Luso Academia

Início » Posts tagged 'optica'

Tag Archives: optica

1.3. Exercícios sobre Polarização da Luz (Parte 1)

— 1.3. Exercícios sobre Polarização da Luz —

Exercício 7 Duas películas polarizadas tem seus eixos de transmissão cruzados de tal forma que nenhuma luz é transmitida. Uma terceira película inserida entre elas com seu eixo de transmissão fazendo um ângulo de {45^o} em relação a cada um dos eixos. A combinação é mostrada na figura ao lado.Suponha que cada película ideal. Encontre a fracção da luz que é transmitida pelo sistema.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7 .

Neste problema, analisamos a passagem da luz em filtros polarizadores. Esta passagem obedece a lei de Malus. A luz passa por um polarizador, e em por outros dois polarizadores (chamamos {P_1}, {P_2} e {P_3}). Incide luz natural em {P_1}. Após a passagem neste polarizador, já teremos luz linearmente polarizada, na direcção vertical. Em seguida, essa luz linearmente polarizada incide num segundo polarizador ({P_2}). Ao passar por este polarizador, a luz transmitida tem intensidade que obedece a lei de Malus, e portanto, é proporcional ao ângulo entre estes dois polarizadores (ou entre a direcção de polarização da luz incidente e o eixo do polarizador em questão). No terceiro polarizador, acontece o mesmo.

Dados

{\theta_{1} \ = \ 0^{o}}

{\theta_{2} \ = \ 45^{o}}

{\theta_{3} \ = \ 90^{o}}

{\dfrac{I_{f}}{I_0} \ - \ ?}

Utilizamos a lei de Malus e os conhecimentos de geometria, podemos determinar a fracção da Luz transmitida pelo sistema. O polarizado {P_{1} \ } está colocado a {0^{o}} com as componentes paralelas da Luz, então Depois deste polarizadores só passa as componentes paralelas da Luz, ou seja {50 \%} da intensidade da Luz.

Então, a intensidade após o primeiro polarizador será:

\displaystyle I_{1} \ = \ 0,5 \cdot I_{0}

A intensidade da Luz depois do polarizador {P_{2}} é determinado pela lei de Malus.

Conforme vimos pelo gráfico, o ângulo entre {P_{1}} e {P_{2}} é:

\displaystyle \theta_{12}= |\theta_{1}-\theta_{2}|

Neste caso, a intensidade após o segundo polarizador será:

\displaystyle I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{12})

\displaystyle \Rightarrow I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{2} \ - \ \theta_{1})

Obs: Não se usou o modulo pois a função cosseno é par.

Por fim a intensidade da Luz depois do terceiro polarizador e que Por conseguinte será a intensidade da Luz transmitida pelo sistema, também é determinado pela Lei Malus.

De acordo com a figura, ângulo formado entre {P_{2}} e {P_{3}} é:

\displaystyle \theta_{23}= |\theta_{2}-\theta_{3}|

Deste modo, a intensidade após o terceiro polarizador será:

\displaystyle I_{3} \ = \ I_{f} \ = \ I_{2} \cdot cos^{2} \ (\theta_{23} )

\displaystyle \Rightarrow I_{3} \ = \ I_{f} \ = \ I_{2} \cdot cos^{2} \ (\theta_{3} \ - \ \theta_{2})

Neste caso, a passagem de luz pelo sistema é definida pelas seguintes equações:

\displaystyle \left\{\begin{array}{cccccc} I_{1} \ = \ 0,5 \ (I_{0})\\ I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{2} \ - \ \theta_{1})\\ I_{3} \ = \ I_{2} \cdot cos^{2} \ (\theta_{3} \ - \ \theta_{2})\\ \end{array}\right.

Substituindo as equações 1 na equação 2 e sem seguida substituindo a equação 2 na equação 3, obtemos:

\displaystyle I_{3} \ = \ I_{f} \ = \ I_{2} \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ [I_{1} \ cos^{2} \ (\theta_{2} \ - \ \theta_{1})] \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ cos^{2} \ (\theta_{2} \ - \ \theta_{1}) \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (\theta_{2} \ - \ \theta_{1}) \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (45^{o} \ - \ 0^{o})] \ cos \ (90^{o} \ - \ 45^{o})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (45^{o} \ - \ 0^{o})] \ cos \ (90^{o} \ - \ 45^{o})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos \ 45^{o} \ . \ cos \ 45^{o})^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos^2 \ 45^{o} \ )^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos \ 45^{o})^{4}

\displaystyle \Rightarrow I_{f} \ = \ 125 \cdot I_{o}

Então, passando {I_0} para o membro esquerdo da equação acima, obtemos:

\displaystyle \dfrac{I_{f}}{I_{o}} \ = \ 0,125=\dfrac{1}{8}

A fracção da intensidade da Luz transmitida pelo sistema é de {\dfrac{1}{8}} ({12,5 \ \% }).

Exercício 8 Um feixe de luz não polarizada incide sobre duas placas polarizadas super expostas. Qual deverá ser ângulo entre os eixos dos polarizadores para que intensidade do feixe transmitido seja um terço da intensidade do feixe incidente?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

O problema tem a ver com o fenómeno de polarização da Luz. A luz passa por duas placas polarizadas, que formam um certo ângulo. A condição de calculo é que intensidade da luz após passar as placas seja um terço da intensidade da luz antes de passar as placas.

Neste caso, é-nos dada uma relação de forma indirecta: a razão entre a intensidade da luz depois dos polarizadores e a intensidade inicial.

Dados

{\dfrac{I_{2}}{I_{0}} \ = \ \dfrac{1}{3} }

Considerarmos {I_{0}} a intensidade da luz incidida ao primeiro polarizador, {I_{1}} A intensidade da luz que emerge do primeiro polarizador e incide no segundo polarizador e e {I_{2}} a intensidade da luz que emerge do segundo polarizador.

De acordo com o funcionamento dos filtros polarizadores ideais, quando a luz natural incide nele, é transmitida apenas {50 \% } da sua intensidade. Então, teremos:

\displaystyle I_{1} \ = \ \dfrac{1}{2} \ I_{0}

Pela lei de Malus sabe-se que :

\displaystyle I_{2} \ = \ I_{1} \cdot cos^{2} \alpha

Substituindo {I_2} pela relação anterior de {I_{1}}, teremos:

\displaystyle I_{2} \ = \dfrac{1}{2} \cdot I_{0}\cdot cos^{2} \alpha

Passando o {I_0} para o membro esquerdo, obtemos:

\displaystyle \dfrac{I_{2}}{I_0} \ = \dfrac{1}{2} \cdot cos^{2} \alpha

Então:

\displaystyle cos^2 \alpha \ = 2 \cdot \dfrac{I_{2}}{I_{1}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{2 \cdot \dfrac{I_{2}}{I_{1}}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{2 \cdot \dfrac{1}{3}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{\dfrac{2}{3}}

Nota: Antes da raiz, deveria ter sinal {\pm }, porém, como estamos apenas interessados na amplitude do ângulo, desprezamos o sinal negativo.

Insolando {\alpha}, obtemos:

\displaystyle \alpha \ = \ arccos \left(\sqrt{\dfrac{2}{3}}\right)

\displaystyle \Rightarrow \alpha \ \approx 35,3^o

O ângulo entre as direcções de polarização das Placas para que a intensidade do feixe transmitido seja um terço do feixe incidido, deve ser de {35^{o}}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 2)

 

Exercício 11 Três espelhos interceptam-se em ângulos rectos.Um feixe de luz atinge o primeiro deles com um ângulo {\theta} (ver figura ao lado) .a)Mostre que quando esse raio é refletido pelos outros dois espelhos e cruza o raio original,o ângulo entre esses dois raios será {\alpha = \ \ 180^{o}-2\theta} e determine o ângulo {\theta} para o qual os dois raios serão perpendiculares quando se cruzam?

.NÍVEL DE DIFICULDADE: Regular.

.

Resolução 11 .

Redesenhando a figura. Na figura o ponto de intersecção entre o raio incidente e o primeiro espelho espelho chamamos de {B}.

O raio que se reflecte deste ponto vai incidir no outro ponto do segundo espelho, que chamamos de {C}.

Raio reflectido do ponto {C} vai incidir no outro ponto do terceiro espelho que chamamos de {D}.

O raio reflectido do ponto {D} vai cruzar-se com o raio incidente num ponto que chamamos {A}.

O ângulo de incidência e reflexão no ponto {C} chamamos de {z}. O complementar de {z} chamamos de {\varphi}.

O ângulo de incidência e reflexão no ponto {D} chamamos de {\beta}. O complementar de {\beta} chamamos de {\Psi}.

O complementar de {\theta} chamas de {\chi}.

Marcamos ainda os .s é eficaz conforme indicado na figura.

Da figura, no ponto B, analisando entre o espelho e a sua normal, temos:

\displaystyle \chi \ + \theta = \ \ 90^{o}

pelo triângulo BHC, pelo teorema da soma dos ângulos internos, temos temos :

\displaystyle \chi \ + \varphi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \chi \ + \varphi = \ \ 90^{o}

Subtraindo ambas equações dos passos anteriores, obtemos :

\displaystyle \varphi = \ \theta

Pelo teorema de ângulos internos no triângulo CDG, temos :

\displaystyle \varphi \ + \Psi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \varphi \ + \Psi = \ \ 90^{o}

Pelo teorema de ângulos internos no triângulo ADF, temos :

\displaystyle y \ + \ 90^{o} \ + \Psi = \ \ 180^{o} \Rightarrow

\displaystyle y \ + \Psi = \ \ 90^{o}

Subtraindo esta última pela equação do passo anterior, obtemos :

\displaystyle y = \ \varphi

Como {\varphi = \ \theta}, obtermos:

\displaystyle y = \ \theta

No quadrilátero {ABCD} temos :

\displaystyle 2y \ + \alpha = \ \ 180^{o} \Rightarrow \alpha = \ \ 180^{o} \ - \ 2y

Substituindo {y = \ \theta}, obtemos:

\displaystyle \alpha = \ 180^{o} \ - \ 2\theta

Exercício 12 Um feixe de luz emitido por um laser,incide sobre a superfície da água de um aquário,como representado nesta figura :

O fundo desse aquário é espelhado ,a profundidade da agua é de 40 cm e o ângulo de incidência do feixe de luz é de {50^{o}}. Qual é a distância entre os pontos A e C da figura?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 12 .

Dados

{n_{agua} = \ \ 1,33}

{h = \overline{BO}= \ \ 40 \ cm}

{\varphi = \ \ 50^{o}}

{ \overline{AC} \rightarrow \ ?}

.

No problema, a luz incide a partir do ar para a água. Toca na água no ponto A e refracta-se na água. É reflectida no ponto B(no espelho que está no fundo) e retorna à superfície de separação água-ar. No ponto C, faz refracção novamente para o Ar.

Para acharmos a distância AC devemos calcular o ângulo que o feixe de luz faz com a normal na água (usando a lei de Snell-Descartes), e combinando estes valores com a profundidade, no triângulo ABC.

.

Redesenhando a figura,temos :

Pela lei de Snell, no ponto A, podemos determinar o ângulo de refração. Temos :

\displaystyle n_{ar} \ sen 50^{o} = \ \ n_{agua} \ . sen \theta

Isolando o seno, no membro esquerdo, temos:

\displaystyle sen \theta = \ \dfrac{n_{ar} \ sen 50^{o}}{n_{agua}} = \ \dfrac{1. \ sen 50^o}{1,33}

\displaystyle \Rightarrow \theta =\ arcsen({ \dfrac{1. \ sen 50^o}{1,33}}) = \ 35,15^{o}

Se considerarmos o ponto médio do segmento {\overline{AB}}, que chamamos de {D}, então o triângulo ABD é rectângulo. O ângulo interno do vértice B é igual a {\theta } e {\overline{AD}=\overline{AC}/2}. Então:

\displaystyle tg \theta= \ \dfrac{\overline{AD}}{\overline{BD}} = \ \dfrac{\dfrac{\overline{AC}}{2}}{h} = \ \dfrac{\overline{AC}}{2h}

\displaystyle \Rightarrow \overline{AC} = \ 2h \ . \ tg \theta

Substituindo valores, obtemos:

\displaystyle \overline{AC} = \ 2 \ . \ 40 \ cm \ . \ tg \ (35,15^o) \Rightarrow \overline{AC} = \ 56,37 \ cm

.

Exercício 13 Um rapaz em repouso na rua,vê sua imagem reflectida por um espelho plano preso verticalmente na traseira de um autocarro que se afasta com a velocidade escalar constante de {20 \ m/s}. Qual é a velocidade de afastamento da imagem em relação ao rapaz?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 13 Neste problema temos de analisar não só a velocidade com o espelho se afasta do rapaz, mas também a velocidade com que a sua imagem (que o espelho produz) se afasta dele.

O melhor raciocínio mais simplificado, consiste em estabelecer o espelho como referencial de analise e depois achar a velocidade relativa.

A medida que o autocarro se move para a direita, automaticamente o espelho também se move para a direita. como o movimento é relativo, podemos considerar que o autocarro e o espelho estão em repouso e o rapaz ({AB}) é que se está a mover no sentido oposto (para a esquerda), com a mesma velocidade.

Se o rapaz, que é o nosso objecto óptico({AB}), se move para esquerda com velocidade v, então a sua imagem formada pelo espelho ({A'B'}) se afasta do espelho para direita com velocidade {v'}.

Vamos estabelecer as equações do movimento no 1ª referencial (com origem no espelho) e depois amos fazer a transformação de Galileu par o 2º Referencial (com origem no rapaz). Veja a figura.

Pela lei da reflexão, em qualquer momento:

\displaystyle \Delta x_{e} = \Delta x_{i}

Portanto :

\displaystyle -v \cdot t = v' \cdot t

\displaystyle \Rightarrow -v = v'

\displaystyle \Rightarrow |v| = |v'|

Então , neste referencial (Referencial 1), temos:

\displaystyle x_{Rap-Ref1}=x_{0Rap} - v. t

\displaystyle x_{Esp-Ref1}=0

\displaystyle x_{Rap-Ref1}=x_{0Rap} + v.t

.

Se estabelecermos um novo referencial (no rapaz), então este referencial 1 (com origem no espelho) está em movimento em relação ao novo referencial 2 (com origem no rapaz), com velocidade v.

A transformação de galileu diz que: {x_{Ref2}=x_{Ref 1} - v. t}.

Então para o rapaz( que no referencial 1 estava em movimento regressivo com velocidade v) teremos:

\displaystyle x_{Rap-Ref2}=x_{Rap-Ref 1} + v. t

\displaystyle x_{Rap-Ref2}=(x_{0Rap}-v.t) + v. t

\displaystyle x_{Rap-Ref2}=x_{0Rap}

Neste novo referencial, o rapaz está repouso.

.

Para o espelho/autocarro( que no referencial 1 estava em repouso na origem) teremos:

\displaystyle x_{Esp-Ref2}=x_{Esp-Ref 1} + v. t

\displaystyle x_{Esp-Ref2}=0 + v. t

\displaystyle x_{Esp-Ref2}= v. t

Neste novo referencial, o espelho/autocarro estão em movimento com velocidade v (conforme enunciado).

Para a imagem (que no referencial 1 estava em movimento progressivo com velocidade v) teremos:

\displaystyle x_{Im-Ref2}=x_{Im-Ref 1} + v. t

\displaystyle x_{Im-Ref2}=(x_{0Im}+v.t) + v. t

\displaystyle x_{Im-Ref2}= x_{0Im} + 2 v t

Neste novo referencial,imagem está em movimento com velocidade 2v .

Neste caso, a velocidade da imagem é:

\displaystyle v_{im}= \ 2.v= \ 2.20=40 \ m/s

Exercício 14 Um nativo de uma aldeia pesca em uma lagoa de água transparente. Para isso usa uma lança. Ao observar um peixe, ele atira a sua lança na direcção em que o observa. O jovem está fora da água e o peixe está em 1 m abaixo da superfície. O peixe está a uma distancia horizontal de {0,9 \ m} do ponto aonde a lança atinge a superfície da água. Para essas condições determine :

a)O ângulo {\alpha},de incidência da luz na superfície da agua-ar.

b)O ângulo {\beta} que a lança faz com a superfície da água quando tenta alcançar o peixe.

c)A profundidade aparente y,da superfície da água em que o nativo vê o peixe.

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 14

Dados

{n_{ar} = \ \ 1}

{n_{agua} = \ \ 1,33}

{\alpha \ - \ ?}

{\beta \ - \ ?}

{y = \ \overline{DE} - \ ?}

Neste problema, temos analise baseadas na refracção da luz. O Peixe está no Ponto O nativo, na beira do rio, vê como se o peixe estivesse no ponto D (que é a imagem virtual do ponto C) formada pela refracção da luz na superfície. O ponto A é o ponto onde ocorre a refracção. O ângulo {\alpha} é o ângulo de incidência da luz que sai do peixe e incide no ponto A. O ângulo {\theta } é o ângulo de refracção da luz no ponto A. ângulo {\beta } é complementar de {\theta}

  1. Para encontramos o ângulo {\alpha}, vamos aplicar a relação para as razões trigonométricas no triângulo rectângulo ABC. Sendo {\overline{AB}} cateto adjacente, {\overline{BC}} cateto oposto e{\overline{AC}} a hipotenusa, teremos:

    \displaystyle tg \alpha = \ \dfrac{\overline{BC}}{\overline{AB}} = \ \dfrac{0,9}{1}

    \displaystyle \Rightarrow \alpha =arctg ( \ \dfrac{0,9}{1})= \ 41,99^{o}

    \displaystyle \alpha = \ 41,99^{o}

  2. Como {\beta} é o complementar de {\theta}, então, acharemos primeiro o {\theta} e com ele acharemos o {\beta}. O {\theta} será obtido pela lei da refracção:

    \displaystyle n_{ar} \ sen \theta = \ \ n_{agua} \ sen \alpha

    Insolando o seno de { \theta }, temos:

    \displaystyle \ sen \theta = \ \ \dfrac{ \ n_{agua} \ . \ sen \alpha}{n_{ar}} = \ \dfrac{ \ 1,33. \ sen(41,99)}{1}

    Neste caso:

    \displaystyle \theta = arcsen ( \dfrac{1,33. \ sen(41,99)}{1})

    \displaystyle \Rightarrow \theta = \ \ 62,85^{o}

    Como {\theta \ + \beta = \ \ 90^{o}}, então:

    \displaystyle \beta = \ \ 90^{o} \ - \theta = \ \ 90^{o} \ - \ 62,85^{o}

    \displaystyle \Rightarrow \beta = \ 27,15^{o}

  3. A profundidade aparente do peixe, neste caso, corresponde ao segmento {\overline{DE}}. Para achar o seu valor, usaremos o triângulo ADE. Para este triângulo, temos:

    \displaystyle tg \beta = \ \dfrac{\overline{DE}}{\overline{AE}} \ \dfrac{y}{x}

    \displaystyle \Rightarrow y = \ x \ tg \ (\beta)

    \displaystyle \Rightarrow y = \ 0,9\ tg \ ( 27,15^{o})

    \displaystyle y = \ 0,46 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 1)

— 2. Exercícios sobre Geométrica —

— 2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos —

Exercício 7 Supondo que o objecto B,no instante inicial está em movimento com a velocidade de {1 \ m/s},na direcção indicada. Após quanto tempo será visível pelo espelho de vidro,pelo observador no ponto A?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 7 .

O problema a seguir trata de um problema de Campo de Visão. Pretendemos determinar após quanto tempo o corpo B é visível ao observador do ponto A, pelo espelho na parede.

.

Considerando as dimensões indicadas pelos quadriculados, e a posição do ponto A, podemos traçar os raios luminosos que partem do ponto A e se reflectem no espelho. Os raios que vão definir o campo de visão serão os raios que incidem nas extremidades do espelho. No caso os raios (1) e (2).

Traçamos os seus raios reflectidos pelo espelho, obedecendo a lei da reflexão, de modos que formem os mesmos ângulos. Neste caso, traçamos os raios (1′) e (2′) respeitando a simetria do problema. Veja a figura a seguir:

.

Neste caso, o campo de visão do observador A é a região compreendida entre os raios (1′) e (2′).

.

O Corpo B será visível pelo observador A no momento em que entra no campo de visão de A. Considerando que o corpo B se move e direcção horizontal, ele entrará no campo de visão de A, quando atingir o ponto P, que é o ponto de intercessão entre a linha da sua trajectória e o raio reflectido (1′).

Para calcularmos o tempo, devemos achar primeiramente a distancia percorrida por ele (corpo B) até chegar ao ponto P. No gráfico, podemos observar que esta distancia igual a 2 metros. Então:

{\Delta x = \ 2 m.}

Então, como estamos a avaliar o movimento como um todo, usamos as equações do MRU. Logo:

\displaystyle v = \ \dfrac{\Delta x}{\Delta t} \Rightarrow \Delta t = \ \dfrac{\Delta x}{v} = \

\displaystyle \Rightarrow \Delta t = \dfrac{2 \ m}{1 \ m/s} \Rightarrow \Delta t = \ \ 2 s

Exercício 8 Dois espelhos planos estão dispostos de modo a formar um ângulo de {30^o} entre eles, conforme a figura abaixo. Um raio luminoso incide sobre um dos espelhos, formando um ângulo de {70^o} com a superfície. Este raio reflecte-se neste espelho e depois se reflecte no outro espelho, e cruza o raio incidente formando um ângulo {\alpha}. Qual é o valor deste ângulo{\alpha}?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

Em primeiro lugar, devemos devemos dar nome aos pontos de referência:

  • O raio incidente identificamo-lo por 1;
  • O raio reflectido do primeiro espelho, que vai para o segundo espelho, identificamo-lo por 2;
  • O raio que sai do segundo espelho e cruza novamente com raio 1, identificamo-lo por 3;
  • O ponto de intersecção do raio 1 com o primeiro espelho, identificamo-lo por A;
  • O ponto intersecção do raio 2 com o segundo espelho, identificamo-lo por B;
  • O ponto de intersecção do raio 3 com raio 1, identificamo-lo por D;
  • O ponto de cruzamento dos dois espelhos, identificamo-lo por C.
  • O ângulo formado entre o raio 1 e o raio 2, identificamo-lo por {\beta};
  • O ângulo formado entre o raio 2 2 o espelho 1, identificamo-lo por {\varphi};
  • O ângulo formado entre o raio 2 e o segundo espelhos, identificamo-lo por {\gamma};
  • o ângulo formado entre o raio 2 e o raio 3, identificamo-lo por {\delta};
  • o ângulo formado entre o raio 3 e o espelho 2, identificamo-lo por {\gamma '}.

Queremos determinar {\alpha}, pela geometria sabemos que rectas concorrentes(rectas que se cruzam) formam dois ângulos iguais e opostos, então:

\displaystyle \alpha = \ \alpha'

Podemos determinar {\alpha'} pelo triângulo ABD. Sabemos que a soma dos ângulos internos de um triângulo qualquer é igual à {180^o}, então:

\displaystyle \alpha' + \beta + \delta = \ 180^o

O raio 1 forma um ângulo de {70^o} com o espelho {E_1} e pela lei da reflexão, por analogia, o raio 2 também forma um ângulo de {70^o} com o mesmo espelho( {\varphi = \ 70^o}).

A soma destes três ângulos {(\varphi, \ \beta \ e \ 70^o} dá um ângulo de {180^0}, então:

\displaystyle \varphi + \beta+ 70^o = \ 180^o

\displaystyle \Rightarrow \beta = \ 180^o - 70^o - \varphi = \ 180^o - 70^o - 70^o \Rightarrow \beta = \ 40^o

No triângulo ABC, {\gamma} é um dos ângulos do mesmo triângulo e, como já sabemos, a soma dos três ângulos deste triângulo é igual a {180^o}. Assim podemos determinar {\gamma}:

\displaystyle \varphi + \gamma + 30^o = \ 180^o

\displaystyle \Rightarrow \gamma = \ 180^o-30^o- \varphi = \ 180^o-30^o-70^o \Rightarrow \gamma = \ 80^o

Como {\gamma} é o ângulo formado pelo raio 2 e o espelho 2, pela lei de reflexão, por analogia, este ângulo é igual ao ângulo formado pelo raio 3 e o espelho 2 {\gamma'}. Desta forma podemos determinar {\delta};

\displaystyle \gamma + \delta + \gamma ' = \ 180^o \Rightarrow \delta = \ 180^o - \gamma -\gamma ' = \ 180^o - 80^o - 80^o \Rightarrow \delta = \ 20^o

Tendo já conhecido os valores de {\beta} e {\delta} podemos determinar {\alpha '} que consequentemente será igual à {\alpha}.

\displaystyle \alpha ' + \delta + \beta = \ 180^o

\displaystyle \Rightarrow \alpha ' = \ 180^o - \delta - \beta = \ 180^o - 20^o - 40^o \Rightarrow \alpha ' = \ 120^o

\displaystyle \alpha ' = \ \alpha, \ logo: \ \alpha = \ 120^o

Exercício 9

Considere a figura baixo em que um ponto A está situado em frente de um espelho plano. Qual é a distância entre a imagem do ponto A e o ponto B, na figura, considerando as dimensões da escala indicada?

NÍVEL DE DIFICULDADE: Regular.

Resolução 9

E primeiro lugar, devemos localizar a imagem de A. Para esboçar a imagem, seguimos o seguinte raciocínio:

  1. Tracemos dois raios incidentes partindo do ponto A, que incidem no espelho 1 e 2;
  2. Sabemos que por ser um espelho plano os raios vão se reflectir sob o mesmo ângulo. Traçamos então os raios reflectidos 1′ e 2′;
  3. A partir da prolongação dos raios reflectidos pelo espelho podemos determinar a posição da imagem. Está imagem, de acordo com a formação da imagem me espelhos planos, estará à mesma distancia do espelho a que o objecto A se encontra. Neste caso a imagem estará a {1 m} de distância do espelho.

.

A distância entre a imagem de A (A’) e o ponto B é o segmento:{\overline{A'B}}.

Considerando a escala em quadriculado, podemos considerar o triângulo rectângulo (A’BP). Neste caso, {\overline{A'B}} é a hipotenusa do triângulo rectângulo.

Então:

\displaystyle \overline{A'B}^2 = \ \overline{A'P}^2+\overline{PB}^2

\displaystyle \overline{A'B} = \ \sqrt{8^2+3^2}

\displaystyle \overline{A'B} = \ \sqrt{73}

\displaystyle \overline{A'B} = \ 8,544 m

Exercício 10 A distância entre A e o espelho plano {E_1} é de 20 cm. A distância entre o mesmo ponto e o outro espelho plano {E_2} é de 40 cm. Sendo o ângulo {\theta = \ 30^o}. Determine a distância entre a posição da imagem do ponto A formada pelo espelho {E_1} e a imagem do mesmo ponto formada pelo espelho {E_2}.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10

Em primeiro lugar devemos encontrar as imagens formadas pelos espelhos {E_1} e {E_2}.

Sabemos que, nos espelhos planos, a imagem é formada no lado oposto ao espelho, na direcção da perpendicular ao espelho que passa pelo objecto em causa (A) e fica situada a uma distância igual a distância entre objecto e o espelho.

Usando isso, podemos encontrar uma imagem do objecto a ser formado pelo espelho {E_1} (que designamos de {4}) e pelo espelho {E_2} (que designamos {C}.

O ponto de intersecção entre a linha que sai do objecto até a imagem B (Segmento {\overline{AB}}) e o próprio espelho {E_1} identificamos por {B'}.

O ponto de intersecção entre a linha que sai do objecto até a imagem C (Segmento {\overline{AC}}) e o próprio espelho {E_2} identificamos por {C'}.

Então pela formação de imagens em espelhos planos sabemos que {\overline{AB'}=\overline{B'B}} e que {\overline{AC'}=\overline{C'C}}.

A distância que deseja determinar corresponde ao segmento {\overline{BC}}.

Consideremos {\overline{AB} = \ a}, distância entre o objecto e a imagem formada pelo espelho {E_1}, e {\overline{BC} = \ d}, distância entre as duas imagens.

As imagens são formadas pela prolongação dos raios incididos perpendicularmente aos espelhos. Neste caso o ângulo entre cada espelho e o seu respectivo raio incidido é igual à {90^o}.

Por se tratar de espelhos planos, a distância entre cada imagem e o espelho que forma esta imagem é igual à distância entre o objecto e o respectivo espelho. Então:

\displaystyle \overline{BB'} = \ \overline{AB'} = \ 20 \ cm \Rightarrow \overline{AB} = \ a = \ 2\overline{AB'} = \ 2 \cdot 20 \ cm = \ 40 \ cm

\displaystyle \overline{CC'} = \ \overline{AC'} = \ 40 \ cm \Rightarrow \overline{AC} = \ b = \ 2\overline{AC'} = \ 2 \cdot 40 \ cm = \ 80 \ cm

Podemos determinar {\overline{BC} = \ d} pela lei dos cossenos:

\displaystyle d^2 = \ a^2+b^2-2ab \cos \alpha

Mas precisamos antes determinar {\alpha}. {\alpha} é um dos ângulos internos do quadrilátero AB’C’D. Pela geometria, sabemos que a soma dos ângulos internos de um quadrilátero é igual à {360^o}. Então:

\displaystyle \theta + 90^o + \alpha + 90^o = \ 360^o \Rightarrow \alpha = \ 360^o - 180^o - \theta

Sabendo que {\theta = \ 30^o}, teremos:

\displaystyle \alpha = \ 360^o - 180^o -30^o \Rightarrow \alpha = \ 150^o

Assim, já podemos calcular o valor da distância entre as imagens formadas pelos dois espelhos:

\displaystyle d^2 = \ a^2 + b^2 - 2ab \cos \alpha\Rightarrow d = \ \sqrt{a^2+b^2-2ab \cos \alpha}

\displaystyle a = \ 40 \ cm, \ b = \ 80 \ cm , \ \alpha = \ 150^o

Então:

\displaystyle d = \ \sqrt{(40)^2 + (80)^2 - 2 \cdot 40 \cdot 80 \ \cdot (\cos 150^o)}= 116,37 \ cm

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação (Parte 2)

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 4 Dois trens de pulso de certa radiação electromagnética são criados simultaneamente, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com comprimento de {L_1 = \ 125 \ m} e {L_2 = \ 70 \ m}. O trem de pulso 1 passa pelo material de índice de refração {n_1}. O trem de pulso 2 passa pelo material de índice {n_2}.

  1. Sendo que a parte externa é o ar, e { n_1 = \ 1,5}, qual deverá ser o valor de {n_2} para que os pulsos cheguem ao mesmo tempo na tela.
  2. Qual é a diferença entre o tempo de chegada dos dois pulsos no caso em que {n_2 = \ 1,5}.

NÍVEL DE DIFICULDADE: Regular.

 

Resolução 4

    1. .
  1. Para que os trens de pulsos das ondas cheguem na tela ao mesmo tempo é os caminhos ópticos sejam iguais. Como temos 3 materiais, é necessário apenas comparar o trajecto aonde há diferença de índices de refração. Neste caso, o trem pulso 1 passa pelo material de índice de refração {n_1}. Analisaremos o trajecto de B-E. O trem de pulso 2 passa pelo material de índice {n_2} e depois passa por um percurso de ar, até chegar ao ponto D que está alinhado com o ponto E. Analisaremos o trajecto B-C-D.

    A condição para que cheguem ao mesmo tempo é que os caminhos ópticos sejam iguais. Note que o caminho óptico é defino pela relação:

    \displaystyle \textless AB \textgreater = \int_{A}^{B} n \cdot dl

    Para meios em que { n=const \ \Rightarrow \textless AB \textgreater = \bar{AB} \cdot n }.

    Então:

    \displaystyle \textless AE \textgreater = \textless BD \textgreater \Rightarrow \textless AE \textgreater = \textless BC \textgreater + \textless CD \textgreater

    \displaystyle \Rightarrow \bar{AE} n_1 = \bar{BC} n_2 + \bar{CD} n_{Ar}

    onde: {n_{Ar} = \ 1}. Logo, isolando {n_2}, obtemos:

    \displaystyle n_2= \frac{\bar{AE} n_1 - \bar{CD} n_{Ar}}{ \bar{BC}}= \frac{ L_1 n_1 - (L_1 - L_2 )}{ L_2}

    \displaystyle n_2 = \frac{ 125 \cdot 1,5 - (125 - 50 )}{ 50}=1,89

     

  2. Para este caso, o tempo de passagem no troço em análise será determinada pela equação do MRU, considerando a velocidade de propagação {c} e o caminho óptico..

    Neste caso, para o trem 1:

  3. \displaystyle c= \frac{ \textless AE \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{\bar{AE} n_1}{c}= \frac{125*1,5}{3\cdot10^8}= \frac{125*1,5}{3\cdot10^8}=6,25 \cdot 10^{7} s

    Para o trem 2:

    \displaystyle c= \frac{ \textless BD \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless BC \textgreater + \textless CD \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{L_2 n_2 + (L_1 - L_2) n_{Ar} }{c}= \frac{70 \cdot 1,5 + (150 - 70) \cdot 1}{3 \cdot 10^8} =5,33 \cdot 10^{7} s

    Neste caso, diferença de tempos é:

    \displaystyle |t_2 - t_1 |= | 6,25 \cdot 10^{7} - 5,33 \cdot 10^{7} | = 0,92 \cdot 10^{7} s

    Como a seguir aos pontos D e E o material é comum aos dois trens de pulsos, então esta diferença mantém-se até o final.

Exercício 5 Na figura a seguir, dois pulsos electromagnéticos são criados em simultâneo, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com índice de refração {n_{1} = \ 1,4; \ n_{2} = \ \ 1,7; \ n_{3} = \ \ 1,95; \ n_{4} = \ \ n_{5} = \ \ 1,2; \ n_{6} = \ \ 1; \ n_{7} = \ \ 1,3}.O valor de L é 25 m.Qual pulso chegará primeiro e qual é a diferença entre o tempo de chegada dos dois pulsos?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 5 \vspace{0,3cm}

Para não termos de calcular o tempo em cada porção, podemos usar o conceito de caminho óptico. Neste conceito, em vez de se considerar que o índice de refração afecta a velocidade, ele será visto como afectando apenas o percurso. Pelo que, podemos considerar que a luz sempre se propaga com a mesma velocidade {c}. Neste caso, temos apenas de calcular os dois caminhos ópticos e depois calcular os temos.

Para o pulso 1:

\displaystyle \textless l_1 \textgreater = L \cdot n_1 +L \cdot n_2 + L \cdot n_3 + L \cdot n_4 = \ L \cdot (n_1 + n_2 + n_3 + n_4)

\displaystyle \Rightarrow \textless l_1 \textgreater = \ 25 \cdot (1,4 + 1,7 + 1,95 + 1,2)=156,25 \ m

Neste caso, o tempo será obtido a seguir:

\displaystyle c= \frac{ \textless l_1 \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless l_1 \textgreater }{c}= \frac{156,25}{3\cdot10^8}=5,21 \cdot 10^{7} s

Para o pulso 2:

\displaystyle \textless l_2 \textgreater = 2L \cdot n_5 +L \cdot n_6 + L \cdot n_7 = \ L \cdot (2 n_5 + n_6 + n_7)

\displaystyle \Rightarrow \textless l_2 \textgreater = \ 25 \cdot (2 \cdot 1,2 + 1 + 1,3)=117,5 \ m

Neste caso, o tempo deste pulso será obtido a seguir:

\displaystyle c= \frac{ \textless BD \textgreater }{t_2} \Rightarrow t_2 = \frac{ \textless l_2 \textgreater }{c} = \frac{117,5}{3 \cdot 10^8} =3,92 \cdot 10^{7} s

Como a seguir a este trecho, o material é comum aos dois pulsos, então esta diferença mantém-se até o final.

Neste caso, diferença de tempos é:

\displaystyle |t_2 - t_1 |= | 3,92 \cdot 10^{7} - 5,21 \cdot 10^{7}| = 1.29 \cdot 10^{7} s

Como {t_1 \textgreater t_2 }, significa que o pulso 2 leva menos tempo a percorrer o trecho. Portanto, o pulso 2 chega primeiro.

— 1.2. Exercícios sobre Energia e Potência da Radiação —

Exercício 6 Uma onda electromagnética de frente plana de intensidade de {6 \ W/m^2} inside sobre uma superfície totalmente refletora de {40 \ cm^2} de área, posicionado perpendicularmente à direcção de propagação da onda.

Determine a força que a onda exerce sobre esta superfície.NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Quando uma OEM incide sobre uma superfície totalmente reflectora como o espelho, sua pressão de radiação será:

\displaystyle P_r = \ \frac{2I}{c} \ \ \ \ \ (3)

Por definição, a pressão é a força por unidade de área:

\displaystyle P = \ \frac{F}{A} \ \ \ \ \ (4)

Então:

\displaystyle P_r = \ \frac{2I}{c} \Rightarrow \frac{F}{A} = \ \frac{2I}{c} \Rightarrow F = \ \frac{2AI}{c}

Substituindo:

  • \displaystyle F = \ \frac{2 \cdot 40 \cdot 10^{-4} \cdot 6}{3 \cdot 10^8} = \ 1,6 \cdot 10^{-10} N

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 1 Uma onda electromagnética com frequência de 65 Hz desloca-se em um material magnético isolante que possui constante dieléctrica relativa é igual à 3,64 e a permeabilidade magnética relativa é igual à 5,18 nessa frequência. o campo eléctrico possui amplitude de {7,2 \cdot 10^{-3} \ V/m}.

  1. Calcule a velocidade de propagação da onda?
  2. Qual é o comprimento de onda?
  3. Qual é a amplitude do campo magnético?NÍVEL DE DIFICULDADE: Regular.
Resolução 1

Dados

{f = \ 65 Hz}

{\varepsilon_r = \ 3,64}

{\mu_r = \ 5,18}

{E_0 = \ 7,2 \cdot 10^{-12} \ v/m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\Pi \cdot 10^{-7} \ Wb/Am}

{\textbf{a)}v-? \ \ textbf{b)} \lambda-? \ \textbf{c)}H_0-?}

  • {v-?}Conhecemos a equação duma onda electromagnética que é:

    {\frac{\partial ^2B}{\partial t^2} = \ \frac{1}{\mu \varepsilon} \cdot \frac{\partial ^2B}{\partial x^2}}, onde {\frac{1}{\mu \varepsilon} = \ v^2} é a velocidade de propagação da onda.

\displaystyle v^2 = \ \frac{1}{\mu \ \varepsilon} \Rightarrow v = \ \sqrt{\frac{1}{\mu \varepsilon}}

{\mu} e {\varepsilon} são as constantes magnéticas e eléctricas do meio, respectivamente.

A relação entre estas e as constantes magnéticas e eléctricas relativa é a seguinte:

{\mu = \ \mu_0 \mu_r} e {\varepsilon = \ \varepsilon_0 \varepsilon_r}.

Então a velocidade de propagação da onda será:

{v = \ \frac{1}{\sqrt{\mu \varepsilon}} = \ \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}}}.

Sabe-se que:

\displaystyle c = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \ m/s

Logo:

\displaystyle v = \ \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot c = \ \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \ \frac{3 \cdot 10^8 \ m/s}{\sqrt{5,18 \cdot 3,64}} = \ 0,7 \cdot 10^8 \ m/s

  1. {\lambda-?}A onda electromagnética em questão é uma onda sinusoidal e periódica que pode ser expressa em termos dos seus campos eléctricos e magnéticos da seguinte forma:

    \displaystyle \overrightarrow {E}(x,t) = \ E_0 \cdot \cos(\omega t+ Kx) \overrightarrow{j}

    O comprimento de onde é

    \displaystyle \overrightarrow{B}(x,t) = \ B_0 \cdot \cos(\omega t+ Kx) \overrightarrow{k}

    Para as ondas, a velocidade obedece a relação:

    {v = \ \dfrac{\lambda}{T}}, e sabemos que {T = \ \frac{1}{f}}

    \displaystyle \Rightarrow \lambda = \ \frac{v}{f}

    \displaystyle \Rightarrow \lambda = \ \frac{0,7 \cdot 10^8 \ m/s}{65 \ s^{-1}} = \ 0,011 \cdot 10^8 \ m = \ 1,1 \cdot 10^6 \ m = \ 1100 \ Km

     

  2. {H_0-?}Utilizando a relação das amplitudes dos campos eléctricos e magnéticos na Onda Electromagnética (O.E.M.), temos:
  3. \displaystyle \sqrt{\varepsilon_0 \varepsilon_r} \cdot E_0 = \ \sqrt{\mu_0\mu_r} \cdot H_0

    \displaystyle H_0 = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r} E_0}{\sqrt{\mu}_0 \mu_r} = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r}}{\sqrt{\mu_0 \mu_r}} \cdot E_0

    \displaystyle \Rightarrow H_0 = \ \sqrt{\frac{\varepsilon_0 \varepsilon_r}{\mu_0 \mu_r}} \cdot E_0 = \ \sqrt{\frac{8,85 \cdot 10^{-12} \ \cdot 3,64}{4 \pi \cdot 10^{-7} \cdot 5,18}} \cdot 7,2 \cdot 10^{-3}

    \displaystyle \Rightarrow H_0 = \ 9,43 \cdot 10^{-3} \ A/m

Exercício 2 A potência irradiada pela antena de uma estação radiofónica é de 4 kW. A 4 km do transmissor foi colocada uma antena de recepção de 65 cm de comprimento. Qual é o valor de pico da f.e.m induzida por esse sinal entre as extremidades da antena receptora.

NÍVEL DE DIFICULDADE: Regular.

Resolução 2

Dados

{P = \ 4 \ kW = \ \ 4 \cdot 10^3 \ W }

{l = \ 65 \ cm = \ \ 0,65 \ m}

{r = \ 4Km = \ 4 \cdot 10^3 \ m}

{\varepsilon_{ind}-?} {\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\pi \cdot 10^{-7} \ Wb/Am}

{C = \ 3\cdot 10^8 \ m/s}

{\varepsilon = \ \oint \overrightarrow{E}d\overrightarrow{l}}

O módulo ou amplitude da f.e.m é:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l \ \ \ \ \ (1)

 

Precisamos antes determinar a amplitude do campo eléctrico {(E_0)}. Em seguida poderemos determinar {\varepsilon_ind}. A intensidade da onda é:

\displaystyle I = \ \frac{1}{2}E_0H_0 = \ \frac{1}{2}E_0(\frac{B_0}{\mu,_0}) = \ \frac{E,_0 B_0}{2\mu,_0}

Como {c = \ \frac{E_0}{B_0}\Rightarrow B_0 = \ \frac{E_0}{c}}. Então:

\displaystyle I = \ \frac{E_0 \frac{E_0}{c}}{2 \mu_0}\Rightarrow I = \ \frac{\frac{E_0}{c}}{2\mu_0} = \ \frac{E_0^2}{2c \cdot \mu_0}

Isolando {E_0}, temos:

\displaystyle E_0^2 = \ 2 \mu_0 c I \Rightarrow E_0 = \ \sqrt{2 \mu_0 c I}

A intensidade da OEM é : {I = \ \frac{P}{A} = \ \frac{P}{4 \pi r^2}}, então:

\displaystyle E_0 = \ \sqrt{2 \mu_0 c \frac{P}{4\pi \cdot r^2}} = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \ \ \ \ \ (2)

 

Substituindo esta formula na equação 1, temos:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \cdot l

\displaystyle \Rightarrow \varepsilon_{ind} = \ \frac{l}{r} \sqrt{\frac{ \mu \cdot c\cdot P}{2\pi}} = \frac{0,65 \ m}{4 \cdot 10^3 \ m} \sqrt{\dfrac{4 \pi 10^{-7} \cdot 3 \cdot 10^8 \cdot 4 \cdot 10^3}{2 \pi}}

\displaystyle \Rightarrow \varepsilon_ind = \ 0,0796 \ V

 

Exercício 3 Um condutor de resistência de 150 {\Omega} e conduz uma corrente contínua de 1 A, e emite ondas electromagnéticas, devido o aquecimento. O condutor tem 8 cm de comprimento e 0,9 nm de raio.

  1. Calcule o vector de Poynting na superfície do filamento?.
  2. Encontre as magnitudes dos campos eléctricos e magnéticos na superfície do filamento;.NÍVEL DE DIFICULDADE: Regular.
Resolução 3

Dados {R = \ 150 \Omega}

{i = \ 1A}

{l = \ 8 \ cm}

{r = \ 0,3 \ n m = \ 0,3 \cdot 10^{-3} \ m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4 \pi \cdot 10^{-7} \ Wb/Am}

{c = \ 3 \cdot 10^8 \ m/s}

.
OBS: Para distinguir intensidade da radiação da intensidade de corrente eléctrica, nomeamos {I} para Intensidade da Radiação e {i} para intensidade de corrente eléctrica.

  1. A intensidade duma O.E.M. corresponde ao valor médio do vector de poynting, assim:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| \Rightarrow |\overrightarrow{S}| = \ 2I

    A intensidade duma OEM tem relação com a potência desta onda e com a área:

    \displaystyle I = \ \frac{P}{A}

    Sabemos que a potência pode ser dada por :

    \displaystyle P = \ U \cdot i = \ (i \cdot R)i\Rightarrow P = \ i^2 \cdot R

    Para área, vamos considerar a área lateral. Modelamos o condutor como um cilindro. Então, a área lateral será: {A = \ 2 \pi \cdot r \cdot l}.

    Substituindo estas duas relações na fórmula da intensidade , temos:

    \displaystyle I = \ \frac{P}{A} = \ \frac{i^2 \cdot R}{2 \pi \cdot r \cdot l}

    Substituindo na equação do módulo vector de Poyting, obtemos:

    \displaystyle |\overrightarrow{S}| = \ 2I = \ \frac{2R \cdot i^2}{2 \pi \cdot r \cdot l} = \ \frac{2 \cdot 150 \ \Omega \cdot (1 A)^2}{2 \pi \cdot 0,9 \cdot 10^{-9} \cdot 8 \cdot 10^{-2}} = \ 1989,4 \cdot 10^3 \ W/m^2

     

  2. Sabemos que para as O.E.M.:

    \displaystyle I = \ \frac{1}{2}E_0H_0

    Mas {c = \ \frac{E_0}{B_0} \Rightarrow B_0 = \ \frac{E_0}{c}} e {H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{\mu_0 \cdot C}}

    Então:

    \displaystyle I = \ \frac{1}{2}E_0 \cdot \frac{E_0}{\mu_0 \cdot c} = \ \frac{E_0^2}{2c \cdot \mu_0}

    . Isolando {E_0} nesta equação anterior, obtemos :

    \displaystyle E_0^2 = \ 2c \cdot \mu_0 \cdot I \Rightarrow E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I}

    Já sabemos que a intensidade é:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| = \ \frac{1}{2} \cdot 1989,4 \cdot 10^3 \ W/m^2 = \ 994,7 \cdot 10^3 \ W/m^2

    Logo a amplitude do vector campo magnético será:

    \displaystyle E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I} = \ \sqrt{2 \cdot 3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7} \cdot 994,7 \cdot 10^3}

    \displaystyle E_0 = \ 27,386 \cdot 10^3 \ V/m

    Então, a intensidade do campo magnético é:

    \displaystyle H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{c \cdot \mu_0} = \ \frac{27,386 \cdot 10^3}{3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7}} = 72,64 \ A/m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

Entenda matematicamente a imagem do espelho. Espelhos planos.

— 2.7.6. Espelhos planos —

O espelho plano é uma superfície lisa e plana, bem polida, que reflete especularmente a luz (reflexão regular). Por exemplo, uma placa de vidro plana relativamente fina, cuja face traseira é prateada ou uma placa metálica niquelada são exemplos de um espelho plano. A visão humana ocorre devido aos raios de luz que chegam aos nossos olhos. Dependendo de como esses raios chegam, podem nos transmitir sensações diferentes sobre a forma dos objectos e a distância a que eles se encontram. Sensações sim, porque, por vezes pode não ser a realidade.

Vejamos o exemplo da figura 30. Quando um observador está situado em frente de um espelho, ele observa parte dos raios de luz reflectidos pelo espelho. Este feixe parece ter sido emitido do ponto {A'}, isto é, tudo se passa como se no ponto {A'} existisse um objecto emitindo aquele feixe. É por isso que o observador tem a sensação que o objecto (que na realidade está situado no ponto {A}) está no ponto {A'}. O ponto {A'} é chamado de imagem do objecto {A}.

A imagem {A'} está situada atrás do espelho, no ponto de encontro dos prolongamentos dos raios reflectidos.

A nível de Óptica Geométrica, definimos como ponto objecto como sendo o ponto de intersecção dos raios incidentes (ou, no caso em que estes não chegam a interceptar-se, o ponto de intersecção dos prolongamentos dos raios incidentes).

O ponto imagem é o ponto de intersecção dos raios emergentes (refletidos ou refratados do sistema óptico), ou, no caso em que estes não se interceptem, o ponto de intersecção dos prolongamentos dos raios emergentes. Consideramos, raios emergentes, aos raios que emergem (ou saem) do sistema.

Figura 30: Imagem de um espelho plano.[7]

Para se determinar a posição da imagem de um pequeno objecto pontual A, colocado em frente de um espelho plano, temos apenas de traçar raios luminosos que partem do objecto e se reflectem no espelho. Atenção á lei da reflexão. Pelo menos dois raios. Isto foi feito na figura 2 onde foram traçados os raios incidentes {1} e {2} e os raios refletidos {1'} e {2'}. A imagem seria o ponto de intersecção de {1'} e {2'}, mas como podemos ver na figura, eles são divergentes. A posições da imagem , {A'}, é encontrada prolongando-se os raios reflectidos {1'} e {2'}.

Quando o objecto (ou a imagem) é formado pela intercessão dos raios incidentes (ou emergentes), então é chamado de objecto (ou imagem) real. Quando os raios incidentes (ou emergentes) são divergentes, então o objecto (ou a imagem) será formado pela intercessão dos prolongamentos dos raios incidentes (ou emergentes), então será chamado de objecto (ou imagem) virtual.

O conceito de imagem real e virtual pode parecer abstrato, mas na realidade não. É um conceito muito prático e útil no dia -a-dia. Suponhamos que vamos usar um espelho para projectar uma imagem sobre um filme fotográfico a fim de ser revelada esta imagem. Neste caso, devemos colocar o filme no ponto onde se formará a imagem. Se nesse ponto se formar uma imagem real, após a revelação do filme, teremos a imagem do objecto estampada no filme. Mas se este ponto onde foi colocado o filme é um ponto onde se forma uma imagem virtual, ao revelarmos o filme não aparecerá nada além de ruídos… Porquê? Na imagem virtual, a luz nem chegara efectivamente naquele ponto. A luz é desviada antes de chegar naquele ponto, portanto, não chega a interagir com o filme fotográfico. Esse conceito é muito útil em projecções.

A imagem formada por um espelho plano está sempre situada a uma distância (em relação ao espelho) igual á distância entre o objecto e o espelho. Isso pode ser facilmente demonstrado pela figura 31.

Figura 31: Relação entre distâncias no espelho. [7] Adaptado

O objecto é {A} e a sua imagem é {A'}. O raio incidente é {AI} e o refletido é {AR}. A distancia entre o objecto e o espelho é {H} e a distância entre a imagem e o espelho é {D}. Podemos notar que o objecto e a imagem estão sob uma mesma linha perpendicularmente ao espelho. A lei da reflexão impõe que {i=i'}, e o teorema de ângulos opostos pelo vértice impõe que {x=90^0-i'}. Logo, os triângulos {API} e {A'PI} são congruentes. Como o cateto adjacente, em relação ao vértice I são iguais, isto implica que todos os ângulos equivalentes dos dois triângulos sejam iguais, logo, todos os lados também o são. Sendo assim, {H=D}.

Se enviarmos um feixe luminoso convergente sobre um espelho plano, mas de modos que o ponto de convergência fique por detrás do espelho, criamos um objecto virtual no ponto {A}. Neste caso, o feixe luminoso reflectido convergirá no ponto {A'} que fica em frente do espelho a uma mesma distância do objecto ao espelho. Este ponto luminoso {A'} pode ser recebido numa tela e é chamado imagem real do objecto virtual {A} (ver figura 32).

Figura 32: Objecto virtual – imagem real.[7] Adaptado

Imaginemos agora um objecto que não possa ser reduzido a um ponto, ou seja, um objecto extenso. Um objeto extenso pode ser considerado como um conjunto de pontos. A sua imagem será determinada determinando a imagem de cada um dos ponto que o constituem e ligando assim estes pontos imagem.

Figura 33: Imagem de um objecto extenso. [4]

A imagem de espelhos planos sempre é invertida, de mesmo tamanho e de natureza oposta ao objecto, ou seja, se o objecto é virtual então a imagem é real e vice-versa.

A imagem é invertida em que sentido? Quando estás em frente ao espelho a tua orelha direita fica ao teu lado esquerdo e a tua orelha esquerda fica do teu lado direito. Outra forma simples de verificar que a imagem de um espelho plano é invertida é colocarmos uma t-shirt com algum texto escrito na parte de frente e posicionarmos em frente a um espelho. Como aparece o texto na imagem?

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO [s.d.].

%d bloggers gostam disto: