Luso Academia

Início » Posts tagged 'Exercicios'

Tag Archives: Exercicios

1.1. Exercícios sobre Carga, Forças Eléctricas (Parte 4)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 10 Um conjunto de 4 cargas iguais, de {5 \ \mu C} estão dispostas da base de uma pirâmide de base quadrada, dada na figura.

{a= \ h= \ 20 \ mm}.

Qual deverá ser a massa da carga de prova (de valor igual) para que ela flutue em equilíbrio dinâmico?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 10 .

O exercício nos apresenta uma carga de prova {(q_{o})} que está acima de um arranjo quadrado de cargas, formando assim uma pirâmide. As cargas se encontram nos vértices da pirâmide.

A carga flutua por interacção electrostática. Sendo que todas as cargas são positivas, existem forças repulsivas constantes entre as cargas.Dados

{K \approx \ 9 \cdot 10^9 \ Nm^2/C^2}

{H= \ a= \ 20 \ mm= \ 20 \cdot 10^{-3} m}

{q_0=q_1=q_2=q_3=q_4= \ 5 \ \mu C= \ 5 \cdot 10^{-6} \ C}

{m-?}

.

Sendo que a figura geométrica é regular e simétrica, a distancia entre a carga {q_0} com as outras cargas é igual. Chamamos a esta distancia de {d}.

Veja a figura abaixo.

Considerando o triângulo rectângulo formado entre as cargas {q_1}, {q_2} e o centro do quadrado da base {O}, teremos:

\displaystyle b^2+b^2=a^2

\displaystyle \Rightarrow 2 \cdot b^2=a^2

\displaystyle \Rightarrow \cdot b^2=\dfrac{a^2}{2}

Isolando {b}, teremos:

\displaystyle b=\sqrt{\dfrac{a^2}{2}}

Analisando o triângulo rectângulo formado pelas cargas {q_1}, {q_0} e o centro do quadrado da base {O}, teremos:

\displaystyle b^2+h^2=d^2

Ou:

\displaystyle d^2=b^2+h^2

\displaystyle \Rightarrow d^2= \dfrac{a^2}{2}+a^2

\displaystyle \Rightarrow d^2= \dfrac{3a^2}{2}

Na carga {q_0} actuam ao todo 4 forças repulsivas, da sua interacção com as outras cargas (1, 2, 3 e 4).

Chamamos a estas forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}}.

Então:

\displaystyle F_{01}=F_{02}=F_{03}=F_{04}

O facto de as distâncias serem todas iguais e de as cargas terem o mesmo valor absoluto, pela lei de Coulomb, nos leva a concluir que as forças electrostáticas de repulsão entre {q_0} e as outras cargas (1, 2, 3 e 4) são todas iguais.

Os seus módulos serão:

\displaystyle F_{01} \ = F_{02} \ = F_{03} \ =F_{04} \ = \ k\dfrac{|q_{1}|.|q_{0}|}{d^{2}}

Substituindo {d^2}, teremos:

\displaystyle F_{01} = \ k\dfrac{|q_{1}|.|q_{0}|}{3a^{2}/2}

Calculando:

\displaystyle F_{01} = \ 9 \cdot 10^9 \dfrac{5 \cdot 10^{-6} \cdot 5 \cdot 10^{-6}}{3(20 \cdot 10^{-3}) ^{2}/2}

\displaystyle \longleftrightarrow F_{01} = 375 \ N

Lembre que:

\displaystyle F_{01} \ = F_{02} \ = F_{03} \ =F_{04}

\displaystyle \Rightarrow F_{01} \ = F_{02} \ = F_{03} \ =F_{04} \ = 375 \ N

As forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}}, além de terem o mesmo modulo, são todas respectivamente paralelas a diagonal formada pelo segmento que une as cargas que as originam. Neste caso, pela simetria do problema, todas estas diagonais formam o mesmo ângulo {\theta} com o plano horizontal {xOy}.

Neste caso, todas estas forças formarão também o mesmo ângulo {\theta} com o plano horizontal {xOy}.

Se inserirmos um sistema de coordenadas cartesiano em {q_0} e projectarmos as forças, as projecções destas forças no plano {xOy} vão anular-se mutuamente.

Na figura, só representamos as projecções para {F_{03}} e para {F_{04}}. Pela simetria do problema, poderemos deduzir as outras.

O eixo {x} foi traçado de modo a ser paralelo a diagonal que contem {q_1} e {q_3}.

O eixo {y} foi traçado de modo a ser paralelo a diagonal que contem {q_4} e {q_2}.

O eixo {x} foi traçado de modo a ser paralelo a vertical que contem o ponto O e {q_0}.

Neste caso:

  • {F_{01}} pertence ao plano {xOz},
  • {F_{02}} pertence ao plano {yOz},,
  • {F_{03}} pertence ao plano {xOz},
  • {F_{04}} pertence ao plano {zOz}.

As componentes horizontais (no plano {xOy}) anulam-se:

  • {F_{01x}} anula {F_{03x}},
  • {F_{02y}} anula {F_{04y}}.

Sobram apenas as componentes verticais. As projecçõpes verticais das forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}} podem ser calculadas pelas seguintes relação:

\displaystyle F_{01z}=F_{01z} \sin \theta

Temos de obter o ângulo {\theta}. Considerando o triângulo rectângulo formado pelas cargas {q_1}, {q_0} e o centro do quadrado da base {O}, teremos:

\displaystyle tg \theta = \dfrac{h}{b} \Rightarrow \theta = arctg \dfrac{h}{b}

Substituindo {h} e {b} pelos seus valores, obtemos:

\displaystyle \theta = arctg \dfrac{a}{a/\sqrt{2}}

\displaystyle \Rightarrow \theta = arctg \sqrt{2}

\displaystyle \Rightarrow \theta = 54,7^o

Sabemos que, pela simetria do problema {F_{01z}=F_{02z}=F_{03z}=F_{04z}}. Então:

\displaystyle F_{01z}=F_{01} \sin \theta = 375 cos 54,7^o

\displaystyle F_{01z}=216,7 \ N

As resultante das componentes verticais será igual a força eléctrica resultante em {q_0}, que chamamos de {F_{el}}.

Neste caso:

\displaystyle F_{el}=F_{01z} + F_{02z} +F_{03z} + F_{04z}

\displaystyle F_{el}=4 \cdot F_{01z}

\displaystyle F_{el}=4 \cdot 216,7

\displaystyle F_{el}=866,8 \ N

Para quê a carga de prova flutue em equilíbrio dinâmico é necessário que a força eletrostática resultante que atua nela seja igual a força de gravidade:

\displaystyle F_{el} \ = \ F_{g}

Então:

\displaystyle F_{el} \ = \ m \ . \ g

Ou:

\displaystyle \ m \ . \ g = F_{el}

\displaystyle \Rightarrow m \ = \dfrac{F_{el}}{g}

\displaystyle \Rightarrow m \ = \dfrac{866,8}{9,8}

\displaystyle \Rightarrow m \ = \ 88,44 \ kg

Exercício 11 Uma carga de prova {q_0= \ 10 \ \mu C} de massa depressível, esta presa numa mola também de massa depressível, com constante {K'= \ 10 \ N/m}, conforme a figura abaixo.

Uma outra carga {q_1 \ =50 \ \mu C} é fixada abaixo desta. qual devera ser a distância entre as cargas para que a mola seja comprimida em 3 cm.

NÍVEL DE DIFICULDADE: Regular.

Resolução 11 .

O sistema apresenta um arranjo de cargas, onde a carga {q_0} está presa a uma mola. Actuam nela a força eléctrica {F_{01}} e a força elástica {(F_k)}.

A mola está comprimida devido a força de repulsão. A massa da mola é depressível. {K'}-constante elástica e {K}– constante electrostática. O uso de {K'} em vez do habitual {K} para a constante elástica da mola é para distingui-lo da constante electrostática do meio {K}.

As duas cargas são positivas, logo a força de interacção entre elas é de repulsão. Esta força tenderá a comprimir a mola. A compressão termina quando se atinge o equilíbrio entre a força deformadora (força eléctrica) e a força restauradora (força elástica).

Aplicaremos a condição de equilíbrio, substituiremos a força eléctrica pela relação obtida da lei de Coulomb, e isolaremos a distância d.

Dados

{K'= \ 10 \ N/m}

{K \approx \ 9 \cdot 10^9 \ Nm^2/C^2}

{x= \ 3 \ cm= \ 3 \cdot 10^{-2}}

{q_0= \ 10 \ \mu C= \ 10 \cdot 10^{-6} \ C}

{q_1= \ 50 \ \mu C= \ 50 \cdot 10^{-6} \ C}

{d-?}

Sabemos que, pela lei de Hook:

\displaystyle F_{k}=K' \cdot x (

Sabemos também, pela Lei de Coulomb, que:

\displaystyle F_{01}=K\dfrac{|q_0| \cdot |q_1|}{d^2}

.

Considerando que na carga {q_0} as duas forças estão em equilíbrio, temos:

\displaystyle \vec{F_{k}}+\vec{F_{01}}=0

Em módulo, teremos:

\displaystyle F_{k}-F_{01}=0

\displaystyle \Rightarrow F_{k}=F_{01}

Substituindo as forças pelas suas relações, temos:

\displaystyle K' \cdot x=K\dfrac{|q_0| \cdot |q_1|}{d^2}

Passando o {d^2} no membro esquerdo e a {K' \cdot x} para o membro direito, obtemos:

\displaystyle d^2=\dfrac{K \cdot |q_0| \cdot |q_1|}{K' \cdot x}

\displaystyle \Rightarrow d=\sqrt{\dfrac{K \cdot |q_0| \cdot |q_1|}{K' \cdot x}}

Substituindo os valores:

\displaystyle \Rightarrow d=\sqrt{\dfrac{9 \cdot 10^9 \cdot 10 \cdot 10^{-6} \cdot 50 \cdot 10^{-6}}{10 \cdot (3 \cdot 10^{-2})}}

\displaystyle d= \ 3, 87 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4)

 — 1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 4) —

 

Exercício 10 A massa de um átomo de Urânio é de {4,0\cdot10^{-26} \ kg}. Quantos átomos de urânio existem em {8 \ g} de Urânio puro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

É um problema cujo método de resolução é muito comum (3 simples).

Vamos começar por converter todas as grandezas para as mesmas unidades.

Neste caso, vamos converter a massa do átomo de urânio para gramas. Como é uma unidade com prefixo k (kilo), podemos converter de mondo simples, substituindo o prefixo pelo seu valor({k = 10^3}):

\displaystyle 4,0\cdot10^{-26} \ kg = 4,0 \cdot 10^{-26}\cdot 10^{3} \ g = \ 4,0\cdot10^{-23} \ g

Em seguida, fazemos a relação de proporção.

Chamamos de {x} ao número de átomos que pretendemos calcular. Neste caso:

\displaystyle 1 \ atomo \longrightarrow 4,0\cdot10^{-23} \ g

\displaystyle x \longrightarrow 8,0 \ g

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 4,0 \cdot10^{-23} \ g = 1 \ atomos(u) \cdot 8,0 \ g

Isolando o x, obtemos:

\displaystyle x = \frac{1 \ atomo(u)\cdot 8,0 \ g}{4,0\cdot10^{-23} \ g}

Resolvendo, temos:

\displaystyle x = 2,0\cdot 10^{23} \ atomos

Em {8 \ g} de urânio puro, existem {2,0\cdot 10^{23}} átomos de Urânio.

 

 

Exercício 12 Determine a partir da representação dada, o vector {\vec{c} \ = 3 \ \vec{a} \ + 2 \ \vec{b}} .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

Podemos resolver este exercício utilizando a regra do paralelogramo.

Temos uma adição de 2 vectores onde nos é dado graficamente os módulos dos vectores e o ângulo entre eles.

A resolução aqui é feita apenas graficamente.

Desta feita, aplicando a regra do paralelogramo, teremos:

  • Em primeiro lugar, vamos traçar os vectores {3 \ \vec{a} } e { 2 \ \vec{b}}. Para tal, vamos na extremidade de {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Na extremidade deste segundo {\vec{a}}, traçar outro vector idênticos à {\vec{a}}. Neste caso, teremos o vector {3 \ \vec{a} }. Para o caso do vector { 2 \ \vec{b}}, o procedimento é análogo. Vamos na extremidade de {\vec{b}}, traçar outro vector idênticos à {\vec{b}}.Neste caso, teremos o vector {2 \ \vec{b} }. Veja a figura a seguir.

  • Em seguida, na extremidade do vector {3\vec{a}} traçamos uma imagem do vector {2\vec{b}} e na extremidade do vector {2\vec{b}} traçamos uma imagem do vector {3\vec{a}}.Veja a figura a seguir.

  • Em seguida, traçamos o vector resultante que terá como origem o ponto onde ambas origem dos dois vectores ({3 \vec{a}} e {2 \vec{b}}) se encontravam, e terá como extremidade o ponto de intercessão das extremidades das imagens ({3 \vec{a'}} e {2 \vec{b'}}).

    Então, na figura anterior, obtemos o vector {\vec{c}}.

 

 

Exercício 13 Determine a distância entre os corpos A e B na figura:

Resolução 13

Este é um Problema simples de Geometria Analítica. Trazemos aqui, a titulo de exemplo para aplicação em movimentos, como veremos a seguir.

Para determinarmos a distância entre os dois pontos, usaremos a formula apresenta na Geometria Euclidiana, para distância entre dois pontos num sistema de coordenadas cartesiano.

A Relação é:

\displaystyle d(A;B)=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Neste caso, {x_A=5; \ y_A=15; \ x_B= 25; \ y_B=5}.

Então, substituindo os valores na relação anterior, teremos:

\displaystyle d(A;B)=\sqrt{(25-5)^2+(5-15)^2}

Resolvendo, teremos:

\displaystyle d(A;B) = \sqrt{(20)^{2} \ + \ (-10)^{2}}

\displaystyle d(A;B) = \ 22,36 \ m

Logo, a distância entre os corpos A e B é igual a {22,36 \ m}.

 

 

Exercício 14

Sendo {\vec{v_{1}} \ = \ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ + \ 4 \vec{e_{z}}} e {\vec{v_{2}} \ = \ 5 \vec{e_{y}} \ - \ 2 \vec{e_{z}}} Determine o módulo de {\vec{v} \ = \ \vec{v_{1}} \ + \ \vec{v_{2}}}

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 14 Para determinarmos o módulo do vector {\vec{v}}, é necessário que se conheça ou que se determine o vector {\vec{v}}

Sendo este vector{(\vec{v})} a soma entre os vectores {\vec{v_{1}}} e {\vec{v_{2}}}, teremos:

\displaystyle \vec{v} \ = \vec{v_{1}} \ + \ \vec{v_{2}}

Substituindo as componentes, obtemos:

\displaystyle \vec{v} \ = (\ 3 \vec{e_{x}} \ + \ 2 \vec{e_{y}} \ +?\ 4 \vec{e_{z}}) \ + \ (5 \vec{e_{y}} \ - \ 2 \vec{e_{z}})

Efectuando a operação, teremos:

\displaystyle \vec{v} \ = \ 3 \vec{e_{x}} \ + \ 7 \vec{e_{y}} + \ 2 \vec{e_{z}}

Nota: Lembre-se que, para obtermos esta expressão, somou-se os números da mesma coordenada de ambos os vectores, ou, se quisermos usar a linguagem da álgebra, os termos semelhantes.

Então, podemos determinar o módulo do vector {\vec{v}} a partir da seguinte relação:

\displaystyle |\vec{v}| \ = \ \sqrt{x^{2} \ + \ y^{2} \ + \ z^{2}}

Onde: x, y e z são os componentes deste vectores, portanto, substituindo os valores destes componentes do vector {\vec{v}} , teremos:

\displaystyle |\vec{v}| \ = \ \sqrt{(3)^{2} \ + \ (7)^{2} \ + (2)^{2}}

Resolvendo:

\displaystyle |\vec{v}| \ = \ 7,87

Logo, o vector {\vec{v}} tem o módulo igual a {7,87} unidades.

Note: No calculo do módulo de {\vec{v}} não usamos os vectores {e_{x}, \ e_{y}, \ e \ e_{z}}. Estes vectores são unitários. Só servem para indicar as direcções.

 

Exercício 15 A soma dos módulos de dois vectores é igual a 7 m. Quando colocados perpendicularmente, o módulo da soma destes vectores é de 5 m. Quais são os módulos destes vectores?

NÍVEL DE DIFICULDADE: Regular.

Resolução 15

Este exercício é um problema simples de Geometria Analítica.

Para resolve-lo, vamos atribuir duas variáveis aos modelos dos vectores, e usaremos as condições do enunciado para formarmos um sistema de equações.

Consideramos que {x \ } é o módulo de um dos vectores e {\ y}O módulo de outro vector, então:

  • {x \ + \ y \ = \ 7} De acordo com a primeira condição dada no problema.

Quando colocados perpendicularmente estes dois vectores, o vector resultante forma a hipotenusa de um triângulo rectângulo com esses dois vectores. Então, teremos a situação da figura.

Se { | \vec{v_{1}}|= \ x}, {|\vec{v_{2}} | = \ y} e o {|\vec{v}|=5}, então, pelo Teorema de Pitágoras, teremos :

{x^{2} \ + \ y^{2} \ = \ (5)^{2}}

Formando um sistema de equações com duas equações obtidas das condições, teremos:

\displaystyle \left\{\begin{array}{cccccc} x & + y & = & 7\\ x^{2} & + & y^{2} & = & 25\\ \end{array}\right.

Isolando {y} na equação 1 substituindo na equação 2, teremos:

\displaystyle \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & y^{2} & = & 25 \end{array}\right. \Rightarrow \left\{\begin{array}{cccccc} y & = 7 & - & x\\ x^{2} & + & (7 \ - \ x)^{2} & \ = \ & 25 \end{array}\right.

\displaystyle \Rightarrow x^{2} \ + \ (7 \ - \ x)^{2} \ = \ 25

Desfazendo a diferença de quadrado e efectuando as operações, teremos:

\displaystyle x^{2} \ - \ 7 \ x \ + \ 12 \ = \ 0

Resolvendo esta equação utilizando a Fórmula de Resolvente, obtemos:

\displaystyle x_{1,2} \ = \dfrac{-b \pm \ \sqrt{b^{2} \ - \ 4 \ a \ c}}{2 \ a}

,onde {a \ = \ 1} , {b \ = \ - \ 7} e {c \ = \ 12}.

Substituindo os valores e resolvendo, teremos como resultado {x_{1} \ = \ 3} e {x_{2} \ = \ 4}

Substituindo os valores de {x_{1}} e de {x_{2}} na primeira equação do sistema, e calculando os valores correspondentes de {y}, teremos as seguintes valores para {y } : {y_1 \ = \ 4 \ e \ y_2 \ = \ 3}

Logo, temos como solução : s = { \left\{\begin{array}{cccccc} (x = 4, &y = 3)\\ (x = 3, &y = 4) \end{array}\right. }

Ambas as as soluções são aceitáveis e permutadas entre si.

Desta feita, dois vectores são: {4 \ m \ e \ 3 \ m}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

2.1. Exercícios sobre Reflexão da Luz e Espelhos Planos (Parte 2)

 

Exercício 11 Três espelhos interceptam-se em ângulos rectos.Um feixe de luz atinge o primeiro deles com um ângulo {\theta} (ver figura ao lado) .a)Mostre que quando esse raio é refletido pelos outros dois espelhos e cruza o raio original,o ângulo entre esses dois raios será {\alpha = \ \ 180^{o}-2\theta} e determine o ângulo {\theta} para o qual os dois raios serão perpendiculares quando se cruzam?

.NÍVEL DE DIFICULDADE: Regular.

.

Resolução 11 .

Redesenhando a figura. Na figura o ponto de intersecção entre o raio incidente e o primeiro espelho espelho chamamos de {B}.

O raio que se reflecte deste ponto vai incidir no outro ponto do segundo espelho, que chamamos de {C}.

Raio reflectido do ponto {C} vai incidir no outro ponto do terceiro espelho que chamamos de {D}.

O raio reflectido do ponto {D} vai cruzar-se com o raio incidente num ponto que chamamos {A}.

O ângulo de incidência e reflexão no ponto {C} chamamos de {z}. O complementar de {z} chamamos de {\varphi}.

O ângulo de incidência e reflexão no ponto {D} chamamos de {\beta}. O complementar de {\beta} chamamos de {\Psi}.

O complementar de {\theta} chamas de {\chi}.

Marcamos ainda os .s é eficaz conforme indicado na figura.

Da figura, no ponto B, analisando entre o espelho e a sua normal, temos:

\displaystyle \chi \ + \theta = \ \ 90^{o}

pelo triângulo BHC, pelo teorema da soma dos ângulos internos, temos temos :

\displaystyle \chi \ + \varphi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \chi \ + \varphi = \ \ 90^{o}

Subtraindo ambas equações dos passos anteriores, obtemos :

\displaystyle \varphi = \ \theta

Pelo teorema de ângulos internos no triângulo CDG, temos :

\displaystyle \varphi \ + \Psi \ + \ 90^{o} = \ \ 180^{o}

\displaystyle \varphi \ + \Psi = \ \ 90^{o}

Pelo teorema de ângulos internos no triângulo ADF, temos :

\displaystyle y \ + \ 90^{o} \ + \Psi = \ \ 180^{o} \Rightarrow

\displaystyle y \ + \Psi = \ \ 90^{o}

Subtraindo esta última pela equação do passo anterior, obtemos :

\displaystyle y = \ \varphi

Como {\varphi = \ \theta}, obtermos:

\displaystyle y = \ \theta

No quadrilátero {ABCD} temos :

\displaystyle 2y \ + \alpha = \ \ 180^{o} \Rightarrow \alpha = \ \ 180^{o} \ - \ 2y

Substituindo {y = \ \theta}, obtemos:

\displaystyle \alpha = \ 180^{o} \ - \ 2\theta

Exercício 12 Um feixe de luz emitido por um laser,incide sobre a superfície da água de um aquário,como representado nesta figura :

O fundo desse aquário é espelhado ,a profundidade da agua é de 40 cm e o ângulo de incidência do feixe de luz é de {50^{o}}. Qual é a distância entre os pontos A e C da figura?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 12 .

Dados

{n_{agua} = \ \ 1,33}

{h = \overline{BO}= \ \ 40 \ cm}

{\varphi = \ \ 50^{o}}

{ \overline{AC} \rightarrow \ ?}

.

No problema, a luz incide a partir do ar para a água. Toca na água no ponto A e refracta-se na água. É reflectida no ponto B(no espelho que está no fundo) e retorna à superfície de separação água-ar. No ponto C, faz refracção novamente para o Ar.

Para acharmos a distância AC devemos calcular o ângulo que o feixe de luz faz com a normal na água (usando a lei de Snell-Descartes), e combinando estes valores com a profundidade, no triângulo ABC.

.

Redesenhando a figura,temos :

Pela lei de Snell, no ponto A, podemos determinar o ângulo de refração. Temos :

\displaystyle n_{ar} \ sen 50^{o} = \ \ n_{agua} \ . sen \theta

Isolando o seno, no membro esquerdo, temos:

\displaystyle sen \theta = \ \dfrac{n_{ar} \ sen 50^{o}}{n_{agua}} = \ \dfrac{1. \ sen 50^o}{1,33}

\displaystyle \Rightarrow \theta =\ arcsen({ \dfrac{1. \ sen 50^o}{1,33}}) = \ 35,15^{o}

Se considerarmos o ponto médio do segmento {\overline{AB}}, que chamamos de {D}, então o triângulo ABD é rectângulo. O ângulo interno do vértice B é igual a {\theta } e {\overline{AD}=\overline{AC}/2}. Então:

\displaystyle tg \theta= \ \dfrac{\overline{AD}}{\overline{BD}} = \ \dfrac{\dfrac{\overline{AC}}{2}}{h} = \ \dfrac{\overline{AC}}{2h}

\displaystyle \Rightarrow \overline{AC} = \ 2h \ . \ tg \theta

Substituindo valores, obtemos:

\displaystyle \overline{AC} = \ 2 \ . \ 40 \ cm \ . \ tg \ (35,15^o) \Rightarrow \overline{AC} = \ 56,37 \ cm

.

Exercício 13 Um rapaz em repouso na rua,vê sua imagem reflectida por um espelho plano preso verticalmente na traseira de um autocarro que se afasta com a velocidade escalar constante de {20 \ m/s}. Qual é a velocidade de afastamento da imagem em relação ao rapaz?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 13 Neste problema temos de analisar não só a velocidade com o espelho se afasta do rapaz, mas também a velocidade com que a sua imagem (que o espelho produz) se afasta dele.

O melhor raciocínio mais simplificado, consiste em estabelecer o espelho como referencial de analise e depois achar a velocidade relativa.

A medida que o autocarro se move para a direita, automaticamente o espelho também se move para a direita. como o movimento é relativo, podemos considerar que o autocarro e o espelho estão em repouso e o rapaz ({AB}) é que se está a mover no sentido oposto (para a esquerda), com a mesma velocidade.

Se o rapaz, que é o nosso objecto óptico({AB}), se move para esquerda com velocidade v, então a sua imagem formada pelo espelho ({A'B'}) se afasta do espelho para direita com velocidade {v'}.

Vamos estabelecer as equações do movimento no 1ª referencial (com origem no espelho) e depois amos fazer a transformação de Galileu par o 2º Referencial (com origem no rapaz). Veja a figura.

Pela lei da reflexão, em qualquer momento:

\displaystyle \Delta x_{e} = \Delta x_{i}

Portanto :

\displaystyle -v \cdot t = v' \cdot t

\displaystyle \Rightarrow -v = v'

\displaystyle \Rightarrow |v| = |v'|

Então , neste referencial (Referencial 1), temos:

\displaystyle x_{Rap-Ref1}=x_{0Rap} - v. t

\displaystyle x_{Esp-Ref1}=0

\displaystyle x_{Rap-Ref1}=x_{0Rap} + v.t

.

Se estabelecermos um novo referencial (no rapaz), então este referencial 1 (com origem no espelho) está em movimento em relação ao novo referencial 2 (com origem no rapaz), com velocidade v.

A transformação de galileu diz que: {x_{Ref2}=x_{Ref 1} - v. t}.

Então para o rapaz( que no referencial 1 estava em movimento regressivo com velocidade v) teremos:

\displaystyle x_{Rap-Ref2}=x_{Rap-Ref 1} + v. t

\displaystyle x_{Rap-Ref2}=(x_{0Rap}-v.t) + v. t

\displaystyle x_{Rap-Ref2}=x_{0Rap}

Neste novo referencial, o rapaz está repouso.

.

Para o espelho/autocarro( que no referencial 1 estava em repouso na origem) teremos:

\displaystyle x_{Esp-Ref2}=x_{Esp-Ref 1} + v. t

\displaystyle x_{Esp-Ref2}=0 + v. t

\displaystyle x_{Esp-Ref2}= v. t

Neste novo referencial, o espelho/autocarro estão em movimento com velocidade v (conforme enunciado).

Para a imagem (que no referencial 1 estava em movimento progressivo com velocidade v) teremos:

\displaystyle x_{Im-Ref2}=x_{Im-Ref 1} + v. t

\displaystyle x_{Im-Ref2}=(x_{0Im}+v.t) + v. t

\displaystyle x_{Im-Ref2}= x_{0Im} + 2 v t

Neste novo referencial,imagem está em movimento com velocidade 2v .

Neste caso, a velocidade da imagem é:

\displaystyle v_{im}= \ 2.v= \ 2.20=40 \ m/s

Exercício 14 Um nativo de uma aldeia pesca em uma lagoa de água transparente. Para isso usa uma lança. Ao observar um peixe, ele atira a sua lança na direcção em que o observa. O jovem está fora da água e o peixe está em 1 m abaixo da superfície. O peixe está a uma distancia horizontal de {0,9 \ m} do ponto aonde a lança atinge a superfície da água. Para essas condições determine :

a)O ângulo {\alpha},de incidência da luz na superfície da agua-ar.

b)O ângulo {\beta} que a lança faz com a superfície da água quando tenta alcançar o peixe.

c)A profundidade aparente y,da superfície da água em que o nativo vê o peixe.

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 14

Dados

{n_{ar} = \ \ 1}

{n_{agua} = \ \ 1,33}

{\alpha \ - \ ?}

{\beta \ - \ ?}

{y = \ \overline{DE} - \ ?}

Neste problema, temos analise baseadas na refracção da luz. O Peixe está no Ponto O nativo, na beira do rio, vê como se o peixe estivesse no ponto D (que é a imagem virtual do ponto C) formada pela refracção da luz na superfície. O ponto A é o ponto onde ocorre a refracção. O ângulo {\alpha} é o ângulo de incidência da luz que sai do peixe e incide no ponto A. O ângulo {\theta } é o ângulo de refracção da luz no ponto A. ângulo {\beta } é complementar de {\theta}

  1. Para encontramos o ângulo {\alpha}, vamos aplicar a relação para as razões trigonométricas no triângulo rectângulo ABC. Sendo {\overline{AB}} cateto adjacente, {\overline{BC}} cateto oposto e{\overline{AC}} a hipotenusa, teremos:

    \displaystyle tg \alpha = \ \dfrac{\overline{BC}}{\overline{AB}} = \ \dfrac{0,9}{1}

    \displaystyle \Rightarrow \alpha =arctg ( \ \dfrac{0,9}{1})= \ 41,99^{o}

    \displaystyle \alpha = \ 41,99^{o}

  2. Como {\beta} é o complementar de {\theta}, então, acharemos primeiro o {\theta} e com ele acharemos o {\beta}. O {\theta} será obtido pela lei da refracção:

    \displaystyle n_{ar} \ sen \theta = \ \ n_{agua} \ sen \alpha

    Insolando o seno de { \theta }, temos:

    \displaystyle \ sen \theta = \ \ \dfrac{ \ n_{agua} \ . \ sen \alpha}{n_{ar}} = \ \dfrac{ \ 1,33. \ sen(41,99)}{1}

    Neste caso:

    \displaystyle \theta = arcsen ( \dfrac{1,33. \ sen(41,99)}{1})

    \displaystyle \Rightarrow \theta = \ \ 62,85^{o}

    Como {\theta \ + \beta = \ \ 90^{o}}, então:

    \displaystyle \beta = \ \ 90^{o} \ - \theta = \ \ 90^{o} \ - \ 62,85^{o}

    \displaystyle \Rightarrow \beta = \ 27,15^{o}

  3. A profundidade aparente do peixe, neste caso, corresponde ao segmento {\overline{DE}}. Para achar o seu valor, usaremos o triângulo ADE. Para este triângulo, temos:

    \displaystyle tg \beta = \ \dfrac{\overline{DE}}{\overline{AE}} \ \dfrac{y}{x}

    \displaystyle \Rightarrow y = \ x \ tg \ (\beta)

    \displaystyle \Rightarrow y = \ 0,9\ tg \ ( 27,15^{o})

    \displaystyle y = \ 0,46 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers gostam disto: