector {\overrightarrow{w}}.Consideremos também que { \theta} é o ângulo que os vectores {\overrightarrow{u} e \overrightarrow{v}} formam entre si. Daqui, temos os ângulos dados:Dados{\vert \overrightarrow{u} \vert=3 } .{ \vert \overrightarrow{v} \vert=5} .

    { \vert \overrightarrow{w} \vert=4} .

    { \theta \rightarrow ? }

    A adição de vectores, dada pela regra do paralelogramo, relacionas aos seus módulos através da lei dos cossenos.

    \displaystyle \textbf{Lei do Cosseno}:\vert \overrightarrow{w}\vert^2=\vert\overrightarrow{u}\vert^2+\vert\overrightarrow{v}\vert^2+2\times\vert\overrightarrow{u}\vert\times\vert\overrightarrow{v\vert}\times \cos\theta

    * Substituindo os dados:

    \displaystyle (4)^2=(3)^2+(5)^2+2\times(3)\times(5)\times \cos\theta

    \displaystyle 16=9+25+30\times \cos\theta

     Isolando {\cos\theta:}

    \displaystyle \cos \theta =\frac{16-(9+25)}{30}=\frac{16-34}{30}=\frac{18}{30}=-0.6

    O valor de { \theta: \theta=\arccos(-0.6)=126,869^o }

    \displaystyle \theta\cong 126,9^o

.

Exercício 2 .

Um Arco tem ângulo de 1,5 radiano.
Qual é o valor deste ângulo em graus?

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Para determinar o ângulo do arco em graus, vamos usar a regra de três simples, sabendo que { \pi } radiando equivale a { 180^o }. Com isto,temos as seguintes rotações:

\displaystyle \pi \ rad \rightarrow\rightarrow180^o

\displaystyle 1,5 \ rad \rightarrow\rightarrow \theta

Onde 1.5 é o ângulo do arco em radiano e {\theta} o ângulo do arco em graus que se pretende determinar.

Desta forma, temos:

\displaystyle \theta \times \pi=1,5 \ rad \times 180^o

Isolando {\theta}:

\displaystyle \theta=\frac{1,5 \ rad \times 180^o}{\pi \ rad}=\frac{270^o}{\pi}=85,94^o

Portanto:

\displaystyle \theta=85,9^o

.

Exercício 3 .

Um disco circular tem raio de { 5 \ m}. Qual é o cumprimento deste disco?
NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Dados

{ r= 5 \ m }

O cumprimento de um arco é:

\displaystyle l= \alpha \times r

onde {\alpha} é o ângulo do arco em radianos.

Para o nosso caso, o cumprimento de um disco circular é:

\displaystyle l=2 \pi \times r

Substituindo:

\displaystyle r=5 \ m \ em (1): l= 2 \pi \times 5 \ m= 31,415 \ m

Portanto, o cumprimento do disco é de:

\displaystyle 31,415 \ m.

Exercício  4 .

Dois vectores {\overrightarrow{a}} e { \overrightarrow{b}} tem módulo iguais a { 3 \ m} e {5 \ m },respetivamente.

Qual é o módulo de vector { \overrightarrow{c} }, se {\overrightarrow{c}=3\overrightarrow{a}-\overrightarrow{2b}} e o ângulo entre { \overrightarrow{a} } e { \overrightarrow{b} } for de { 30^o }?
NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

Dados .

{ \vert \overrightarrow{a} \vert =3 \ m } .

{ \vert \overrightarrow{b} \vert =5 \ m } .

{ \overrightarrow{c}=3\overrightarrow{a} - 2\overrightarrow{b}} .

{ \theta \rightarrow 30^o} .

{ \vert \overrightarrow{c} \vert=? }

Consideremos os vectores {\overrightarrow{a} e \overrightarrow{b}}.

Os vectores {\overrightarrow{a}} e {\overrightarrow{b}} formando {30^o} entre si {(\theta=30^o)}

Entretanto, o vector {\overrightarrow{c}} é dado como {\overrightarrow{c}=3\overrightarrow{a}-2\overrightarrow{b}}. Sendo assim, consideremos os vectores {3\overrightarrow{a} } e { 2\overrightarrow{b}} , isto é,os vectores {\overrightarrow{a}} e {\overrightarrow{b}} com dimensões triplicando e dobrada, respetivamente.

Por outro lado o vector {\overrightarrow{c}} representa a diferença entre {3\overrightarrow{a}} e {2\overrightarrow{b}} neste caso a resultante é:

Calculando {\beta}:

\displaystyle \beta+\theta=180^o \ \Rightarrow \beta=180^o-\theta

Como { \theta=30^o },temos: { \beta=180^o-30^o=150^o \ \Rightarrow \beta=150^o }\

O módulo de vector { \overrightarrow{c} } , é dada pela lei dos cossenos.\

Lei dos Cossenos:

\displaystyle \vert\overrightarrow{c}\vert^2=\vert3\overrightarrow{a}\vert^2+\vert2\overrightarrow{b}\vert^2+2\times\vert3\overrightarrow{a}\vert \times \vert2\overrightarrow{b} \vert\times \cos\beta

\displaystyle \vert\overrightarrow{c}\vert^2=9^2+10^2+180\times\cos150^o=181-155,88=25,12

\displaystyle \vert \overrightarrow{c} \vert ^2=25,12 \ \Rightarrow \vert\overrightarrow{c}\vert=\sqrt{25,12}=5,01

\displaystyle \rightarrow \vert\overrightarrow{c}\vert=5,01

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

Deixe a sua interacção nos comentários deste Post;
Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
Partilhe este Post nas tuas redes sociais.

%d bloggers gostam disto: