Início » Posts tagged 'Problema Resolvido'
Tag Archives: Problema Resolvido
1.2. Exercícios sobre sistema massa-mola (Parte 2)
Exercício 1 Um móvel executa MHS e obedece a função horária
Nível de dificuldade: Regular. |
Resolução 1 .
|
Exercício 2 Na figura ao lado, dois blocos ( Nível de dificuldade: Regular. |
Resolução 2 .
Dados:
Para que o bloco menor fique fique em repouso relativo ao bloco maior, deslizando conjuntamente com ele, (na iminência de deslizar sobre bloco maior, mas não deslizando) é necessário que haja uma igualdade entre a força que o bloco maior aplica ao bloco menor (determinada a partir da aceleração) e a força de atrito existente na superfície de contacto entre eles (1ª Lei de Newton). Como estamos a tratar de um MHS, a força aplicada pelo bloco de baixo ao bloco de cima é: Onde Logo: Como o bloco Então: Nota: O enunciado não sugere que o bloco deslize, mas sim que ele fique prestes a deslizar. Esta situação só pode ser analisada quando os dois blocos atingem o extremo. Neste ponto a força exercida pela mola é máxima e consequentemente a Num sistema massa-mola: Além disso, a frequência angular não depende somente do bloco Voltando a igualdade entre as forças, teremos: |
Exercicío 3 Um corpo de
Nível de dificuldade: Regular. |
Resolução 3 .
Dados O corpo inicialmente se encontra no extremo negativo (de acordo com a figura inicial). Estando neste extremo, de acordo com a situação (mola comprimida) ao ser solto vai movimentar-se para a posição de equilíbrio e continuar a oscilar. Veja o gráfico analítico abaixo: A equação geral da posição de um MHS é: Considere o gráfico genérico da função Para a função Sendo que a oscilação começa a partir do extremo negativo (Ponto A), logo Sabemos que, num sistema corpo-mola: Então: Logo, substituindo na equação geral, obtemos: A velocidade de um movimento é dada como a derivada da equação da posição, ou seja: Logo: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Carga, Forças Eléctricas (Parte 4)
— 1.1. Exercícios sobre Carga e Forças Eléctricas —
Exercício 10 Um conjunto de 4 cargas iguais, de
Qual deverá ser a massa da carga de prova (de valor igual) para que ela flutue em equilíbrio dinâmico? NÍVEL DE DIFICULDADE: Complexo. |
Resolução 10 .
O exercício nos apresenta uma carga de prova A carga flutua por interacção electrostática. Sendo que todas as cargas são positivas, existem forças repulsivas constantes entre as cargas.Dados . Sendo que a figura geométrica é regular e simétrica, a distancia entre a carga Veja a figura abaixo. Considerando o triângulo rectângulo formado entre as cargas Isolando Analisando o triângulo rectângulo formado pelas cargas Ou: Na carga Chamamos a estas forças Então: O facto de as distâncias serem todas iguais e de as cargas terem o mesmo valor absoluto, pela lei de Coulomb, nos leva a concluir que as forças electrostáticas de repulsão entre Os seus módulos serão: Substituindo Calculando: Lembre que: As forças Neste caso, todas estas forças formarão também o mesmo ângulo Se inserirmos um sistema de coordenadas cartesiano em Na figura, só representamos as projecções para O eixo O eixo O eixo Neste caso:
As componentes horizontais (no plano
Sobram apenas as componentes verticais. As projecçõpes verticais das forças Temos de obter o ângulo Substituindo Sabemos que, pela simetria do problema As resultante das componentes verticais será igual a força eléctrica resultante em Neste caso: Para quê a carga de prova flutue em equilíbrio dinâmico é necessário que a força eletrostática resultante que atua nela seja igual a força de gravidade: Então: Ou: |
Exercício 11 Uma carga de prova Uma outra carga NÍVEL DE DIFICULDADE: Regular. |
Resolução 11 .
O sistema apresenta um arranjo de cargas, onde a carga A mola está comprimida devido a força de repulsão. A massa da mola é depressível. As duas cargas são positivas, logo a força de interacção entre elas é de repulsão. Esta força tenderá a comprimir a mola. A compressão termina quando se atinge o equilíbrio entre a força deformadora (força eléctrica) e a força restauradora (força elástica). Aplicaremos a condição de equilíbrio, substituiremos a força eléctrica pela relação obtida da lei de Coulomb, e isolaremos a distância d. Dados Sabemos que, pela lei de Hook: Sabemos também, pela Lei de Coulomb, que: . Considerando que na carga Em módulo, teremos: Substituindo as forças pelas suas relações, temos: Passando o Substituindo os valores: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 2)
Exercício 11 Três espelhos interceptam-se em ângulos rectos.Um feixe de luz atinge o primeiro deles com um ângulo .NÍVEL DE DIFICULDADE: Regular. . |
Resolução 11 .
Redesenhando a figura. Na figura o ponto de intersecção entre o raio incidente e o primeiro espelho espelho chamamos de O raio que se reflecte deste ponto vai incidir no outro ponto do segundo espelho, que chamamos de Raio reflectido do ponto O raio reflectido do ponto O ângulo de incidência e reflexão no ponto O ângulo de incidência e reflexão no ponto O complementar de Marcamos ainda os .s é eficaz conforme indicado na figura. Da figura, no ponto B, analisando entre o espelho e a sua normal, temos: pelo triângulo BHC, pelo teorema da soma dos ângulos internos, temos temos : Subtraindo ambas equações dos passos anteriores, obtemos : Pelo teorema de ângulos internos no triângulo CDG, temos : Pelo teorema de ângulos internos no triângulo ADF, temos : Subtraindo esta última pela equação do passo anterior, obtemos : Como No quadrilátero Substituindo |
Exercício 12 Um feixe de luz emitido por um laser,incide sobre a superfície da água de um aquário,como representado nesta figura :
O fundo desse aquário é espelhado ,a profundidade da agua é de 40 cm e o ângulo de incidência do feixe de luz é de NÍVEL DE DIFICULDADE: Regular. . |
Resolução 12 .
Dados . No problema, a luz incide a partir do ar para a água. Toca na água no ponto A e refracta-se na água. É reflectida no ponto B(no espelho que está no fundo) e retorna à superfície de separação água-ar. No ponto C, faz refracção novamente para o Ar. Para acharmos a distância AC devemos calcular o ângulo que o feixe de luz faz com a normal na água (usando a lei de Snell-Descartes), e combinando estes valores com a profundidade, no triângulo ABC. . Redesenhando a figura,temos : Pela lei de Snell, no ponto A, podemos determinar o ângulo de refração. Temos : Isolando o seno, no membro esquerdo, temos: Se considerarmos o ponto médio do segmento Substituindo valores, obtemos: . |
Exercício 13 Um rapaz em repouso na rua,vê sua imagem reflectida por um espelho plano preso verticalmente na traseira de um autocarro que se afasta com a velocidade escalar constante de NÍVEL DE DIFICULDADE: Regular. . |
Resolução 13 Neste problema temos de analisar não só a velocidade com o espelho se afasta do rapaz, mas também a velocidade com que a sua imagem (que o espelho produz) se afasta dele.
O melhor raciocínio mais simplificado, consiste em estabelecer o espelho como referencial de analise e depois achar a velocidade relativa. A medida que o autocarro se move para a direita, automaticamente o espelho também se move para a direita. como o movimento é relativo, podemos considerar que o autocarro e o espelho estão em repouso e o rapaz ( Se o rapaz, que é o nosso objecto óptico( Vamos estabelecer as equações do movimento no 1ª referencial (com origem no espelho) e depois amos fazer a transformação de Galileu par o 2º Referencial (com origem no rapaz). Veja a figura. Pela lei da reflexão, em qualquer momento: Portanto : Então , neste referencial (Referencial 1), temos: . Se estabelecermos um novo referencial (no rapaz), então este referencial 1 (com origem no espelho) está em movimento em relação ao novo referencial 2 (com origem no rapaz), com velocidade v. A transformação de galileu diz que: Então para o rapaz( que no referencial 1 estava em movimento regressivo com velocidade v) teremos: Neste novo referencial, o rapaz está repouso. . Para o espelho/autocarro( que no referencial 1 estava em repouso na origem) teremos: Neste novo referencial, o espelho/autocarro estão em movimento com velocidade v (conforme enunciado). Para a imagem (que no referencial 1 estava em movimento progressivo com velocidade v) teremos: Neste novo referencial,imagem está em movimento com velocidade 2v . Neste caso, a velocidade da imagem é: |
Exercício 14 Um nativo de uma aldeia pesca em uma lagoa de água transparente. Para isso usa uma lança. Ao observar um peixe, ele atira a sua lança na direcção em que o observa. O jovem está fora da água e o peixe está em 1 m abaixo da superfície. O peixe está a uma distancia horizontal de a)O ângulo b)O ângulo c)A profundidade aparente y,da superfície da água em que o nativo vê o peixe. NÍVEL DE DIFICULDADE: Regular. . |
Resolução 14
Dados Neste problema, temos analise baseadas na refracção da luz. O Peixe está no Ponto O nativo, na beira do rio, vê como se o peixe estivesse no ponto D (que é a imagem virtual do ponto C) formada pela refracção da luz na superfície. O ponto A é o ponto onde ocorre a refracção. O ângulo
|
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Generalidades do MHS (Parte 1)
— 1. Oscilações —
— 1.1. Generalidades do MHS —
Exercício 1 .
A equação de um MHS é dada por Determina o número de ciclos feitos em NÍVEL DE DIFICULDADE: Elementar. |
Resolução 1 .
A equação de um MHS é geralmente dada na forma Comparando, termo a termo, com a equação dada no enunciado, temos que: As unidades dos resultados estão no SI pois o enuanciado assim indica. Para conseguir calcular o número de ciclos feitos em Para o MHS, Logo: Substituindo o valor de Isolando Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por: substituindo valores, obtemos: Em |
.
Exercício 2 Uma partícula realiza um MHS, cuja equação horária é
NÍVEL DE DIFICULDADE: Elementar |
Resolução 2 .
Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.
A tabela será construida atribuindo diversos valores a Lançando os valores num sistema de coordenadas cartesianos Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de |
Exercício 3 .
Uma partícula descreve um MHS segundo a equação
NÍVEL DE DIFICULDADE: Elementar |
Resolução 3 .
Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.
|
Exercício 4 .
Considere o MHS dado no gráfico. Escreva sua equação. |
NÍVEL DE DIFICULDADE: Elementar
Resolução 4 .
O Problema ilustra o gráfico de A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida. A equação do movimento de um MHS é dada na forma Com base na análise, é possível concluir que: A amplitude No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação. Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que: Sabendo que Por fim, substituindo os dados na equação da oscilação ( |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 1)
— 2. Exercícios sobre Geométrica —
— 2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos —
Exercício 7 Supondo que o objecto B,no instante inicial está em movimento com a velocidade de NÍVEL DE DIFICULDADE: Regular. . |
Resolução 7 .
O problema a seguir trata de um problema de Campo de Visão. Pretendemos determinar após quanto tempo o corpo B é visível ao observador do ponto A, pelo espelho na parede. . Considerando as dimensões indicadas pelos quadriculados, e a posição do ponto A, podemos traçar os raios luminosos que partem do ponto A e se reflectem no espelho. Os raios que vão definir o campo de visão serão os raios que incidem nas extremidades do espelho. No caso os raios (1) e (2). Traçamos os seus raios reflectidos pelo espelho, obedecendo a lei da reflexão, de modos que formem os mesmos ângulos. Neste caso, traçamos os raios (1′) e (2′) respeitando a simetria do problema. Veja a figura a seguir: . Neste caso, o campo de visão do observador A é a região compreendida entre os raios (1′) e (2′). . O Corpo B será visível pelo observador A no momento em que entra no campo de visão de A. Considerando que o corpo B se move e direcção horizontal, ele entrará no campo de visão de A, quando atingir o ponto P, que é o ponto de intercessão entre a linha da sua trajectória e o raio reflectido (1′). Para calcularmos o tempo, devemos achar primeiramente a distancia percorrida por ele (corpo B) até chegar ao ponto P. No gráfico, podemos observar que esta distancia igual a 2 metros. Então: Então, como estamos a avaliar o movimento como um todo, usamos as equações do MRU. Logo: |
Exercício 8 Dois espelhos planos estão dispostos de modo a formar um ângulo de NÍVEL DE DIFICULDADE: Regular. |
Resolução 8
Em primeiro lugar, devemos devemos dar nome aos pontos de referência:
Queremos determinar Podemos determinar O raio 1 forma um ângulo de A soma destes três ângulos No triângulo ABC, Como Tendo já conhecido os valores de |
Exercício 9
Considere a figura baixo em que um ponto A está situado em frente de um espelho plano. Qual é a distância entre a imagem do ponto A e o ponto B, na figura, considerando as dimensões da escala indicada? NÍVEL DE DIFICULDADE: Regular. |
Resolução 9
E primeiro lugar, devemos localizar a imagem de A. Para esboçar a imagem, seguimos o seguinte raciocínio:
. A distância entre a imagem de A (A’) e o ponto B é o segmento: Considerando a escala em quadriculado, podemos considerar o triângulo rectângulo (A’BP). Neste caso, Então: |
Exercício 10 A distância entre A e o espelho plano NÍVEL DE DIFICULDADE: Regular. |
Resolução 10
Em primeiro lugar devemos encontrar as imagens formadas pelos espelhos Sabemos que, nos espelhos planos, a imagem é formada no lado oposto ao espelho, na direcção da perpendicular ao espelho que passa pelo objecto em causa (A) e fica situada a uma distância igual a distância entre objecto e o espelho. Usando isso, podemos encontrar uma imagem do objecto a ser formado pelo espelho O ponto de intersecção entre a linha que sai do objecto até a imagem B (Segmento O ponto de intersecção entre a linha que sai do objecto até a imagem C (Segmento Então pela formação de imagens em espelhos planos sabemos que A distância que deseja determinar corresponde ao segmento Consideremos As imagens são formadas pela prolongação dos raios incididos perpendicularmente aos espelhos. Neste caso o ângulo entre cada espelho e o seu respectivo raio incidido é igual à Por se tratar de espelhos planos, a distância entre cada imagem e o espelho que forma esta imagem é igual à distância entre o objecto e o respectivo espelho. Então: Podemos determinar Mas precisamos antes determinar Sabendo que Assim, já podemos calcular o valor da distância entre as imagens formadas pelos dois espelhos: Então: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.