Luso Academia

Início » Posts tagged 'imagem'

Tag Archives: imagem

Como se forma a imagem numa lente?

— 2.7.17. Obtenção da imagem de uma lente. Relação objecto-imagem para lente delgada —

Quando observamos a imagem de um objecto atravessar de uma lupa ou luneta, por exemplo, a imagem observada poderá ser maior ou menor do que o tamanho real do objecto. Na realidade, ao movimentarmos esta lente para frente ou para trás, observamos que o tamanho da imagem muda. Esta mudança de tamanho da imagem está associada à três parâmetros principais: distância da lente ao objecto {d}, distância da lente á imagem {d'} e distância focal da lente {f}. Isto é válido para qualquer lente.

Tudo pode ser entendido, se compreendermos como os raios de luz passam pela lente e como se forma a sua imagem.

Como já vimos, qualquer raio que incida paralelamente ao eixo principal de uma lente convergente, ao emergir dela, passará pelo foco imagem. Usando o princípio de reversibilidade dos raios luminosos, descrito em secções anteriores, podemos afirmar que qualquer raio que incida passando pelo foco objecto, ao emergir da lente, sairá paralelo ao eixo principal. Um raio que incida no centro da lente, passará por ela sem desvio (veja figura 60). Para se formar a imagem de um ponto {Q}, devemos traçar ao menos dois raios que incidam na lente vindos do ponto {Q}. Os raios escolhidos devem ser aqueles cujo raio emergente correspondente já conhecemos. No exemplo, usa-se o raio que incide paralelamente ao eixo principal e o raio que incide passando pelo centro. Após escolhermos estes raios, representamos os raios emergentes correspondentes. Onde os raios emergentes se cruzarem, aí é a imagem real do ponto {Q} que é designado {Q'}. Quando os raios emergentes não se cruzam, para encontrar a imagem procede-se ao prolongamento dos raios emergentes. A intercessão destes prolongamentos será então a imagem virtual {Q'} do ponto {Q}.

Figura 60: Formação da imagem de um objecto numa lente convergente. [5] Adaptado

Para obter a imagem de um objecto extenso {PQ}, é apenas necessário obter a imagem de um conjunto de pontos suficientemente representativo deste objecto. No exemplo se obteve a imagem de dois ponto {P} e {Q}.

O número de ponto a escolher variam de acordo com a complexidade do objecto a analisar.

No caso de formação de imagem de um objecto atravessar de uma lente divergente, o procedimento é idêntico, mas devemos recordar que na lente divergente, o raio que incide paralelamente ao eixo principal, após refratar-se na lente, emerge como se tivesse vindo do foco imagem, e o raio que incide na lente, mas apontado para o foco objecto, após refratar-se, emerge paralelamente ao eixo principal. O raio que incide passando pelo centro de uma lente divergente, tal como na lente convergente, passa sem desvio.

Podemos generalizar algumas situações importantes de formação da imagem. Para lentes convergentes:

  • Quando a distância do objecto real à lente ({d}) é maior que o dobro da distância focal ({d>2f}). Características da imagem: real, invertida em relação ao objecto, menor que o objecto e está situada numa distância superior a distância focal, ou seja, depois do foco imagem {F'}.
  • Quando o objecto está situado entre o foco objecto {F} e o dobro da distância focal ({f<d< 2f}). Características da imagem: real, invertida em relação ao objecto, maior que o objecto e está situada numa distância superior ao dobro da distância focal,tambem depois do foco imagem {F'}.
  • Quando o objecto está situado no plano focal objecto ({d = f}). Neste caso os raios refratados são paralelos e a imagem forma-se no infinito.
  • Quando o objecto está situado entre o centro óptico {0} e o foco objecto {F}. Características da imagem: virtual, direita em relação ao objecto e maior que o objecto.

Para lentes divergentes:

  • Para qualquer situação, as características da imagem são: sempre virtual, direita em relação ao objecto e menor que o objecto.

A equação das lentes delgadas (equação de Gauss) relaciona entre si as grandezas seguintes: a distância {d} do objecto à lente, a distância {d'} da imagem à lente e a distância focal {f} da lente. A equação pode ser deduzida da figura 60.

Os ângulos para os triângulos rectângulos {OPQ} e {OPQ'} são iguais. Logo a sua tangente é {\tan \alpha = \frac{y}{d}=-\frac{y'}{d'}}. o sinal negativo deve-se ao facto de a imagem ser invertida. Neste poderemos obter:

\displaystyle \frac{y'}{y}=-\frac{d'}{d} \ \ \ \ \ (65)

 

De modo análogo, no triângulos rectângulos {OAF'} e {F'PQ}, o ângulo {\beta} é igual. Então: {\tan \beta= \frac{y}{f}=-\frac{y'}{d'-f}}. Isto nos dá:

\displaystyle \frac{y'}{y}=-\frac{d'-f}{f} \ \ \ \ \ (66)

 

Igualando as equações 65 e 66, separando a fracção, simplificando e isolando a fracção {\frac{1}{f}}, fica:

\displaystyle \frac{1}{f}=\frac{1}{d}+\frac{1}{d'} \ \ \ \ \ (67)

 

Esta é a equação que relaciona as distâncias do objecto e da imagem em relação a lente com a sua distância focal.

A partir da relação 65 obtemos a ampliação da imagem formada por uma lente:

\displaystyle k=-\frac{d'}{d} \ \ \ \ \ (68)

 

Estas relações são válidas que para lentes convergentes como para lentes divergentes, desde que se respeite a convenção de sinais.

Convenção de sinais:

  • Se o objecto é real, {d} é positiva: {d> 0}.
  • Se o objecto é virtual, {d} é negativa: {d <0}.
  • Se a imagem é real, {d'} é positiva: {d'> 0 }.
  • Se a imagem é virtual, {d'} é negativa: {d' <0}.
  • Se a lente é convergente, {f } é positiva: {f> 0}
  • Se a lente é divergente, {f } é negativa: {f <0}

Portanto, {d} e {d'} podem ser positivas ou negativas dependendo do facto do objecto e da imagem serem reais ou virtuais.

A ampliação é positiva se a imagem é direita (quer dizer do mesmo sentido que o objecto) e, negativa se a imagem é invertida (quer dizer, de sentido contrário ao objecto).

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.]

Entenda matematicamente a imagem do espelho. Espelhos planos.

— 2.7.6. Espelhos planos —

O espelho plano é uma superfície lisa e plana, bem polida, que reflete especularmente a luz (reflexão regular). Por exemplo, uma placa de vidro plana relativamente fina, cuja face traseira é prateada ou uma placa metálica niquelada são exemplos de um espelho plano. A visão humana ocorre devido aos raios de luz que chegam aos nossos olhos. Dependendo de como esses raios chegam, podem nos transmitir sensações diferentes sobre a forma dos objectos e a distância a que eles se encontram. Sensações sim, porque, por vezes pode não ser a realidade.

Vejamos o exemplo da figura 30. Quando um observador está situado em frente de um espelho, ele observa parte dos raios de luz reflectidos pelo espelho. Este feixe parece ter sido emitido do ponto {A'}, isto é, tudo se passa como se no ponto {A'} existisse um objecto emitindo aquele feixe. É por isso que o observador tem a sensação que o objecto (que na realidade está situado no ponto {A}) está no ponto {A'}. O ponto {A'} é chamado de imagem do objecto {A}.

A imagem {A'} está situada atrás do espelho, no ponto de encontro dos prolongamentos dos raios reflectidos.

A nível de Óptica Geométrica, definimos como ponto objecto como sendo o ponto de intersecção dos raios incidentes (ou, no caso em que estes não chegam a interceptar-se, o ponto de intersecção dos prolongamentos dos raios incidentes).

O ponto imagem é o ponto de intersecção dos raios emergentes (refletidos ou refratados do sistema óptico), ou, no caso em que estes não se interceptem, o ponto de intersecção dos prolongamentos dos raios emergentes. Consideramos, raios emergentes, aos raios que emergem (ou saem) do sistema.

