Luso Academia

Início » Posts tagged 'Ondas Eletromagnéticas'

Tag Archives: Ondas Eletromagnéticas

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 1 Uma onda electromagnética com frequência de 65 Hz desloca-se em um material magnético isolante que possui constante dieléctrica relativa é igual à 3,64 e a permeabilidade magnética relativa é igual à 5,18 nessa frequência. o campo eléctrico possui amplitude de {7,2 \cdot 10^{-3} \ V/m}.

  1. Calcule a velocidade de propagação da onda?
  2. Qual é o comprimento de onda?
  3. Qual é a amplitude do campo magnético?NÍVEL DE DIFICULDADE: Regular.
Resolução 1

Dados

{f = \ 65 Hz}

{\varepsilon_r = \ 3,64}

{\mu_r = \ 5,18}

{E_0 = \ 7,2 \cdot 10^{-12} \ v/m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\Pi \cdot 10^{-7} \ Wb/Am}

{\textbf{a)}v-? \ \ textbf{b)} \lambda-? \ \textbf{c)}H_0-?}

  • {v-?}

    Conhecemos a equação duma onda electromagnética que é:

    {\frac{\partial ^2B}{\partial t^2} = \ \frac{1}{\mu \varepsilon} \cdot \frac{\partial ^2B}{\partial x^2}}, onde {\frac{1}{\mu \varepsilon} = \ v^2} é a velocidade de propagação da onda.

\displaystyle v^2 = \ \frac{1}{\mu \ \varepsilon} \Rightarrow v = \ \sqrt{\frac{1}{\mu \varepsilon}}

{\mu} e {\varepsilon} são as constantes magnéticas e eléctricas do meio, respectivamente.

A relação entre estas e as constantes magnéticas e eléctricas relativa é a seguinte:

{\mu = \ \mu_0 \mu_r} e {\varepsilon = \ \varepsilon_0 \varepsilon_r}.

Então a velocidade de propagação da onda será:

{v = \ \frac{1}{\sqrt{\mu \varepsilon}} = \ \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}}}.

Sabe-se que:

\displaystyle c = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \ m/s

Logo:

\displaystyle v = \ \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot c = \ \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \ \frac{3 \cdot 10^8 \ m/s}{\sqrt{5,18 \cdot 3,64}} = \ 0,7 \cdot 10^8 \ m/s

  1. {\lambda-?}

    A onda electromagnética em questão é uma onda sinusoidal e periódica que pode ser expressa em termos dos seus campos eléctricos e magnéticos da seguinte forma:

    \displaystyle \overrightarrow {E}(x,t) = \ E_0 \cdot \cos(\omega t+ Kx) \overrightarrow{j}

    O comprimento de onde é

    \displaystyle \overrightarrow{B}(x,t) = \ B_0 \cdot \cos(\omega t+ Kx) \overrightarrow{k}

    Para as ondas, a velocidade obedece a relação:

    {v = \ \dfrac{\lambda}{T}}, e sabemos que {T = \ \frac{1}{f}}

    \displaystyle \Rightarrow \lambda = \ \frac{v}{f}

    \displaystyle \Rightarrow \lambda = \ \frac{0,7 \cdot 10^8 \ m/s}{65 \ s^{-1}} = \ 0,011 \cdot 10^8 \ m = \ 1,1 \cdot 10^6 \ m = \ 1100 \ Km

     

  2. {H_0-?}

    Utilizando a relação das amplitudes dos campos eléctricos e magnéticos na Onda Electromagnética (O.E.M.), temos:

  3.  

    \displaystyle \sqrt{\varepsilon_0 \varepsilon_r} \cdot E_0 = \ \sqrt{\mu_0\mu_r} \cdot H_0

    \displaystyle H_0 = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r} E_0}{\sqrt{\mu}_0 \mu_r} = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r}}{\sqrt{\mu_0 \mu_r}} \cdot E_0

    \displaystyle \Rightarrow H_0 = \ \sqrt{\frac{\varepsilon_0 \varepsilon_r}{\mu_0 \mu_r}} \cdot E_0 = \ \sqrt{\frac{8,85 \cdot 10^{-12} \ \cdot 3,64}{4 \pi \cdot 10^{-7} \cdot 5,18}} \cdot 7,2 \cdot 10^{-3}

    \displaystyle \Rightarrow H_0 = \ 9,43 \cdot 10^{-3} \ A/m

Exercício 2 A potência irradiada pela antena de uma estação radiofónica é de 4 kW. A 4 km do transmissor foi colocada uma antena de recepção de 65 cm de comprimento. Qual é o valor de pico da f.e.m induzida por esse sinal entre as extremidades da antena receptora.

NÍVEL DE DIFICULDADE: Regular.

Resolução 2

Dados

{P = \ 4 \ kW = \ \ 4 \cdot 10^3 \ W }

{l = \ 65 \ cm = \ \ 0,65 \ m}

{r = \ 4Km = \ 4 \cdot 10^3 \ m}

{\varepsilon_{ind}-?} {\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\pi \cdot 10^{-7} \ Wb/Am}

{C = \ 3\cdot 10^8 \ m/s}

{\varepsilon = \ \oint \overrightarrow{E}d\overrightarrow{l}}

O módulo ou amplitude da f.e.m é:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l \ \ \ \ \ (1)

 

Precisamos antes determinar a amplitude do campo eléctrico {(E_0)}. Em seguida poderemos determinar {\varepsilon_ind}. A intensidade da onda é:

\displaystyle I = \ \frac{1}{2}E_0H_0 = \ \frac{1}{2}E_0(\frac{B_0}{\mu,_0}) = \ \frac{E,_0 B_0}{2\mu,_0}

Como {c = \ \frac{E_0}{B_0}\Rightarrow B_0 = \ \frac{E_0}{c}}. Então:

\displaystyle I = \ \frac{E_0 \frac{E_0}{c}}{2 \mu_0}\Rightarrow I = \ \frac{\frac{E_0}{c}}{2\mu_0} = \ \frac{E_0^2}{2c \cdot \mu_0}

Isolando {E_0}, temos:

\displaystyle E_0^2 = \ 2 \mu_0 c I \Rightarrow E_0 = \ \sqrt{2 \mu_0 c I}

A intensidade da OEM é : {I = \ \frac{P}{A} = \ \frac{P}{4 \pi r^2}}, então:

\displaystyle E_0 = \ \sqrt{2 \mu_0 c \frac{P}{4\pi \cdot r^2}} = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \ \ \ \ \ (2)

 

Substituindo esta formula na equação 1, temos:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \cdot l

\displaystyle \Rightarrow \varepsilon_{ind} = \ \frac{l}{r} \sqrt{\frac{ \mu \cdot c\cdot P}{2\pi}} = \frac{0,65 \ m}{4 \cdot 10^3 \ m} \sqrt{\dfrac{4 \pi 10^{-7} \cdot 3 \cdot 10^8 \cdot 4 \cdot 10^3}{2 \pi}}

\displaystyle \Rightarrow \varepsilon_ind = \ 0,0796 \ V

 

Exercício 3 Um condutor de resistência de 150 {\Omega} e conduz uma corrente contínua de 1 A, e emite ondas electromagnéticas, devido o aquecimento. O condutor tem 8 cm de comprimento e 0,9 nm de raio.

  1. Calcule o vector de Poynting na superfície do filamento?.
  2. Encontre as magnitudes dos campos eléctricos e magnéticos na superfície do filamento;.

    NÍVEL DE DIFICULDADE: Regular.

Resolução 3

Dados {R = \ 150 \Omega}

{i = \ 1A}

{l = \ 8 \ cm}

{r = \ 0,3 \ n m = \ 0,3 \cdot 10^{-3} \ m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4 \pi \cdot 10^{-7} \ Wb/Am}

{c = \ 3 \cdot 10^8 \ m/s}

.
OBS: Para distinguir intensidade da radiação da intensidade de corrente eléctrica, nomeamos {I} para Intensidade da Radiação e {i} para intensidade de corrente eléctrica.

  1. A intensidade duma O.E.M. corresponde ao valor médio do vector de poynting, assim:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| \Rightarrow |\overrightarrow{S}| = \ 2I

    A intensidade duma OEM tem relação com a potência desta onda e com a área:

    \displaystyle I = \ \frac{P}{A}

    Sabemos que a potência pode ser dada por :

    \displaystyle P = \ U \cdot i = \ (i \cdot R)i\Rightarrow P = \ i^2 \cdot R

    Para área, vamos considerar a área lateral. Modelamos o condutor como um cilindro. Então, a área lateral será: {A = \ 2 \pi \cdot r \cdot l}.

    Substituindo estas duas relações na fórmula da intensidade , temos:

    \displaystyle I = \ \frac{P}{A} = \ \frac{i^2 \cdot R}{2 \pi \cdot r \cdot l}

    Substituindo na equação do módulo vector de Poyting, obtemos:

    \displaystyle |\overrightarrow{S}| = \ 2I = \ \frac{2R \cdot i^2}{2 \pi \cdot r \cdot l} = \ \frac{2 \cdot 150 \ \Omega \cdot (1 A)^2}{2 \pi \cdot 0,9 \cdot 10^{-9} \cdot 8 \cdot 10^{-2}} = \ 1989,4 \cdot 10^3 \ W/m^2

     

  2. Sabemos que para as O.E.M.:

    \displaystyle I = \ \frac{1}{2}E_0H_0

    Mas {c = \ \frac{E_0}{B_0} \Rightarrow B_0 = \ \frac{E_0}{c}} e {H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{\mu_0 \cdot C}}

    Então:

    \displaystyle I = \ \frac{1}{2}E_0 \cdot \frac{E_0}{\mu_0 \cdot c} = \ \frac{E_0^2}{2c \cdot \mu_0}

    . Isolando {E_0} nesta equação anterior, obtemos :

    \displaystyle E_0^2 = \ 2c \cdot \mu_0 \cdot I \Rightarrow E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I}

    Já sabemos que a intensidade é:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| = \ \frac{1}{2} \cdot 1989,4 \cdot 10^3 \ W/m^2 = \ 994,7 \cdot 10^3 \ W/m^2

    Logo a amplitude do vector campo magnético será:

    \displaystyle E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I} = \ \sqrt{2 \cdot 3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7} \cdot 994,7 \cdot 10^3}

    \displaystyle E_0 = \ 27,386 \cdot 10^3 \ V/m

    Então, a intensidade do campo magnético é:

    \displaystyle H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{c \cdot \mu_0} = \ \frac{27,386 \cdot 10^3}{3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7}} = 72,64 \ A/m

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers like this: