Luso Academia

Início » Posts tagged 'Oscilações'

Tag Archives: Oscilações

1.2. Exercícios sobre sistema massa-mola (Parte 1)

— 1.2. Sistema massa-mola —

Exercício 16 .

Um corpo está pendurado em uma mola de { k= 600 \ N/m} e oscila com uma amplitude de {5 \ cm}.

Qual é a velocidade máxima desta oscilação e a massa do corpo, se o seu período for de {1 \ s} ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 16 .
Dados
{k= \ 600 \ N/m}
{A= \ 5 \ cm= \ 0,05 \ m}
{T= \ 1 \ s}
{v_M \rightarrow ?}
{m \rightarrow ?}

A velocidade máxima de um MHS é dada na forma:

\displaystyle v_M= A \cdot\omega

Por sua vez, sabemos que, para qualquer evento período:

\displaystyle \omega= \dfrac{2 \pi}{T}

Logo, substituindo na equação anterior, obtemos:

\displaystyle v_M= A \cdot \dfrac{2 \pi}{T}

\displaystyle \Rightarrow v_M=0,05 \cdot \dfrac{2 \pi}{1}

\displaystyle \Rightarrow v_M= \ 0,314 \ m/s

Para determinarmos a massa, podemos usar a relação de {\omega} para o sistema massa-mola. Sabemos que neste sistema, a relação o {\omega} é dado por:

\displaystyle \omega = \sqrt{ \dfrac{k}{m} }

Ou:

\displaystyle \omega^2 = \dfrac{k}{m}

Então, isolando a massa, obtemos:

\displaystyle m= \dfrac{k}{\omega^2}

Substituindo {\omega} pela sua relação com o período, obtemos:

\displaystyle m= \dfrac{k}{(2 \pi / T)^2}

\displaystyle \Rightarrow m= \dfrac{600}{(2 \pi / 1)^2}

\displaystyle \Rightarrow m= \ 15 \ kg

Exercício 17 .
Um corpo de { 0,1 \ kg} preso em uma mola ideal de rigidez elástica de {200 \ N/m} oscila em MHS com {5 \ cm} de amplitude. Qual é a velocidade do corpo no momento em que a energia cinética do corpo é o dobro da energia potencial?

NÍVEL DE DIFICULDADE: Regular.

Resolução 17 .
Dados
{m= \ 0,1 \ kg}
{k= \ 200 \ N/m}
{A= \ 5 \ cm= \ 0,05 m}
{m \rightarrow ?} ({E_c=2E_p})

Em qualquer ponto do percurso em uma oscilação, a energia total do corpo é a soma da energia cinética com a energia potencial do corpo naquele ponto, ou seja:

\displaystyle E_c + E_p = E_{Total} \ \ \ \ \ (1)

Pretende-se saber qual é a velocidade do corpo no ponto onde a energia cinética é o dobro da energia potencial,ou seja:

\displaystyle E_c=2 E_p \ \ \ \ \ (2)

Substituindo a equação 2 na equação 1, temos:

\displaystyle 2E_p + E_p = E_{Total}

\displaystyle 3E_p = E_{Total}

Substituindo as energias cinéticas e total pelos seus equivalentes, obtemos:

\displaystyle 3\dfrac{mv^2}{2}= \dfrac{kA^2}{2}

Isolando a velocidade, obtemos:

\displaystyle v= \sqrt{ \dfrac{k}{3m} \cdot A^2}

\displaystyle \Rightarrow v=1,29 \ m/s

Exercício 18 .
Um corpo caindo de uma altura de {10 \ cm } (em relação ao topo da mola), comprime a mola (ficando presa nesta) e inicia um MHS .Sendo a massa do corpo de {100 \ g} e a constante da mola {20 \ N/m}, determine a amplitude desta oscilação.

NÍVEL DE DIFICULDADE: Complexo.

Resolução 18 .
Dados
{h=10 \ cm= \ 0,1 \ m }
{m= \ 100 \ g= 0,1 \ kg}
{k= \ 20 \ N/m}
{g= \ 9,8 \ m/s^2}
{A \longrightarrow ?}

Na figura ilustramos o sistema em 3 situações diferentes:

  • Situação 1 – O corpo está na altura de 10 cm e a mola está relaxada. O corpo, inicialmente em repouso, cai em direcção a mola.
  • Situação 2 – O corpo chega na mola (e fica preso nela). A partir daqui a mola e o corpo movem-se como um só. até o momento do encontro, o movimento era acelerado e com aceleração constante. Após esse encontro, no corpo começa a actuar a força elástica e portanto a sua aceleração começa a diminuir. A medida em que o corpo desce, a mola se vai comprimindo mais, a força elástica vai aumentando e a aceleração do corpo diminui até zero e em seguida aumenta negativamente. Ai o corpo começa a fazer um movimento retardado.
  • Situação 3 – Após a sua velocidade reduzir até zero, o corpo pára momentaneamente (e em seguida faz o movimento de retorno a posição de equilíbrio).

Vamos adoptar a posição da situação 3 como referencial de altura.

De acordo com a ilustração do fenómeno é possível concluir que:

  • A oscilação começou no ponto de equilíbrio;
  • Na posição da situação 1 o corpo estava em repouso. Existe apenas a energia potencial gravítica (devido a altura de {h + A});
  • Na posição da situação 2, após cair aos { 10 \ cm}, o corpo está em movimento com uma velocidade definida pela altura de queda. O sistema possuí energia cinética (do corpo) e energia potencial gravítica (devido a altura {A});
  • Após comprimir a mola até ao máximo, o corpo para. Nesse momento o sistema só tem a energia potencial elástica.

Usando a descrição acima, para a situação 1, a energia do sistema será:

\displaystyle E_1=E_{c1}+E_{pel1}+E_{pgrav1}

\displaystyle \Rightarrow E_1=0+0+E_{pgrav1}

\displaystyle \Rightarrow E_1= m \cdot g \cdot (h+A)

Para a situação 2, a energia do sistema será:

\displaystyle E_2=E_{c2}+E_{pel2}+E_{pgrav2}

\displaystyle \Rightarrow E_2=E_{c2}+0+E_{pgrav2}

\displaystyle \Rightarrow E_2=\dfrac{m \cdot v_2^2}{2}+0+m \cdot g \cdot A

\displaystyle \Rightarrow E_2=\dfrac{m \cdot v_2^2}{2}+m \cdot g \cdot A

Para a situação 3, a energia do sistema será:

\displaystyle E_3=E_{c3}+E_{pel3}+E_{pgrav3}

\displaystyle \Rightarrow E_3=0+E_{pel3}+0

\displaystyle \Rightarrow E_3=E_{pel3}

\displaystyle \Rightarrow E_3=\dfrac{k \cdot A^2}{2}

Sabemos que neste movimento apenas actuam as forças de gravida e elástica, que são ambas conservativas. Então, a energia mecânica deste sistema permanece constante:

\displaystyle E_1=E_2=E_3=E

Obtemos a partir desta análise um sistema de 3 equações. Resolvendo-o, podemos obter todos os valores desconhecidos ({v_2}, {A} e {E}). Para obter a amplitude, podemos igualar as equações de {E_1} e {E_3}. Neste caso, obteremos:

\displaystyle E_1=E_3

\displaystyle \Rightarrow m \cdot g \cdot (h+A)=\dfrac{k \cdot A^2}{2}

\displaystyle \Rightarrow m \cdot g \cdot h+m \cdot g \cdot A=\dfrac{k \cdot A^2}{2}

\displaystyle \Rightarrow 0=\dfrac{k \cdot A^2}{2} - m \cdot g \cdot A - m \cdot g \cdot h

\displaystyle \Rightarrow \dfrac{k \cdot A^2}{2} - m \cdot g \cdot A - m \cdot g \cdot h =0

Substituindo os dados, obtemos:

\displaystyle \Rightarrow \dfrac{20 \cdot A^2}{2} - 0,1 \cdot 9,8 \cdot A - 0,1 \cdot 9,8 \cdot 0,1 =0

\displaystyle \Rightarrow 10 \cdot A^2 - 0,98 \cdot A - 0,098 =0

Em seguida, resolvemos a equação do segundo grau obtida pela fórmula resolvente ou por qualquer outro método conveniente.

Obtemos os seguintes resultados: {A_1=0,159 \ m} e {A_2=-061 \ m}.

como sabemos, a amplitude não pode ser negativa, então o valor aceite para amplitude deste MHS é:

\displaystyle A=0,159 \ m

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 4)

Exercício 12 .
Uma partícula realiza um MHS de período { 8 \ s} e amplitude { 10 \ cm}.
Determine:

  1. A equação da posição.
  2. A equação da velocidade.
  3. A aceleração { 1 \ s} após ela ter passado pelo extremo negativo.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

O exercício apresenta um problema simples de MHS. O objectivo é determinar as equações da posição e da velocidade, bem como a posição num instante dado. Para obter as equações da posição e da velocidade, basta encontras as constantes destas equações ({A}, {\omega} e {\varphi_0}) e substitui-las.

Para obter a aceleração no instante dado, primeiro vamos obter o instante, por análise gráfica, e em seguida vamos substituir este instante na equação da aceleração.

Dados

{A= \ 10 \ cm = \ 0,1 \ m}

{ T= \ 8 \ s}

  1. A equação da posição de uma partícula em MHS pode ser dada na forma:

    \displaystyle x= A sen ( \omega t + \varphi_0)

    Como o enunciado não diz nada sobre a situação da partícula no instante inicial { ( t=0 \ s)}, então podemos considerar que:

    \displaystyle \varphi_0= 0 \ rad

    Sabendo que { T= 8 \ s} e que {\omega =\dfrac{2\pi }{T}}, então:

    \displaystyle \omega =\dfrac{2 \pi}{8} = \dfrac{1}{4} \pi \ rad/s

    Então, substituindo os valores obtidos na equação do MHS, teremos:

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t+0)

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t)

  2. A velocidade de uma partícula é definida como a derivada da sua posição em função do tempo,ou seja:

    \displaystyle v=\dfrac{d}{dt}[0,1 sen (\dfrac{\pi}{4}t)]

    \displaystyle v=0,1 \dfrac{d (\dfrac{\pi}{4}t)}{dt} cos (\dfrac{\pi}{4}t)

    \displaystyle v=0,1 \cdot \dfrac{\pi}{4} \cdot \cos(\dfrac{\pi}{4}t)

    \displaystyle v= 0,079 \cos(\dfrac{\pi}{4}t)

  3. Para saber essa aceleração, primeiro precisamos saber quanto tempo a partícula demora, para chegar até à posição do extremo negativo, partindo da posição de equilíbrio.

    Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

    • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
    • Sai deste 1º extremo para a posição de equilíbrio.
    • Sai da posição de equilíbrio para o outro extremo (2º extremo, no lado oposto).
    • Sai deste 2º extremo para a posição de equilíbrio.

    Esta é a descrição de um ciclo completo.

    O tempo que a partícula leva a completar o ciclo acima é o período ({T}).

    Cada um dos movimentos descritos acima tem a mesma duração, para o MHS. Esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

    Do estudo generalizado da função seno, conhecemos o gráfico genérico da figura a seguir.

    Observamos então que, para atingir o extremo negativo, partindo da posição de equilíbrio, passa 3/4 do ciclo. Neste caso, o tempo que leva a completar este movimento até ao extremo negativo é {3T/4}.

    Neste caso, o instante referido no enunciado (1 segundo após passar pelo extremo negativo) será:

    \displaystyle t= \ \dfrac{3T}{4}+1 = \ \dfrac{3 \cdot 8}{4}+1 = \ 7 \ s

    Agora basta determinarmos a equação da aceleração que por definição,é a derivada da velocidade da partícula.

    \displaystyle a=\dfrac{d}{dt}[0,07 \cos(\dfrac{\pi}{4}t)]

    \displaystyle a=[0,07 \dfrac{d(\dfrac{\pi}{4}t)}{dt} sen (\dfrac{\pi}{4}t)]

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4}t)

    Fazendo { t=7 \ s}, temos:

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4} \cdot 7)

    \displaystyle a=-0,043 \ m/s^2

Exercício 13 .
Uma partícula em MHS oscila com frequência de { 10 \ Hz} entre os pontos {L} e {-L} de uma reta. No instante { t_{0}}, a partícula está no ponto { \dfrac{\sqrt{3}}{2}L} caminhando em direcção a valores inferiores, e atinge o ponto { - \dfrac{\sqrt{2}}{2}L}, no instante t. Determine o tempo gasto neste deslocamento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 13 .

O problema apresenta-nos um MHS onde é conhecida a frequência e a amplitude. Nos é pedido para determinarmos o tempo que a partícula leva para sair de uma posição para outra.

A resolução deste problema consiste em escrever a equação do MHS, e para as duas posições, formar duas equações. Em seguida, resolvemos o sistema de equações de acordo com a regra escolhida.\

Para calcularmos esse tempo, primeiro, precisamos saber como a partícula se move ao longo dessa recta. Para isso, temos que escrever a sua equação da posição.

Como a escolha do referencial de tempo não tem influência sobre os cálculos, e o problema não oferece referencial de tempo nenhum, consideraremos o instante inicial como sendo nulo: {t_0 = \ 0 \ s}.

Dados
{A= \ L}

.
{ t_0=0 } ;{ x_0=\dfrac{\sqrt{3}}{2}L }

.

{ t_1 \Rightarrow ?} ; { x_1=\dfrac{\sqrt{2}}{2}}

{ f=10 \ Hz}

A equação da posição de uma partícula em MHS pode ser dada na forma:

\displaystyle x= A sen(\omega t + \varphi_{0})

Sabemos que {\omega =2 \pi \cdot f }. Logo:

\displaystyle \omega =2 \pi \cdot 10=20 \pi \ rad/s

Logo ,temos:

\displaystyle x=A sen( \omega t + \varphi_{0})

\displaystyle x=L sen( \varphi_0 +20 \pi t)

Resta sabermos o valor de { \varphi_0 }. Apesar de não definir o valor de { \varphi_0 }, mas o problema nos dá informações da posição em certo instante. Logo, isso define o valor de { \varphi_0 }.

O exercício informa que, no instante inicial { t_0(t=0 \ s)}, a partícula se encontrava na posição { x= \dfrac{\sqrt{3}}{2}L}. Colocando na equação da posição, isso quer dizer que:

\displaystyle \dfrac{\sqrt{3}}{2}L= L sen( 20 \pi \cdot 0 + \varphi_0)

Simplificando {L}, obtemos:

\displaystyle \dfrac{\sqrt{3}}{2}= sen( 20 \pi \cdot 0 + \varphi_0)

\displaystyle \Rightarrow sen(\varphi_0)=\dfrac{\sqrt{3}}{2}

\displaystyle \Rightarrow \varphi_0= \ arcsen(\dfrac{\sqrt{3}}{2}) \ ou \ \varphi_0 = 180^o - \ arcsen(\dfrac{\sqrt{3}}{2})

\displaystyle \Rightarrow \varphi_0= 60^o \ ou \ \varphi_0= 120^o

Como, no instante {t_0} a partícula caminhava para posições negativas, ou seja, a sua posição diminuía, então escolhemos o ângulo de {120^o= \ \dfrac{2 \pi}{3} }, pois esse é que conscide a um decrescimento no gráfico da função seno.

Logo, temos que:

\displaystyle x=L sen( 20 \pi t + \dfrac{2 \pi}{3})

Agora precisamos saber o tempo t que a partícula demora para chegar até { x= - \dfrac{\sqrt{2}}{2}L}. Vamos usar a equação da posição:

\displaystyle -\dfrac{\sqrt{2}}{2} L=L sen( 20 \pi t + \dfrac{2 \pi}{3})

\displaystyle \Rightarrow sen (20 \pi t + \dfrac{2 \pi}{3})=-\dfrac{\sqrt{2}}{2}

\displaystyle 20 \pi t + \dfrac{2 \pi}{3} =arcsen(-\dfrac{\sqrt{2}}{2})

Note: {arcsen(-\dfrac{\sqrt{2}}{2})= 225^o \ ou \ 315^o}. Neste caso, como estamos a analisar um movimento oscilatório, e queremos o menor tempo, usaremos o {225^o=\dfrac{5 \pi}{4} rad}.

\displaystyle \Rightarrow 20 \pi t + \dfrac{2 \pi}{3}=\dfrac{5}{4} \pi

Isolando t, obtemos:

\displaystyle t =\dfrac{\dfrac{5 \pi}{4} - \dfrac{2 \pi}{3}}{20 \pi}

\displaystyle t=\dfrac{7}{240}

\displaystyle t=0,029 \ s

Exercício 14 O diagrama representa a elongação de um corpo em MHS em função do tempo.

  1. Determine a amplitude e o período para esse movimento.
  2. Escreva a função elongação, usando função cosseno.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .
O problema apresenta um gráfico da posição de um MHS e nos pede a amplitude, período e equação da posição deste MHS.

A amplitude é lida directamente no gráfico. O período é obtido por interpretação do gráfico, escolhendo dois pontos especiais da oscilação (extremos, posições de equilíbrio, etc.). Com estes dados, após determinação da fase inicial ({\varphi_0}), é possível escrever a equação deste MHS.

  1. Precisamos primeiro recolher os dados a partir do gráfico. Observe a figura:

    No gráfico, observamos claramente que {A= \ 5 \ m}.

    Também podemos notar o tempo que o corpo leva a sair de um extremo ao outro. Ele está num extremo no instante {t= \ 2 \ s} e no outro no instante {t= \ 6 \ s}. Neste caso, o corpo demorou {4\ s} para sair de um extremo ao outro. Sabemos que, num MHS, o tempo que o corpo leva a sair de um extremo para o outro é igual a metade do período. Logo:

    \displaystyle \dfrac{T}{2} = 4\ s

    \displaystyle \Rightarrow T = 4\cdot2

    \displaystyle \Rightarrow T = 8\ s

  2. A função da elongação pode ser dada na forma {x = A .sen (\omega t + \varphi_0)} ou {x = A .cos(\omega t + \varphi_0)}.

    Sabemos que {\omega =2 \pi / T }. Logo:

    \displaystyle \omega =2 \pi / 8= \ \pi / 4 \ rad/s

    Sendo que em {t = 0}, o corpo se encontra na posição de equilíbrio,então, substituindo na equação da posição (o enunciado pede para usarmos função cosseno), obtemos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos(\dfrac{\pi}{4} .0 + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos( \varphi_0)

    \displaystyle \Rightarrow cos( \varphi_0)=0

    \displaystyle \Rightarrow \varphi_0= \ arccos(0) \ ou \ \varphi_0= \ 360^o - \ arccos(0)

    \displaystyle \Rightarrow \varphi_0= 90^o \ ou \ \varphi_0= 270^o

    Considerando que no gráfico dado, na posição inicial e nos instantes imediatamente a seguir, o corpo desce (movimenta-se para o sentido negativo), então, com base no gráfico genérico da função cosseno, escolheremos o valor de {90^o= \dfrac{\pi}{2} rad }.

    Então, substituindo na equação do MHS, temos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle x = 5 .cos(\dfrac{\pi}{4} t + 90^o)

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 3)

 

Exercício 8 .

Um corpo em MHS desloca-se entre as posições extremas { -50 \ cm} e { +50 \ cm} de sua trajectória, gastando 10 segundos para ir de um extremo à outro.
Considerando que, no instante inicial, o móvel estava na posição de equilíbrio e em movimento retrogrado, determine:

  1. O período;
  2. A equação da elongação do movimento;

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

O problema nos apresenta um corpo em MHS. Nos é dada a amplitude deste movimento, através do valor das posições dos extremos. É dado o tempo que o corpo leva a sair de um extremo para o outro.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximações e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremo de volta para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremo (2º Extremo, no lado oposto).
  • Sai deste 2º extremo para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS estaéesta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Para sair de um extremo ao outro, a partícula deve fazer dois destes movimentos. Então, o tempo que a partícula leva a sair de um extremo para outro corresponde então a metade do período.

Quanto a fase, este problema nos dá informação sobre sentido  do movimento e posição da partícula no momento inicial. Como vamos usar a função seno, podemos observar o gráfico generalizado da função seno.

Observamos que a função seno atinge o valor zero (posição de equilíbrio, no MHS) quando {\varphi = 0^o}, {\varphi = 180^o}, {\varphi = 360^o}, etc.

No caso em análise, não poderemos adoptar {\varphi = 0^o}. Porquê? A reposta está no movimento descrito no enunciado. Se repararmos no gráfico genérico da função seno, observamos que, a seguir {\varphi = 0^o} o valor da função começa a subir. Em movimento, isso equivale a um movimento progressivo.

Como o enunciado diz que a partícula está na posição de equilíbrio, mas em movimento retrógrado, então, o ângulo de fase para este momento deve ser {\varphi = 180^o}.

O gráfico esboçado do movimento do exercício é o seguinte:

  1. Se o corpo demora {10 \ s} para ir de um extremo ao outro, então esses { 10 \ s} correspondem à metade do período, ou seja:

    \displaystyle \dfrac{T}{2}=10

    \displaystyle \Rightarrow T=10 \cdot 2

    \displaystyle \Rightarrow T=20 \ s

  2. A equação da elongação (ou equação horária) de um MHS pode ser dada na forma:

    \displaystyle x=A \cos(\varphi_0+ \omega t) \ ou \ x=A sen (\varphi_0+ \omega t)

    O uso de seno ou cosseno é opcional. Usaremos a função seno, conforme descrito na análise.

    Já ficou mostrado que { \varphi_0=180^o}.

    A amplitude do movimento é definida pela coordenada do extremo. Neste caso:

    \displaystyle A= \ 50 \ cm= \ 0,5 \ m

    Com o valor do período, podemos determinar a frequência angular:

    \displaystyle \omega =\dfrac{2 \pi}{T}=\dfrac{2 \pi}{20 }\ rad/s

    \displaystyle \omega = \dfrac{\pi}{10 }\ rad/s

    Então, para equação do movimento, teremos:

    \displaystyle x=A sen (\omega t+ \varphi)

    \displaystyle x=0,5 sen (\dfrac{\pi }{10 }t+ 180^o)

Exercício 9 .

Considere o gráfico da oscilação abaixo. Determine a amplitude deste MHS.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

O problema nos apresenta o gráfico da velocidade de um MHS.

Pela ilustração, nota-se que o período de oscilação é {T=4 \ s } e a velocidade máxima da oscilação é { 5 \ m/s}.

Logo, sabemos que a velocidade máxima de um corpo em oscilação é dada por:

\displaystyle v_{max}=A \omega

Sabemos também que:

\displaystyle \omega =2 \pi /T

Então, combinado as duas relações, temos:

\displaystyle v_{max}=A \cdot \dfrac{2\pi}{T}

\displaystyle \Rightarrow 5=A \cdot \dfrac{2\pi}{4}

\displaystyle \Rightarrow 5=A \cdot \dfrac{\pi}{2}

\displaystyle \Rightarrow 2 \cdot 5= A \pi

Invertendo a igualdade, temos:

\displaystyle A \pi=2 \cdot 5

\displaystyle \Rightarrow A= \dfrac{2 \cdot 5}{\pi}

\displaystyle A=3,2 \ m

Exercício 10 .

Um corpo executa um MHS ao longo do eixo x, oscilando em torno da posição de equilíbrio { x=0 }.
Abaixo está o gráfico de sua aceleração em função do tempo.

Determine:

  1. A frequência do movimento.
  2. A amplitude do movimento.
  3. O módulo da velocidade do corpo em { t=2 \ s }

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

O período e a amplitude da aceleração (ou aceleração máxima) deste MHS podem ser obtidos no gráfico abaixo:

Com isso conclui-se que:

\displaystyle a_{max}=10 \ m/s^2

\displaystyle T=4 \ s

  1. Por definição, a frequência de um MHS é igual ao inverso do seu período, ou seja,{ f=\dfrac{1}{T}}. Logo:

    \displaystyle f=\dfrac{1}{4}=0,25 \ Hz

  2. Com os dados que temos, podemos calcular a amplitude (A ) do movimento partindo da equação da aceleração máxima { a_{max}} do movimento. Sabendo que:

    \displaystyle a_{max}=A \cdot \omega ^2

    \displaystyle \omega = \dfrac{2 \pi}{T}

    Logo:

    \displaystyle a_{max}=A \cdot ( \dfrac{2 \pi}{T})^2

    \displaystyle A= a_{max} \cdot (\dfrac{T}{2\pi})^2

    \displaystyle A=10 \cdot (\dfrac{4}{2\pi})^2

    \displaystyle A=4,053 \ m

  3. Para calcularmos o módulo da velocidade no instante { t=2 \ s}, precisamos saber primeiro a equação da velocidade dessa partícula em MHS. Podemos fazer isso com base nos dados gráficos e nos valores já calculados.
    No instante { t=0}, a aceleração é a { a=-10 \ m/s^2}, logo percebe-se que a partícula iniciou a sua oscilação quando estava no extremo, pois a aceleração de um MHS é máxima nos extremos. O movimento inicia-se no extremo positivo, pois a aceleração é negativa. Uma sinusoide atinge os extremos quando {\varphi = 90^o}, {\varphi = 270^o}, {\varphi = 450^o}, etc. Veja gráfico da função seno.

    Como o nosso caso é o caso em que a partícula se encontra no extremo positivo, então a fase inicial { \varphi_0= \ 90^o= \ \pi /2 \ rad}.

    A equação da aceleração é dada por { a= -A \omega ^2 sen (\varphi_0+ \omega t)} ou então por { a=-A \omega ^2 \cos(\varphi_0+ \omega t)}. Estamos a trabalhar com a função seno.

    Logo temos que:

    \displaystyle a=-A \omega ^2 sen (\omega t + \varphi_0)

    Para um MHS em que a posição é descrita por uma função seno, a velocidade tem a seguinte equação:

    \displaystyle v=A \omega \cos(\omega t + \varphi_0)

    Sabemos também que:

    \displaystyle \omega =2 \pi /T

    Então:

    \displaystyle \omega =2 \pi / 4

    \displaystyle \Rightarrow \omega = \pi / 2

    Sabendo que { A=4,053 \ m }, { \omega =\dfrac{\pi}{2} \ rad/s} ; {\varphi_0= \pi/2}, então, substituindo estes valores na equação da velocidade, teremos:

    \displaystyle v=4,053 \cdot \dfrac{\pi}{2}\cos(\dfrac{\pi}{2} \cdot t+\dfrac{\pi}{2})

    Como foi pedido para determinar a velocidade no instante {t=2 \ s}, então:

    \displaystyle v=4,053 \cdot \dfrac{\pi}{2}\cos(\dfrac{\pi}{2} \cdot 2+\dfrac{\pi}{2})

    \displaystyle \Rightarrow v=-6,37 \ m/s

Exercício 11 .

Uma partícula realiza um MHS segundo a equação { x=0,2 \cos( \pi t /2+\pi /2 )}, no SI. A partir da posição de elongação máxima, determine o menor tempo que está partícula gastará para passar pela posição de equilíbrio.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Apesar de parecer complexo, mas o problema é Elementar . Muito elementar mesmo.
O problema nos apresenta a equação de um MHS e nos pede para determinarmos o menor tempo que a partícula leva a sair da posição de desvio máximo para a posição de equilíbrio.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremo para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremo (2º Extremo, no lado oposto).
  • Sai deste 2º extremo para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS, esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Com a descrição acima, percebemos que, para sair de um extremo para a posição de equilíbrio, a partícula leva um tempo igual a um quarto do período.

O período pode ser obtido a partir de {\omega}. O {\omega} pode ser obtido na equação da oscilação. Olhando na equação, vemos que:

\displaystyle \omega= \dfrac{\pi}{2}

Sabemos também que:

\displaystyle \omega =2 \pi /T

Então:

\displaystyle \dfrac{2 \pi}{T}= \dfrac{\pi}{2}

Fazendo multiplicação cruzada, obtemos:

\displaystyle 2 \pi \cdot 2= \pi \cdot T

Ou:

\displaystyle \pi \cdot T = 2 \pi \cdot 2

Então:

\displaystyle T = \dfrac{2 \pi \cdot 2}{\pi}

\displaystyle \Rightarrow T = \ 4 \ s

Como o tempo de passagem, do extremos para a posição de equilíbrio é {t=T/4}, então:

\displaystyle t=T/4= 4/4

\displaystyle \Rightarrow t= \ 1 \ s

Com isso, percebe-se que, para sair da posição de elongação máxima { x=\pm 0,2} para a posição de equilíbrio { (x=0)}, a partícula demora {1} segundo.

Está a gostar da Abordagem?

Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 2)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 5 .

Um MHS tem {x=5 \cos (10 \pi \ t+ \dfrac{\pi}{2})}.

Determine a velocidade máxima e a aceleração máxima deste movimento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .

O problema trata de um Movimento Harmónico Simples (MHS) cuja posição é descrita por uma função cosseno.

Nos é pedido para determinar a velocidade máxima (amplitude da velocidade) e a aceleração máxima (amplitude da aceleração).

Sendo um MHS, para obter as equações da velocidade e da aceleração, deveremos derivar a posição em função do tempo. A primeira derivada será a velocidade. A segunda derivada será a aceleração.

A amplitude da velocidade e da aceleração serão os coeficientes das funções seno ou cosseno nas equações da velocidade e aceleração.

Sendo que as grandezas estão no SI, os resultados obtidos dos cálculos também estarão no SI.

.

Pelas leis do movimento:

\displaystyle v= \dfrac{dx}{dt}

E:

\displaystyle a= \dfrac{dv}{dt}

Logo:

\displaystyle v= \dfrac{dx}{dt}=\dfrac{d [5 \cos (10 \pi \ t+ \dfrac{\pi}{2})]}{dt}

\displaystyle \Rightarrow v= [5 \cos (10 \pi \ t+ \dfrac{\pi}{2})]'

\displaystyle \Rightarrow v= 5 \cdot (10 \pi \ t+ \dfrac{\pi}{2})' \cdot [-sen (10 \pi \ t+ \dfrac{\pi}{2})]

\displaystyle \Rightarrow v= 5 \cdot 10\pi [- sen (10\pi \ t+ \dfrac{\pi}{2}) ]

\displaystyle \Rightarrow v=-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})

A partícula em oscilação harmónica atinge a velocidade máxima quando o factor da função seno ou cosseno é igual a {\pm 1}. Na velocidade, isso ocorre quando a partícula passa pela posição de equilíbrio. Neste caso, isso ocorre quando { sen (10\pi \ t+ \dfrac{\pi}{2})=\pm 1}. Para efeitos de cálculos, vamos trabalhar apenas com o valor absoluto.

Neste caso:

\displaystyle v_{max}=| -50 \pi \cdot 1|

Logo, o valor absoluto da velocidade máxima é:

\displaystyle v_{max} = \ 50 \pi \ m/s \approx \ 157,1 \ m/s

Para a aceleração:

\displaystyle a= \dfrac{dv}{dt}=\dfrac{d [-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})]}{dt}

\displaystyle \Rightarrow a= [-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})]'

\displaystyle \Rightarrow a= 50\pi \cdot (10 \pi \ t+ \dfrac{\pi}{2})' \cdot [cos (10 \pi \ t+ \dfrac{\pi}{2})]

\displaystyle \Rightarrow a=-50\pi \cdot (10 \pi) \ \cos(10\pi \ t+ \dfrac{\pi}{2} )

\displaystyle \Rightarrow a=-500\pi^2 \ \cos(10\pi \ t+ \dfrac{\pi}{2} )

A partícula em oscilação harmónica atinge a aceleração máxima quando o factor da função seno ou cosseno é igual a {\pm 1}.Na aceleração, isso ocorre quando a partícula passa pela posição de desvio máximo. Neste caso, atinge quando {\cos(10\pi \ t+ \dfrac{\pi}{2})= \pm 1 }. De igual modo, para efeitos de cálculos, vamos trabalhar apenas com o valor absoluto.

Logo, o valor absoluto da aceleração máxima é:

\displaystyle a_{max}= |-500\pi^2 \ \cdot 1 |

\displaystyle \Rightarrow a_{max}=500\pi^2 \ m/s^2 \approx 4934,8 \ m/s^2

.

Exercício 6 .

Um sistema realiza oscilações harmónicas com amplitude de { 2 \ cm} e frequência {10 \ Hz}.

Considerando que oscilação inicia na posição de equilíbrio; Determine a equação desta MHS, se descrito por uma função seno.
NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

O problema dado apresenta um MHS onde nos é dado a frequência e a amplitude. Atenção que a amplitude está em {cm} que não é a unidade no SI. Então, teremos de converte-la para o SI.

Nos é pedido para determinar a equação deste MHS.

Para determinar a equação do MHS, precisamos de conhecer a amplitude, a frequência angular e a fase inicial. Usaremos a equação geral do MHS já conhecida.

A frequência angular será determinada pela relação entre frequência angular e linear.

A fase é obtida por análise da posição inicial do movimento e a função trigonométrica a ser usada na descrição desta oscilação.

Dados

{A= \ 2 \ cm= \ 2 \cdot 10 ^{-2} \ m}

{ f= \ 10 \ Hz}

Do estudo generalizado da função seno, conhecemos o gráfico genérico da figura a seguir.

Sabemos a partir dos dados que, no momento inicial, a partícula se encontrava na posição de equilíbrio ({x=0}).

Do gráfico anterior da função seno, observamos que a função seno atinge o zero para vários ângulos ({\varphi = 0}, {\varphi = 180^o}, {\varphi = 360^o}, etc.).Qualquer um dos ângulos anteriores é válido, pois não nos deram nenhuma referência do sentido da oscilação ou da velocidade.

Neste contexto, é costume optarmos pelo primeiro valor.

Pelos argumentos apresentados anteriormente, como a oscilação inicia na posição de equilíbrio,logo { \varphi_0 = \ 0 ^o = \ 0 \ rad }

A euação geral do MHS é:

\displaystyle x= A sen (\omega \cdot t+\varphi_0)

Para escrevermos a equação, temos de saber qual é o valor de {\omega} .

Sabemos que:

\displaystyle \omega = \ 2 \cdot \pi \cdot f

Logo, substituindo {f}, temos:

\displaystyle \omega =2 \cdot \pi \cdot 10

\displaystyle \Rightarrow \omega =20 \pi \ rad/s

Neste caso, substituindo os valores na equação da oscilação,temos:

\displaystyle x= A sen (\omega \cdot t+\varphi_0)

\displaystyle \Rightarrow x= 2 \cdot 10^{-2} sen (20 \pi \cdot t+0)

\displaystyle \Rightarrow x=2 \cdot 10^{-2} \cdot sen (20 \pi \ t)

Exercício 7 .

Numa oscilação, o corpo sai de um extremo outro em { 5 \ s } e chega com uma aceleração de {10 \ cm/s^2}. Determine a equação deste MHS.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7 .

O problema trata de um MHS. Nos é dado directamente o valor da aceleração com que o corpo chega no outro extremo. Na realidade, do conhecimento do MHS, a aceleração que o corpo tem quando atinge o extremo é a aceleração máxima ou amplitude da aceleração.

Também foi fornecida uma informação do tempo de duração da oscilação. Essa informação foi dada de modo indirecto, pelo que, carece de alguma interpretação.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corto move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremos para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremos (2º Extremo, no lado oposto).
  • Sai deste 2º extremos para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração, para o MHS. Esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Para sair de um extremo ao outro, a partícula tem de fazer dois destes movimento. Então, o tempo que a partícula leva a sair de um extremo para outro corresponde então a metade do período.

.

Dados

{a_{max}= \ 10 \ cm/s^2= \ 10 \cdot 10 ^{-2} \ m/s^2= \ 0,1 \ m/s^2}

{ \dfrac{T}{2}= \ 5 \ s}

.

A equação de uma MHS é a seguinte:

\displaystyle x=A sen ( \omega t+\varphi_0)

Precisamos saber qual é o valor da amplitude A, da frequência angular {\omega} e da fase inicial { \varphi_0}.

O fenómeno pode ser analisado conforme a ilustração abaixo:

Onde:

{E_1} – Extremo 1.

{E_2} – Extremo 2.

Pela ilustração é possível observar que os { 5 \ s} levados pelo corpo para sair de um extremo para o outro corresponde à metade do período da oscilação.

Logo:

\displaystyle T=2 \cdot 5=10 \ s

Além disso,nota-se que no momento do inicio da oscilação, o corpo de encontra num dos extremos (Ver figura anterior).

A função seno atinge os extremos quando {\varphi = 90^o}, {\varphi = 207^o}, {\varphi = 450^o}, etc. Reveja o gráfico genérico da função seno.

Sabemos que podemos adoptar qualquer um dos ângulos, visto que não nos é dada nenhuma referência sobre o sentido do movimento ou a velocidade.

Então, o ângulo de fase inicial é:

\displaystyle \varphi_0= \ 90^o= \ \dfrac{\pi}{2} \ rad

Sabemos que:

\displaystyle \omega= \dfrac{2 \pi}{T}

Logo:

\displaystyle \omega= \dfrac{2 \pi}{10}= \dfrac{\pi}{5}

Falta-nos saber o valor da amplitude da oscilação.

O enunciado afirma que o corpo atinge uma aceleração de { 10 \ cm/s^2} quando chega ao outro extremo.

Lembrar que, a aceleração máxima de um movimento é:

\displaystyle a_{max}=A \omega^2

Pretendemos determinar a amplitude. Isolando a amplitude, teremos:

\displaystyle \dfrac{a_{max}}{\omega^2}= \ A

\displaystyle \Rightarrow A= \ \dfrac{a_{max}}{\omega^2}

Substituindo valores, teremos:

\displaystyle A= \ \dfrac{0,1}{(\dfrac{\pi}{5})^2}

\displaystyle \Rightarrow A= \dfrac{0,1}{( \pi / 5)^2}= 0,253 \ m

Substituindo na equação geral, temos:

\displaystyle x=A sen ( \omega t+\varphi_0)

\displaystyle \Rightarrow x = 0,253 \cdot sen ( \dfrac{ \pi}{5} t + \dfrac{\pi}{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 1)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 1 .

A equação de um MHS é dada por { x=0,5 \sin 10 \pi t (SI)}.

Determina o número de ciclos feitos em { 10 \ s } de oscilação.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

A equação de um MHS é geralmente dada na forma { x= A \cdot \sin (\omega \cdot t+\varphi_0 }. .

Comparando, termo a termo, com a equação dada no enunciado, temos que:

\displaystyle A=0,5 \ m

\displaystyle w=10 \ \pi \ rad/s

\displaystyle \varphi_0=0 \ rad

As unidades dos resultados estão no SI pois o enuanciado assim indica.

Para conseguir calcular o número de ciclos feitos em { 10 \ s} precisasse saber quantas oscilações são feitas em {1 \ s} (a frequência da oscilação).

Para o MHS, {\omega} é dado por:

\displaystyle \omega=2 \pi \cdot f

Logo:

\displaystyle \omega=2 \cdot \pi \cdot f

Substituindo o valor de {\omega} dos dados, obtemos:

\displaystyle 10 \pi = 2 \cdot \pi \cdot f

Isolando {f}:

\displaystyle f= \frac{10 \pi}{2 \pi}=5 \ Hz

Ou seja, em cada segundo são realizadas 5 oscilações. Para o MHS, a frequência é definida por:

\displaystyle f= \frac{N}{t}

\displaystyle \Rightarrow N= f \cdot t

substituindo valores, obtemos:

\displaystyle N=5 \cdot 10

Em { 10 \ s} de oscilações são realizados 50 ciclos.

.

Exercício 2 Uma partícula realiza um MHS, cuja equação horária é { x=5 \cos (\dfrac{\pi}{4} t } SI.

  1. Determine o período do MHS.
  2. Esboce o gráfico da velocidade em função do tempo.

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Este exercício está relacionado com o movimento harmónico simples. Determinaremos o período pela relação entre período e frequência angular. Determinaremos a velocidade derivando a equação da posição, dada no enunciado.

  1. A equação horária de um MHS pode ser dada na forma { x=A \cos(\omega t+\varphi_0)}.Comparando, termo a termo, com a equação dada no enunciado ({x=5 \cos (\dfrac{\pi}{4} t }), obtemos:

    \displaystyle \omega=\frac{\pi}{4} \ rad/s

    Sabendo que { \omega=\frac{2\pi}{T} },logo:

    \displaystyle T=\frac{2\pi}{\omega}

    Substituindo os dados:

    \displaystyle t= \frac{2\pi}{\pi /4}

    \displaystyle T=8 \ s

  2. Para se esboçar o gráfico da velocidade em função do tempo precisamos construir uma tabela que relaciona as duas grandezas({v} e {t}).Para isso, precisamos escrever a equação da velocidade em função do tempo.
    Sabe-se que a velocidade é dada pela derivada da posição em função do tempo, temos:

    \displaystyle v=\frac{dx}{dt}

    \displaystyle \Rightarrow v=\frac{d}{dt} [5 \cos(\frac{\pi}{4}t)]

    \displaystyle \Rightarrow v= -5 \cdot \frac{\pi}{4} \sin ( \frac{\pi}{4}t)

    \displaystyle v= -1,25\pi \sin (\frac{\pi}t)

A tabela será construida atribuindo diversos valores a {t} e calculando os valores correspondentes de {v}. Escolhemos os valores de {t} de 0, 2, 4, 6, 8 e 10 s.

Lançando os valores num sistema de coordenadas cartesianos {(t;v)} e interpolando os pontos, obtemos um gráfico similar ao da figura abaixo:

Nota: Ao interpolarmos os pontos, fazemos um ajuste sinusoidal, pois sabemos que a dependência de {v} em relação a {t} é .

Exercício 3 .

Uma partícula descreve um MHS segundo a equação {x=0,5 \cos( \pi / 3+2 \pi t) }, no SI.Obtenha.

  1. A correspondente equação da velocidade.
  2. O módulo da máxima velocidade atingida por essa partícula.

NÍVEL DE DIFICULDADE: Elementar

Resolução 3 .

Este exercício está relacionado com o Movimento Harmónico Simples. Nos é dada a equação horária do MHS para acharmos a equação horária da velocidade e a velocidade máxima. A equação horária da velocidade será obtida pela derivada da função horária da posição. A velocidade máxima é obtida na amplitude da função horária da velocidade.

  1. A equação da velocidade de uma partícula em MHS é dada pela derivada da equação da posição em função do tempo, ou seja:

    \displaystyle v(t)=\frac{d}{dt}x

    \displaystyle \Rightarrow v(t)=\frac{d}{dt}[0,5 \cos(\frac{\pi}{3} +2 \pi t)]

    Derivando, obtemos:

    \displaystyle v{t}=-0,5 \cdot 2 \pi \sin( \frac{\pi}{3} +2 \pi t)

    \displaystyle \Rightarrow v_{t}=-\pi \sin(\frac{\pi}{3} +2 \pi t)

  2. A velocidade num MHS é máxima quando { \sin( \varphi_0+ \omega)=1}. Logo:

    \displaystyle v_{max}=\pi \ m/s

Exercício 4 .

Considere o MHS dado no gráfico. Escreva sua equação.

NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

O Problema ilustra o gráfico de {x(t)} de um MHS. Para escrevermos a equação deste MHS, devemos determinar em primeiro lugar os seus parâmetros ({A}, {\omega} e {\varphi_0}). Estes parâmetros são determinados no gráfico.

A amplitude é a distancia vertical máxima entre o maior valor e o valor de equilíbrio (ou médio). No caso, como a função é simétrica em relação ao eixo de {t} (valor de equilíbrio é 0), então a amplitude é o maior valor de x a se registar na curva.

O período pode ser determinado como o tempo entre duas passagens sucessivas num máximo ou num mínimo. Como o gráfico não ilustra nem duas passagens pelo máximo, nem duas passagens pelo mínimo, então, então vamos usar o semi-período (metade do período)que é o tempo de passagem de um máximo para um mínimo ou vice-versa. á fase é obtida pela relação do valor inicial é relação ao valor máximo (considerando o momento de oscilação: subida ou descida.

A equação do movimento de um MHS é dada na forma { x = A \sin (\omega t + \varphi_0)}.

Com base na análise, é possível concluir que:

A amplitude { A=3 \ cm} ou { A=0,03 \ m} .

No momento inicial, o corpo se encontra no máximo positivo, e como estamos a considerar uma função seno. Neste caso, a função seno atinge exactamente o valor máximo quando o argumento é {90^o=\pi / 2 \ Rad}. Neste caso, para obter a fase inicial, teremos:

\displaystyle \omega t + \varphi_0= \pi/2

\displaystyle \Rightarrow \omega \cdot 0 + \varphi_0= \pi/2

\displaystyle \Rightarrow \ \varphi_0= \pi/2

O corpo demora 4 segundos para sair de um extremo ao outro, ou seja, demorou 4 segundos para percorrer metade do percurso de oscilação.

Logo, os 4 segundos correspondem à metade do período da oscilação. Com isso, pode-se dizer que:

\displaystyle T/2= 4 s

\displaystyle \Rightarrow \ T= 4\cdot 2

\displaystyle \Rightarrow \ T= \ 8 \ s

Sabendo que { \Rightarrow=2 \pi /T}, logo:

\displaystyle \omega =2 \pi /8

\displaystyle \Rightarrow \omega = \frac{1}{4} \pi \ rad/s

Por fim, substituindo os dados na equação da oscilação ({ x = A \sin (\omega t + \varphi_0)}), obtemos:

\displaystyle x = 0,03 \sin (\frac{1}{4} \pi t + \dfrac{\pi }{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers gostam disto: