Início » Posts tagged 'Otica'
Tag Archives: Otica
1.3. Exercícios sobre Polarização da Luz (Parte 1)
— 1.3. Exercícios sobre Polarização da Luz —
Exercício 7 Duas películas polarizadas tem seus eixos de transmissão cruzados de tal forma que nenhuma luz é transmitida. Uma terceira película inserida entre elas com seu eixo de transmissão fazendo um ângulo de NÍVEL DE DIFICULDADE: Regular. |
Resolução 7 .
Neste problema, analisamos a passagem da luz em filtros polarizadores. Esta passagem obedece a lei de Malus. A luz passa por um polarizador, e em por outros dois polarizadores (chamamos Dados Utilizamos a lei de Malus e os conhecimentos de geometria, podemos determinar a fracção da Luz transmitida pelo sistema. O polarizado Então, a intensidade após o primeiro polarizador será: A intensidade da Luz depois do polarizador Conforme vimos pelo gráfico, o ângulo entre Neste caso, a intensidade após o segundo polarizador será: Obs: Não se usou o modulo pois a função cosseno é par. Por fim a intensidade da Luz depois do terceiro polarizador e que Por conseguinte será a intensidade da Luz transmitida pelo sistema, também é determinado pela Lei Malus. De acordo com a figura, ângulo formado entre Deste modo, a intensidade após o terceiro polarizador será: Neste caso, a passagem de luz pelo sistema é definida pelas seguintes equações: Substituindo as equações 1 na equação 2 e sem seguida substituindo a equação 2 na equação 3, obtemos: Então, passando A fracção da intensidade da Luz transmitida pelo sistema é de |
Exercício 8 Um feixe de luz não polarizada incide sobre duas placas polarizadas super expostas. Qual deverá ser ângulo entre os eixos dos polarizadores para que intensidade do feixe transmitido seja um terço da intensidade do feixe incidente?
NÍVEL DE DIFICULDADE: Regular. |
Resolução 8
O problema tem a ver com o fenómeno de polarização da Luz. A luz passa por duas placas polarizadas, que formam um certo ângulo. A condição de calculo é que intensidade da luz após passar as placas seja um terço da intensidade da luz antes de passar as placas. Neste caso, é-nos dada uma relação de forma indirecta: a razão entre a intensidade da luz depois dos polarizadores e a intensidade inicial. Dados Considerarmos De acordo com o funcionamento dos filtros polarizadores ideais, quando a luz natural incide nele, é transmitida apenas Pela lei de Malus sabe-se que : Substituindo Passando o Então: Nota: Antes da raiz, deveria ter sinal Insolando O ângulo entre as direcções de polarização das Placas para que a intensidade do feixe transmitido seja um terço do feixe incidido, deve ser de |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 1)
— 2. Exercícios sobre Geométrica —
— 2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos —
Exercício 7 Supondo que o objecto B,no instante inicial está em movimento com a velocidade de NÍVEL DE DIFICULDADE: Regular. . |
Resolução 7 .
O problema a seguir trata de um problema de Campo de Visão. Pretendemos determinar após quanto tempo o corpo B é visível ao observador do ponto A, pelo espelho na parede. . Considerando as dimensões indicadas pelos quadriculados, e a posição do ponto A, podemos traçar os raios luminosos que partem do ponto A e se reflectem no espelho. Os raios que vão definir o campo de visão serão os raios que incidem nas extremidades do espelho. No caso os raios (1) e (2). Traçamos os seus raios reflectidos pelo espelho, obedecendo a lei da reflexão, de modos que formem os mesmos ângulos. Neste caso, traçamos os raios (1′) e (2′) respeitando a simetria do problema. Veja a figura a seguir: . Neste caso, o campo de visão do observador A é a região compreendida entre os raios (1′) e (2′). . O Corpo B será visível pelo observador A no momento em que entra no campo de visão de A. Considerando que o corpo B se move e direcção horizontal, ele entrará no campo de visão de A, quando atingir o ponto P, que é o ponto de intercessão entre a linha da sua trajectória e o raio reflectido (1′). Para calcularmos o tempo, devemos achar primeiramente a distancia percorrida por ele (corpo B) até chegar ao ponto P. No gráfico, podemos observar que esta distancia igual a 2 metros. Então: Então, como estamos a avaliar o movimento como um todo, usamos as equações do MRU. Logo: |
Exercício 8 Dois espelhos planos estão dispostos de modo a formar um ângulo de NÍVEL DE DIFICULDADE: Regular. |
Resolução 8
Em primeiro lugar, devemos devemos dar nome aos pontos de referência:
Queremos determinar Podemos determinar O raio 1 forma um ângulo de A soma destes três ângulos No triângulo ABC, Como Tendo já conhecido os valores de |
Exercício 9
Considere a figura baixo em que um ponto A está situado em frente de um espelho plano. Qual é a distância entre a imagem do ponto A e o ponto B, na figura, considerando as dimensões da escala indicada? NÍVEL DE DIFICULDADE: Regular. |
Resolução 9
E primeiro lugar, devemos localizar a imagem de A. Para esboçar a imagem, seguimos o seguinte raciocínio:
. A distância entre a imagem de A (A’) e o ponto B é o segmento: Considerando a escala em quadriculado, podemos considerar o triângulo rectângulo (A’BP). Neste caso, Então: |
Exercício 10 A distância entre A e o espelho plano NÍVEL DE DIFICULDADE: Regular. |
Resolução 10
Em primeiro lugar devemos encontrar as imagens formadas pelos espelhos Sabemos que, nos espelhos planos, a imagem é formada no lado oposto ao espelho, na direcção da perpendicular ao espelho que passa pelo objecto em causa (A) e fica situada a uma distância igual a distância entre objecto e o espelho. Usando isso, podemos encontrar uma imagem do objecto a ser formado pelo espelho O ponto de intersecção entre a linha que sai do objecto até a imagem B (Segmento O ponto de intersecção entre a linha que sai do objecto até a imagem C (Segmento Então pela formação de imagens em espelhos planos sabemos que A distância que deseja determinar corresponde ao segmento Consideremos As imagens são formadas pela prolongação dos raios incididos perpendicularmente aos espelhos. Neste caso o ângulo entre cada espelho e o seu respectivo raio incidido é igual à Por se tratar de espelhos planos, a distância entre cada imagem e o espelho que forma esta imagem é igual à distância entre o objecto e o respectivo espelho. Então: Podemos determinar Mas precisamos antes determinar Sabendo que Assim, já podemos calcular o valor da distância entre as imagens formadas pelos dois espelhos: Então: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação (Parte 2)
— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —
— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —
Exercício 4 Dois trens de pulso de certa radiação electromagnética são criados simultaneamente, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com comprimento de
NÍVEL DE DIFICULDADE: Regular.
|
Resolução 4
|
Exercício 5 Na figura a seguir, dois pulsos electromagnéticos são criados em simultâneo, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com índice de refração NÍVEL DE DIFICULDADE: Regular. . |
Resolução 5 \vspace{0,3cm}
Para não termos de calcular o tempo em cada porção, podemos usar o conceito de caminho óptico. Neste conceito, em vez de se considerar que o índice de refração afecta a velocidade, ele será visto como afectando apenas o percurso. Pelo que, podemos considerar que a luz sempre se propaga com a mesma velocidade Para o pulso 1: Neste caso, o tempo será obtido a seguir: Para o pulso 2: Neste caso, o tempo deste pulso será obtido a seguir: Como a seguir a este trecho, o material é comum aos dois pulsos, então esta diferença mantém-se até o final. Neste caso, diferença de tempos é: Como |
— 1.2. Exercícios sobre Energia e Potência da Radiação —
Exercício 6 Uma onda electromagnética de frente plana de intensidade de Determine a força que a onda exerce sobre esta superfície.NÍVEL DE DIFICULDADE: Elementar. |
Resolução 6 .
Quando uma OEM incide sobre uma superfície totalmente reflectora como o espelho, sua pressão de radiação será: Por definição, a pressão é a força por unidade de área: Então: Substituindo: |
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.
1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação
— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —
— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —
Exercício 1 Uma onda electromagnética com frequência de 65 Hz desloca-se em um material magnético isolante que possui constante dieléctrica relativa é igual à 3,64 e a permeabilidade magnética relativa é igual à 5,18 nessa frequência. o campo eléctrico possui amplitude de
|
Resolução 1
Dados
A relação entre estas e as constantes magnéticas e eléctricas relativa é a seguinte:
Então a velocidade de propagação da onda será:
Sabe-se que: Logo:
|
Exercício 2 A potência irradiada pela antena de uma estação radiofónica é de 4 kW. A 4 km do transmissor foi colocada uma antena de recepção de 65 cm de comprimento. Qual é o valor de pico da f.e.m induzida por esse sinal entre as extremidades da antena receptora.
NÍVEL DE DIFICULDADE: Regular. |
Resolução 2
Dados
O módulo ou amplitude da f.e.m é:
Precisamos antes determinar a amplitude do campo eléctrico Como Isolando A intensidade da OEM é :
Substituindo esta formula na equação 1, temos:
|
Exercício 3 Um condutor de resistência de 150
|
Resolução 3
Dados .
|
OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:
- Deixe a sua interacção nos comentários deste Post;
- Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
- Partilhe este Post nas tuas redes sociais.