Figura 30: Imagem de um espelho plano.[7]

Para se determinar a posição da imagem de um pequeno objecto pontual A, colocado em frente de um espelho plano, temos apenas de traçar raios luminosos que partem do objecto e se reflectem no espelho. Atenção á lei da reflexão. Pelo menos dois raios. Isto foi feito na figura 2 onde foram traçados os raios incidentes {1} e {2} e os raios refletidos {1'} e {2'}. A imagem seria o ponto de intersecção de {1'} e {2'}, mas como podemos ver na figura, eles são divergentes. A posições da imagem , {A'}, é encontrada prolongando-se os raios reflectidos {1'} e {2'}.

Quando o objecto (ou a imagem) é formado pela intercessão dos raios incidentes (ou emergentes), então é chamado de objecto (ou imagem) real. Quando os raios incidentes (ou emergentes) são divergentes, então o objecto (ou a imagem) será formado pela intercessão dos prolongamentos dos raios incidentes (ou emergentes), então será chamado de objecto (ou imagem) virtual.

O conceito de imagem real e virtual pode parecer abstrato, mas na realidade não. É um conceito muito prático e útil no dia -a-dia. Suponhamos que vamos usar um espelho para projectar uma imagem sobre um filme fotográfico a fim de ser revelada esta imagem. Neste caso, devemos colocar o filme no ponto onde se formará a imagem. Se nesse ponto se formar uma imagem real, após a revelação do filme, teremos a imagem do objecto estampada no filme. Mas se este ponto onde foi colocado o filme é um ponto onde se forma uma imagem virtual, ao revelarmos o filme não aparecerá nada além de ruídos… Porquê? Na imagem virtual, a luz nem chegara efectivamente naquele ponto. A luz é desviada antes de chegar naquele ponto, portanto, não chega a interagir com o filme fotográfico. Esse conceito é muito útil em projecções.

A imagem formada por um espelho plano está sempre situada a uma distância (em relação ao espelho) igual á distância entre o objecto e o espelho. Isso pode ser facilmente demonstrado pela figura 31.

Figura 31: Relação entre distâncias no espelho. [7] Adaptado

O objecto é {A} e a sua imagem é {A'}. O raio incidente é {AI} e o refletido é {AR}. A distancia entre o objecto e o espelho é {H} e a distância entre a imagem e o espelho é {D}. Podemos notar que o objecto e a imagem estão sob uma mesma linha perpendicularmente ao espelho. A lei da reflexão impõe que {i=i'}, e o teorema de ângulos opostos pelo vértice impõe que {x=90^0-i'}. Logo, os triângulos {API} e {A'PI} são congruentes. Como o cateto adjacente, em relação ao vértice I são iguais, isto implica que todos os ângulos equivalentes dos dois triângulos sejam iguais, logo, todos os lados também o são. Sendo assim, {H=D}.

Se enviarmos um feixe luminoso convergente sobre um espelho plano, mas de modos que o ponto de convergência fique por detrás do espelho, criamos um objecto virtual no ponto {A}. Neste caso, o feixe luminoso reflectido convergirá no ponto {A'} que fica em frente do espelho a uma mesma distância do objecto ao espelho. Este ponto luminoso {A'} pode ser recebido numa tela e é chamado imagem real do objecto virtual {A} (ver figura 32).

Figura 32: Objecto virtual – imagem real.[7] Adaptado

Imaginemos agora um objecto que não possa ser reduzido a um ponto, ou seja, um objecto extenso. Um objeto extenso pode ser considerado como um conjunto de pontos. A sua imagem será determinada determinando a imagem de cada um dos ponto que o constituem e ligando assim estes pontos imagem.

Figura 33: Imagem de um objecto extenso. [4]

A imagem de espelhos planos sempre é invertida, de mesmo tamanho e de natureza oposta ao objecto, ou seja, se o objecto é virtual então a imagem é real e vice-versa.

A imagem é invertida em que sentido? Quando estás em frente ao espelho a tua orelha direita fica ao teu lado esquerdo e a tua orelha esquerda fica do teu lado direito. Outra forma simples de verificar que a imagem de um espelho plano é invertida é colocarmos uma t-shirt com algum texto escrito na parte de frente e posicionarmos em frente a um espelho. Como aparece o texto na imagem?

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO [s.d.].

%d bloggers like this: