Luso Academia

Início » Posts tagged 'Exercicios resolvidos'

Tag Archives: Exercicios resolvidos

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)

Exercício 13 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Dados .

{ v= \dfrac {5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \cdot t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \cdot t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \cdot t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s} é:

\displaystyle x= 5 + 2,5 \cdot 25= 67,5 \ m

\displaystyle x=67,5 \ m

Exercício 17 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 17 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \dfrac {\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \dfrac {\Delta s}{v}

Substituindo os dados na fórmula anterior, obtemos:

\displaystyle \Delta t = \dfrac {10,000 \ m}{1,5 \ m/s} = 6,66 \cdot 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \cdot 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h \rightarrow 3600 \ s \\ x \rightarrow 6,66 \cdot 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 3600 \ s= 1 \ h \cdot 6,66 \cdot 10^3 \ s

\displaystyle \Rightarrow x = \dfrac {1 \ h \cdot 6,66 \cdot 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante {t_1} está {x_1 = 3,0\cdot 10^{12} \ m}, em relação ao sol. Um ano depois, está em {x_2 = 2,1\cdot 10^{12} \ m}. Achar o seu deslocamento e a sua velocidade média.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 19 .

Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal.

\displaystyle Deslocamento

\displaystyle \Delta x = x_1 - x_2

\displaystyle \Delta x = 3,0\cdot 10^{12} - 2,1\cdot 10^{12}

\displaystyle \Delta x = 0,9\cdot 10^{12} \ m

\displaystyle \Delta x = 9,0\cdot 10^{8} \ km

\displaystyle Intervalo \ de \ tempo

\displaystyle \Delta t = 1 \ ano = 365 \ dia

\displaystyle \Delta t = 8760 \ h

A velocidade média será:

\displaystyle v_{med} = \frac{\Delta x}{\Delta t} = \frac{9,0\cdot 10^8 \ km}{8760 \ h}

\displaystyle v_{med} = 1,02\cdot 10^5 \ km/h

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  • Deixe a sua interacção nos comentários deste Post;
  • Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  • Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 3)

Exercício 8 Se uma grandeza fictícia {K} tem unidade {\dfrac{ab^2}{c}} num certo sistema de unidade: Se as correspondências no SI são:

{1 \ a = 95 \ x}

{1 \ b = 57 \ y}

{1 \ c = 0,5 \ z}

Qual é o valor de {K = 18 \dfrac{ab^2}{c}} no SI ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 8 .

O objectivo do exercício é converter a unidade de {K} para o SI.

Vamos converter para o SI, substituindo o valor de {a}, {b}, {c} na expressão de {K = 18\dfrac{ab^2}{c}}.

.

\displaystyle K = 18\dfrac{ 95x \cdot (57y)^2}{0,5z}

\displaystyle \Rightarrow K = \dfrac{18 \cdot 95 \cdot (57)^2}{0,5} \cdot \dfrac{x \cdot y^2}{z}

\displaystyle K = 11111580\dfrac{x \cdot y^2}{z}

Exercício 9 Duas forças {\vec{F_1}} e {\vec{F_2}} de {10 \ N} e {20 \ N} respectivamente actuam sobre um corpo.

Qual deverá ser o modulo e a direcção da 3ª força ({\vec{F_3}}) para que a resultante seja nula?.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Teremos que inicialmente que a resultante entre as forças {\vec{F_1}}, {\vec{F_2}} e {\vec{F_3}} deve ser nula. Quer dizer que as três forças fazem parte do mesmo sistema bidimensional. A nível de análise gráfica, poderíamos determinar a resultante (parcial) das forças {F_{1}} e {F_{2}}. Chamamos ela de {F_{1/2}}. A força três, neste caso, terá sentido contrário ao vector força {F_{1/2}}, para que equilibre este resultante.

Neste caso:

\displaystyle \vec{F_3} = -\vec{F_{2/1}} \ ; \ F_3 = F_{1/2}

Para calcular a força {F_{1/2}}, vamos aplicaras componentes:

\displaystyle F_{1/2x} = F_{1x} + F_{2x}= F_{1} + 0 = F_{1} = 10 N

\displaystyle F_{1/2y} = F_{1y} + F_{2y}= 0 + F_{2} = F_{2} = 20 N

Então:

\displaystyle \vec{F_{1/2}} = F_{1/2x} \vec{i} + F_{1/2y} \vec{j} = 10 \vec{i} + 20 \vec{j} [N]

Logo:

\displaystyle \vec{F_3} = -\vec{F_{2/1}}= - 10 \vec{i} - 20 \vec{j} [N]

Em modulo:

\displaystyle F_3 = \sqrt{(-10)^2 + (-20)^2} = \sqrt{500} [N]

\displaystyle F_3 = 22,36 \ N

A direcção é definida pelos ângulos:

\displaystyle \alpha_1 = \arctan \frac{F_{3y}}{F_{3x}}

\displaystyle \alpha_2 = 180^o + \arctan \frac{F_{3y}}{F_{3x}}

Calculando:

\displaystyle \alpha_1 = \arctan{(\frac{-20}{-10})}=63 ^o

\displaystyle \alpha_2 = 180^o + \arctan{(\frac{-20}{-10})}= 243^o

Como o vector pertence ao 3º quadrante (as componentes são ambas negativas), a direcção e sentido são definidas por:

\displaystyle \alpha_2 = 243^o

Exercício 10 Um móvel percorre um troço de {400 \ km} em {2 \ dias}. Qual é a velocidade média desta viagem ? NÍVEL DE DIFICULDADE: Elementar.
Resolução 10 .

Dados

{v_m = \ ?}

{\Delta s = 400 \ km}

{\Delta t = 2 \ dias}

O exercício trate de um movimento genérico. Quando queremos analisar o movimento como um todo, usamos a velocidade e aceleração média. Então, a análise do movimento assemelha-se a um M.R.U, onde que a velocidade média é:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t}

Antes de calcular a {v_m}, vamos converter os {2 \ dias} para {h}, para usarmos unidades habituais em movimentos desta natureza. Vamos utilizar o sistema de “3 simples”:

\displaystyle 1 \ dia \longrightarrow 24 \ h

\displaystyle 2 \ dias \longrightarrow t

Multiplicado de forma cruzada, obtemos:

\displaystyle t \cdot 1 \ dia = 2 \ dias \cdot 24 \ h

\displaystyle t = 48 \ h

Agora podemos calcular a {v_m}:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t} = \dfrac{400 \ km}{48 \ h}

\displaystyle v_m = 8,33 \ km/h

Também poderíamos apresentar o valor da {v_m} em {m/s}, basta para isso dividir o valor em {km/h} por 3,6 e teremos em {m/s}.

\displaystyle v_m = \dfrac{8,33}{3,6} \ m/s

\displaystyle v_m = 2, 31 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Carga e Forças Eléctricas (Parte 1)

— 1. Exercícios sobre Electrostática —

 

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 1 .

Uma esfera metálica carregada negativamente tem { -25 \ \mu C } quantos eletrões em excesso foram adicionados a esta esfera? ({ q_e=-1,6 \cdot 10 ^{19} \ C }).
NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

Dados .

{ q= -25 \ \mu5=-25 \cdot 10 ^{-6} \ 6 } .

{ q_e=-1,6 \cdot 10 ^{-19} \ 6 } .

{ n \rightarrow ? } .

. A carga total é dada por:

\displaystyle q=n \cdot q_c

Onde:

{q-} é a carga eléctrica total.

{n-} é o numero de electrões em excesso ou defeito.

{q_e}= é a carga eléctrica elementar

Neste caso, isolando {n}, obtemos:

\displaystyle q= n \cdot q_c \Rightarrow n= \frac{q}{q_c}= \frac{-25 \cdot 10 ^{-6} \ 6}{-1,6 \cdot 10 ^{-19} \ 6}

\displaystyle n= \frac{25 \cdot 10 ^{-6}}{1,6 \cdot 10 ^{-19}}

\displaystyle n=1562,5 \cdot 10^{11}

.

Neste caso a esfera tem {1562,5 \cdot 10^{11}} electrões.

Exercício 2 .

Qual é a força da interação entre o núcleo e o electrão de um átomo de Hidrogénio, se o raio atómico é de { 53 \ pm}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 2 .

Dados .
{ q_p= 1,6 \cdot 10 ^{-19} \ C } .

{ q_e= -1,6 \cdot 10 ^{-19} \ C } .

{ r= 53 \ pm = 53 \cdot 10 ^{-12} \ C} .

{ k \approx \ 9 \cdot 10 ^{9} \ N \cdot m^2/C^2 }

De acordo com a lei do coulomb temos:

\displaystyle \overrightarrow{F}=k \cdot \frac{q_1 \cdot q_2}{r^2} \overrightarrow{u_r}

Em módulo:

\displaystyle F=k \cdot \frac{|q_1| \cdot |q_2|}{r^2}

O átomo de Hidrogénio, no estado fundamental, tem contem duas cargas (um electrão e um protão) e a distância entre elas é igual ao raio da orbita. Então:

\displaystyle F=k\frac{ | q_e| \cdot |q_p | }{ r^2}= 9 \cdot 10 ^{9} \frac{( 1,6 \cdot 10 ^{-19} )^2}{( 53 \cdot 10 ^{-12})^2}

\displaystyle F= 8,2 \cdot 10 ^{-8} \ N

A força de interação é de { 8,2 \cdot 10 ^{-8} \ N }.

Exercício 3 Quando duas esferas(A e B), carregadas e condutoras, com respectivamente {10 \ nC } e {-5 \ nC} e inicialmente num,a distância d, uma da outra, apresentam uma força de {50 \ m N}. Se colocadas em contacto e separadas novamente à distância inicial, qual será a força e a natureza da mesma (actração ou repulsão)?

NÍVEL DE DIFICULDADE: regular.

Resolução 3 .

Dados .

{q_{dA}=10 \ nC= \ 10 \cdot 10^{-9} \ C }

{q_{dB}=-5 \ nC= \-5 \cdot 10^{-9} \ C}

{d=d_0=d_1}

{F_0=50 \ nN= \ 50 \cdot 10^{-3} \ N}

{F_{1}-?}

Natureza{-?} .

.
Se trata de duas situações, onde a distância inicial {(d_0) } é igual a distância final {(d_1)} logo: {d=d_0=d_1}.

.

Ao colocar as esferas juntas, a carga total será a soma das cargas de cada um deles. Como ambas são condutoras, ocorre transferência de electrões de um material para outro. Esta transferência cessa quando as cargas dos dois ficam, iguais. Ao separa-los, cada uma fica com a carga obtida do equilíbrio, que no caso, é igual a metade da carga resultante. Logo:

\displaystyle q_{1A}=q_{1B}=\frac{q_{A} + q_{B}}{2}=\frac{10 \ nC \ + \ (-5 \ nC)}{2}=\frac{5 \ nC)}{2}= \ 2,5 \ nC = \ 2,5 \cdot 10^{-9} \ C

.

No inicio (situação 0), a força de que actua entre as cargas é:

\displaystyle F_0=k \frac{|q_A| \cdot |q_B|}{d^2} \Rightarrow k=\frac{d^2 \cdot F_0}{2 \cdot |q_A| \cdot |q_B|} \ \ \ \ \ (1)

Após contacto, os valores das cargas mudam e consequentemente, a força muda. A força de que actua entre as cargas nesta situação 1 é:

\displaystyle F_{1}=k \frac{(|q_{0A}| \cdot |q_{0B}|}{d^2}= k\frac{|q_{0A}| \cdot |q_{0B}|}{d^2} \ \ \ \ \ (2)

Substituindo {k} da equação 1 na equação 2, temos:

\displaystyle F_{1}=\frac{d^2 \cdot F_0}{|q_A| \cdot |q_B|} \cdot \frac{|q_{0A}| \cdot |q_{0B}|}{d^2}

\displaystyle F_{1}=\frac{50 \cdot 10^{-3}}{|10 \cdot 10^{-9}| \cdot |-5 \cdot 10^{-9}|} \cdot \frac{ (2,5 \cdot 10^{-9} )^2}{1}

Nota: Simplificamos as distâncias, pois são iguais.

\displaystyle F_{1}=6,25 \cdot 10^{-3} \ N

\displaystyle F_{1}=6,25 \ mN

Sendo que as cargas são iguais, a natureza da Força será de Repulsão.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 3)

Exercício 12 .

O gráfico da velocidade em função do tempo de um MRUV é dado abaixo. Determine o deslocamento no intervalo de 0 a 4 Segundos.

NÍVEL DE DIFICULDADE: Regular.

Resolução 12 .

Para este caso, podemos determinar o deslocamento através de dois métodos.

  1. Usando a equação de Torricelli, através dos dados no gráfico acima:

    \displaystyle 2a \cdot \Delta s= v^2-v^2_0 \Rightarrow \Delta s =\frac{v^2-v^2_0}{2a} \ \ \ \ \ (10)

    Do gráfico temos os seguintes dados:{ v_0= 20 \ m/s } e {v= 40 \ m/s }.No MRUV a aceleração média é igual a aceleração instantânea. Então, a aceleração é dada por:{ a=\frac{\Delta v}{\Delta t}=\frac{v-v_0}{t-t_0} }

    No intervalo de {0} `a { 4 \ s } : { a= \frac{40-20}{4-2} \cdot \frac{m/s}{s}=\frac{20}{4} \cdot m/s^2 }

    \displaystyle a=5 \ m/s^2

    Substituindo os dados na equação 10, obtemos:

    \displaystyle \Delta s=\frac{v^2-v^2_0}{2a}=\frac{(40)^2 - (20)^2}{2 \cdot 5}=120 \ m \Rightarrow \Delta s = 120 \ m

  2. O outro método é usando o calculo de área. Sabemos que a área debaixo da curva da velocidade em função do tempo é numericamente igual ao deslocamento (ver definição velocidade e interpretação geométrica da derivada). Para o nosso caso, a área debaixo da curva é a área de um trapézio, cujas bases maior e menor tem valores no eixo da velocidade (vertical) e a altura tem valor no eixo do tempo. Sendo assim:

    \displaystyle \Delta s = A_{Trapezio} = \frac{(B+b)}{2} \cdot h = \frac{(40+20)}{2} \cdot 4=120 m

    Logo, temos:{ \Delta s = 120 \ m }

Exercício 13 .

Um movimento descrito pelo gráfico abaixo.

Descreva o tipo de movimento dos traços AB, BC, CD e DE.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Este gráfico apresenta a variação da velocidade em função do tempo. Neste gráfico, o tipo de movimento é definido pela forma da linha do gráfico.

Se a linha do gráfico for uma recta oblíqua, então trata-se de um caso de MRUV. Será um MRUV acelerado se for inclinada com declive positivo e velocidade positiva ou com declive negativo e velocidade negativa. Será um MRUV retardado se for inclinada com declive positivo e velocidade negativa ou com declive negativo e velocidade positiva.

Se a linha for horizontal, a velocidade é constante (MRU). Este MRU pode ser progressivo (se a velocidade for positiva) ou retrógrado (se a velocidade for negativa).

  1. No traço AB (recta oblíqua): A velocidade é positiva e aumenta de { 10 \ m/s} à { 30 \ m/s } . Neste caso, a aceleração é constante e positiva neste mesmo intervalo, portanto, de A para B o movimento é um MRUV acelerado progressivo.
  2. No traço BC (Recta oblíqua): A velocidade é positiva e diminui de { 30 \ m/s} à { 0 }, a aceleração é negativa e constante no mesmo intervalo,portanto, de B para C o movimento é um MRUV retardado progressivo.
  3. No traço CD: A velocidade é negativa mas aumenta em módulo de { 0 } à { \approx -15 \ m/s} e a aceleração é constante e negativa no mesmo intervalo, portanto, de C para D o movimento é um MRUV acelerado retrógrado.
  4. No traço DE: A velocidade é negativa e constante ({\approx -15 \ m/s } , e a aceleração é nula no mesmo intervalo,portanto, o movimento é um MRU retrógrado.

.

Exercício 14 .

Dois móveis têm as seguintes equações do movimento.

  1. Móvel 1: { x_1=100+20 \ t }
  2. Móvel 2: { x_2=500-4 \ t^2 }

Determine a velocidade do móvel (2) no ponto de encontro.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .

A equação do móvel(1) é uma equação do 1º grau, portanto o móvel em MRU. A equação do móvel (2) é uma equação do 2º grau, portanto o móvel (2) move-se em MRUV.

.

O objectivo é determinar a velocidade final do móvel (2) { v_2 } na posição de encontro (A).Entretanto, na posição de encontro (A) ambos os móveis ocupam a mesma posição final, isto é, { x_1=x_2 }.

Então, temos de determinar o instante de tempo em que os móveis estão na posição de encontro, para substituir este tempo na equação da velocidade.

Na posição de encontro:

\displaystyle x_1=x_2 \Rightarrow 100+20 \ t=500-4 \ t^2

Agrupando os termos semelhantes:

\displaystyle 4 \ t^2 +20 \ t +100-500=0

\displaystyle 4 \ t^2 +20 \ t -400=0

Factorizando o factor 4 na equação:

\displaystyle 4(t^2 + 5 \ t-100)=0

Então, pela lei do anulamento do produto:

\displaystyle t^2 + 5 \ t - 100= 4

Resolvendo a equação anterior com a fórmula de Bhaskara (ou fórmula resolvente) temos os seguintes dados:{ a=1 ; b=5 ; c=100 }.

\displaystyle t_{1,2}= \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}

Substituindo os dados na fórmula:

\displaystyle t_{1,2}= \frac{-5 \pm \sqrt{(5)^2 - 4 \cdot (1) \cdot (-100)}}{2 \cdot 1}

\displaystyle t_{1,2}= \frac{-5 \pm \sqrt{25 + 400}}{2}= \frac{-5 \pm \sqrt{425}}{2} = \frac{-5 \pm 20,615}{2}

Separando as partes:

\displaystyle t_1= \frac{-5+20,615}{2}= 7,807 \ s

\displaystyle t_2= \frac{-5 - 20,615}{2} = -12,807 \ s

Descartamos o { t_2 } pois ele é negativo. Neste caso, { t_{Enc}= \ 7,807 \ s }.

.

Tendo o tempo, podemos calcular a velocidade do móvel 2 neste instante. Por definição a velocidade:

\displaystyle v= \frac{dx}{dt}

Para o móvel (2),temos: { v_2= \frac{dx_2}{dt} } .

.

Substituindo a equação do movimento do móvel (2) , obtemos:

\displaystyle v_2= \frac{d(500-4 \ t^2)}{dt} = 0-8 \cdot t= -8 \ t

Portanto, durante este MRUV, a velocidade do móvel (2) é dada como: { v_2= -8 \ t } .

Para encontramos o valor numérico da velocidade no momento de encontro, devemos substituir o tempo pelo instante de encontro.

Substituindo {t} por { t_{Enc}}, obtemos: { v_2=-8 \ (t)= -8 \cdot 7,807=-62,456 \ m/s }

Portanto, a velocidade do móvel (2) na posição de encontro (A) é de : { v_2= -62,456 \ m/s }

Exercício 15 .

A velocidade inicial de um móvel é de { 10 \ km/h}. Após acelerado uniformemente, durante {10 \ s }, ganha uma velocidade de { 20 \ km /h}.

Determine a aceleração e a distância percorrida.

.

NÍVEL DE DIFICULDADE: Regular.

Resolução 15 .

Dados

,

{ v_0= 10 \ km/h } .

{ t_0=0 \ s } .

{ t=20 \ km/h } .

{ a \rightarrow ? } .

{ \Delta s \rightarrow ? }

Antes de a resolver, vamos converter as velocidades { v_0 } e v para as unidades do sistema internacional usando três simples.
Para: { v_0=10 \ km/h }

\displaystyle 36 \ km/h \rightarrow 10 \ m/s

\displaystyle 10 \ km/h \rightarrow v_0

Então:

\displaystyle v_0 \cdot 36 \ km/h= 10 \ km/h \cdot 10 \ m/s

\displaystyle \Rightarrow v_0= \frac{10 \ km/h \cdot 10 \ m/s}{36 \ km/h} =2,77 \ m/s

Para a velocidade final, fazemos o mesmo procedimento. Obtemos:

\displaystyle v=5,55 \ m/s

Com as unidades já convertidas, podemos determinar a aceleração.

Para o MRUV, a aceleração é dada por:

\displaystyle a= \frac{\Delta v}{\Delta t} = \frac{v-v_0}{t-t_0}

Substituindo os dados, obtemos:

\displaystyle a= \frac{5,55-2,77}{10-0}=0,278 \ m/s^2

A distância percorrida pode ser determinada pela equação de movimento do MRUV ou pela equação de Torricelli.

Usando a Equação de Torricelli:

\displaystyle v^2=v^2_0+2a \cdot \Delta s

Isolando { \Delta s } teremos:

\displaystyle v^2-v^2_0=2 \cdot a \cdot \Delta s \Rightarrow \Delta s= \frac{v^2-v^2_0}{2 \cdot a}

Substituindo os dados:

\displaystyle \Delta s=\frac{(5,55)^2-(2,77)^2}{2 \cdot 0,278}=41,6 \ m

Portanto a distância percorrida é:

\displaystyle \Delta s=41,6 \ m

A aceleração do móvel é:

\displaystyle a=0,278 \ m/s^2

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 2)

Exercício 8 .

O gráfico ilustra um MRU. Determine a velocidade média deste movimento?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8 .

Para o caso de MRU a velocidade média é dada, por definição como sendo:

\displaystyle v_m = \frac{\Delta x}{\Delta t} = \frac{x-x_0}{t-t_0} \ \ \ \ \ (6)

Do gráfico temos os seguintes dados:

\displaystyle \left\{\begin{array}{ccccccccc} t_0 = 0 \ s : x_0 = 10 \ m \\ t = 5 \ s : x = 40 \ m \\ \end{array}\right.

Substituindo estes valores em (1):

\displaystyle v_m =\frac{40 \ m-10 \ m}{5 \ s- 0 \ s}=\frac{30}{5}\times\frac{m}{s}

\displaystyle v_m= 6 \ m/s

Exercício 9 .

A equação de um MRU é:

\displaystyle x=10+20 \ t \ (SI)

Determine o deslocamento no intervalo de { 4 \ s \leq t \leq 7 \ s }

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Nos casos de MRU sem mudança de direcção, o deslocamento, em módulo é igual a distância percorrida no intervalo {\Delta t } definido.
Para determinarmos o deslocamento, precisamos da posição inicial e final.

No intervalo

\displaystyle 4 \ s \leq t \leq 7 \

A posição inicial é obtida da seguinte forma:

\displaystyle t= 4 \ s \Rightarrow x_0= 10+20 \times t_0=10+20 \times 40

Obtemos:

\displaystyle x_0=90 \ m

A posição final é obtida da seguinte forma:

\displaystyle t= 7 \ s \Rightarrow x=10+20 \times t=10+20 \times 7

\displaystyle x=150 \ m

O deslocamento é :

\displaystyle \vert \overrightarrow{\Delta s} \vert= \Delta x=x - x_0 =150 \ m -90 \ m

\displaystyle \Delta x = 60 \ m

Exercício 10 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .
NÍVEL DE DIFICULDADE: Elementar.

Resolução 10 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \frac{\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \frac{\Delta s}{v}

Substituindo os dados na formula anterior, obtemos:

\displaystyle \Delta t = \frac{10,000 \ m}{1,5 \ m/s} = 6,66 \times 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \times 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h\rightarrow \rightarrow 3600 \ s \\ x \rightarrow \rightarrow 6,66 \times 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \times 3600 \ s= 1 \ h \times6,66 \times 10^3 \ s

\displaystyle \Rightarrow x = \frac{1 \ h \times 6,66 \times 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 11 .

A equação horária de um móvel é { x = 100+50 \times t } . Qual séria a sua equação horária se a posição fosse dada em Km e o tempo em h?..

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Dados

{ x = 100+50 \times t } .

A equação horária, na forma escalar é dada como:

\displaystyle x= x_0+ v \times t \ \ \ \ \ (8)

A equação horária do móvel é:

\displaystyle x= 100+50 \times t \ \ \ \ \ (9)

Ao comparar-mos ambas equações, obtemos os seguintes dados:

\displaystyle \begin{array}{ccccccccc} x_0=100 \ m \\ v=50 \ m/s \\ \end{array}

Para escrever-mos a equação horária,com a posição dada em Km e o tempo dado em h, devemos transformar { x_0 = 100 \ m} e {v =50 \ m/s } nas unidades respectivas, usando o sistema (regra) de três simples.

Então temos:

\displaystyle \begin{array}{ccccccccc} 1 \ km \rightarrow  1000 \ m \\ x_0 \rightarrow  100 \ m \\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x_0 \times 1000 \ m =1 \ km \times 100 \ m

\displaystyle \Rightarrow x_0=\frac{1 \ km \times 100 \ m}{1000 \ m} x_0=0.1 \ km

E:

\displaystyle 36\ km/h \rightarrow 10 \ m/s

\displaystyle v \rightarrow 50 \ m/s

Logo:{x_0=0,1 \ km } e { v=180 \ km/h }.

Então:

Substituindo estes valores em na equação horária do MRU, obtemos:{ x=0.1+180 \times t }.

Portanto, para a posição dada em km e tempo em h, temos a equação horária:

\displaystyle x=0.1+180 \times t

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais

— 1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —

Exercício 5 .

Considere o sistema representado abaixo.Considerando a origem do referencial sua base direita do prédio, o Eixo ox horizontal dirigido a esquerda e o Eixo oy vertical e dirigido para cima.

Determine a posição dos pontos A, B e C.

NÍVEL DE DIFICULDADE: Elementar

Resolução 5 .

O referencial(bidimensional) do sistema é necessário ser traçado para a determinação da posição dos pontos A, B e C. Logo temos as seguintes características do referencial:

* Eixo Ox: eixo horizontal dirigido da direita para a esquerda;

* Eixo Oy: eixo vertical dirigido para cima;

* Origem do referencial: base direita do prédio.\

.

Aposição do ponto A tem coordenada { 50 \ m} na horizontal e { 100 \ m } na vertical, então :

\displaystyle B(50,100)\ m

onde

\displaystyle x_A=50 \ m

\displaystyle y_A=100 \ m

A posição do ponto B tem coordenada { -40 \ m } na horizontal e 0 na vertical, então:

\displaystyle B(-40,0) \ m

Onde:

\displaystyle x_B=-40 \ m

\displaystyle y_B=0

A posição do ponto C tem coordenada {-35 \ m } na horizontal e { 20 \ m} na vertical então:

\displaystyle C(-35,20) \ m

\displaystyle x_C= -35 \ m

\displaystyle x_C= 20 \ m

Exercício 6 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Dados .

{ v= \frac{5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \times t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \times t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \times t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s}:

\displaystyle x= 5 + 2,5 \times 25= 67,5 \ m

\displaystyle x=67,5 \ m

Resolução 7 .

Calcule a velocidade média do móvel da figura abaixo, se { t_1=10 \ s } e é { t_2= 20 \ s }, no movimento { A\rightarrow B \rightarrow C }.

.

Resolution 7 . Dados

{ t_1=t_{A\rightarrow B} = 10 \ s } .

{ t_2=t_{B\rightarrow C} = 20 \ s }. Por definição a velocidade média de um móvel é dada por:

\displaystyle \overrightarrow{v_m}=\frac{\overrightarrow{\Delta s}}{\Delta t}

.

{ \overrightarrow{\Delta s} } – Vector deslocamento.

{ \Delta t } – Intervalo de tempo total durante o movimento.

Em módulos:

\displaystyle v_m=\frac{\Delta s}{\Delta t}

.

Portanto, para determinar a velocidade média precisamos determinar o deslocamento { A\rightarrow B \rightarrow C } e o tempo total para o móvel sair de A para C.

Note que o vector deslocamento é o vector que une a posição inicial à posição final, ou seja, no nosso caso {\overrightarrow{\Delta s}=\overrightarrow{AC}}

Então temos:

\displaystyle \Delta s= \sqrt{(x_C-x_A)^2+(y_C-y_A)^2} \ \ \ \ \ (4)

A equação 4 é a fórmula para o cálculo de distancia em um sistema bidimensional.Considerando o ponto de partida A e o de chegada C, :

A(10,20) e B(20) considerando a abcissa y e a ordenada x.

Portanto, temos:

\displaystyle (x_C - x_A)= (40-10)=30 \\ (y_C - y_A)= (30-20)=10 \ \ \ \ \ (5)

.

Substituindo 7 em 4, obtemos:

\displaystyle \Delta s_{A-C}= \sqrt{(30)^2+(10)^2}=31,6 \ m

O tempo { \Delta t } do movimento de { A \rightarrow B \rightarrow C } é a soma dos tempos de { A \rightarrow B } e de { B \rightarrow C }.

Dos dados temos temos

\displaystyle t_{A-B} = 10 \ s e t_{B-C}= 20 \ s

Então

\displaystyle \Delta t = t_{A-B} + t_{B-C} =10+20=30 \ s \Delta t = 30 \ s

Sendo assim:

\displaystyle v_m = \frac{\Delta s}{\Delta t} = \frac{31,6 \ m}{30 \ s} = 1,05 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

Exercício 1 .

Dois vectores têm módulos 3 e 5 unidades.

  1. Qual deverá ser o ângulo entre eles para que o vector resultante tenha módulo de 4 unidades?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

  1. Consideremos que os vectores de módulo 3 e 5 unidades são os vectores {\overrightarrow{u} e \overrightarrow{v}}, respetivamente, e o vector resultante de módulos 4 unidades é o vector {\overrightarrow{w}}.Consideremos também que { \theta} é o ângulo que os vectores {\overrightarrow{u} e \overrightarrow{v}} formam entre si. Daqui, temos os ângulos dados:Dados{\vert \overrightarrow{u} \vert=3 } .{ \vert \overrightarrow{v} \vert=5} .

    { \vert \overrightarrow{w} \vert=4} .

    { \theta \rightarrow ? }

    A adição de vectores, dada pela regra do paralelogramo, relacionas aos seus módulos através da lei dos cossenos.

    \displaystyle \textbf{Lei do Cosseno}:\vert \overrightarrow{w}\vert^2=\vert\overrightarrow{u}\vert^2+\vert\overrightarrow{v}\vert^2+2\times\vert\overrightarrow{u}\vert\times\vert\overrightarrow{v\vert}\times \cos\theta

    * Substituindo os dados:

    \displaystyle (4)^2=(3)^2+(5)^2+2\times(3)\times(5)\times \cos\theta

    \displaystyle 16=9+25+30\times \cos\theta

     Isolando {\cos\theta:}

    \displaystyle \cos \theta =\frac{16-(9+25)}{30}=\frac{16-34}{30}=\frac{18}{30}=-0.6

    O valor de { \theta: \theta=\arccos(-0.6)=126,869^o }

    \displaystyle \theta\cong 126,9^o

.

Exercício 2 .

Um Arco tem ângulo de 1,5 radiano.
Qual é o valor deste ângulo em graus?

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Para determinar o ângulo do arco em graus, vamos usar a regra de três simples, sabendo que { \pi } radiando equivale a { 180^o }. Com isto,temos as seguintes rotações:

\displaystyle \pi \ rad \rightarrow\rightarrow180^o

\displaystyle 1,5 \ rad \rightarrow\rightarrow \theta

Onde 1.5 é o ângulo do arco em radiano e {\theta} o ângulo do arco em graus que se pretende determinar.

Desta forma, temos:

\displaystyle \theta \times \pi=1,5 \ rad \times 180^o

Isolando {\theta}:

\displaystyle \theta=\frac{1,5 \ rad \times 180^o}{\pi \ rad}=\frac{270^o}{\pi}=85,94^o

Portanto:

\displaystyle \theta=85,9^o

.

Exercício 3 .

Um disco circular tem raio de { 5 \ m}. Qual é o cumprimento deste disco?
NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Dados

{ r= 5 \ m }

O cumprimento de um arco é:

\displaystyle l= \alpha \times r

onde {\alpha} é o ângulo do arco em radianos.

Para o nosso caso, o cumprimento de um disco circular é:

\displaystyle l=2 \pi \times r

Substituindo:

\displaystyle r=5 \ m \ em (1): l= 2 \pi \times 5 \ m= 31,415 \ m

Portanto, o cumprimento do disco é de:

\displaystyle 31,415 \ m.

Exercício  4 .

Dois vectores {\overrightarrow{a}} e { \overrightarrow{b}} tem módulo iguais a { 3 \ m} e {5 \ m },respetivamente.

Qual é o módulo de vector { \overrightarrow{c} }, se {\overrightarrow{c}=3\overrightarrow{a}-\overrightarrow{2b}} e o ângulo entre { \overrightarrow{a} } e { \overrightarrow{b} } for de { 30^o }?
NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

Dados .

{ \vert \overrightarrow{a} \vert =3 \ m } .

{ \vert \overrightarrow{b} \vert =5 \ m } .

{ \overrightarrow{c}=3\overrightarrow{a} - 2\overrightarrow{b}} .

{ \theta \rightarrow 30^o} .

{ \vert \overrightarrow{c} \vert=? }

Consideremos os vectores {\overrightarrow{a} e \overrightarrow{b}}.

Os vectores {\overrightarrow{a}} e {\overrightarrow{b}} formando {30^o} entre si {(\theta=30^o)}

Entretanto, o vector {\overrightarrow{c}} é dado como {\overrightarrow{c}=3\overrightarrow{a}-2\overrightarrow{b}}. Sendo assim, consideremos os vectores {3\overrightarrow{a} } e { 2\overrightarrow{b}} , isto é,os vectores {\overrightarrow{a}} e {\overrightarrow{b}} com dimensões triplicando e dobrada, respetivamente.

Por outro lado o vector {\overrightarrow{c}} representa a diferença entre {3\overrightarrow{a}} e {2\overrightarrow{b}} neste caso a resultante é:

Calculando {\beta}:

\displaystyle \beta+\theta=180^o \ \Rightarrow \beta=180^o-\theta

Como { \theta=30^o },temos: { \beta=180^o-30^o=150^o \ \Rightarrow \beta=150^o }\

O módulo de vector { \overrightarrow{c} } , é dada pela lei dos cossenos.\

Lei dos Cossenos:

\displaystyle \vert\overrightarrow{c}\vert^2=\vert3\overrightarrow{a}\vert^2+\vert2\overrightarrow{b}\vert^2+2\times\vert3\overrightarrow{a}\vert \times \vert2\overrightarrow{b} \vert\times \cos\beta

\displaystyle \vert\overrightarrow{c}\vert^2=9^2+10^2+180\times\cos150^o=181-155,88=25,12

\displaystyle \vert \overrightarrow{c} \vert ^2=25,12 \ \Rightarrow \vert\overrightarrow{c}\vert=\sqrt{25,12}=5,01

\displaystyle \rightarrow \vert\overrightarrow{c}\vert=5,01

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

Deixe a sua interacção nos comentários deste Post;
Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 3)

— 1. Exercícios sobre Cinemática da Partícula —

— 1.1. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —

Exercício 1 Um homem realiza uma viagem de uma cidade para outra, para atender a um compromisso. A distância entre as cidade é de 300 km. O compromisso foi marcado para as 11h15min. O homem planeia conduzir o seu carro a 100 km/h e parte às 8h00 para ter algum tempo de sobra. Ele conduz a velocidade planeada durante os primeiros 100 km, mas, em seguida, um trecho é obrigado a reduzir a velocidade para 40 km/h durante 40 km. Qual é a menor velocidade que ele deve manter no resto da viagem para chegar a tempo?
NÍVEL DE DIFICULDADE: Regular .
Resolução 1

.

Trecho a:1º trecho percorrido,na qual {\triangle x = 100 \ km }.

Trecho b: 2º trecho, na qual {\triangle x = 40 \ km }.

Trecho c: trecho restante, na qual {\triangle x = 160 \ km }

Para que se calcule a velocidade necessária para percorrer o trecho c é necessário que se conheça o tempo restante. Para isso,devemos determinar os tempos gastos para percorrer a trechos a e b. Consideraremos MRU em todos trechos, pois estamos a usar parâmetros médios.

No trecho a:

\displaystyle \triangle x_{a} = v_{a}.t_{a}

Isolando o tempo e calculando:

\displaystyle t_{a} = \dfrac{\triangle x_{a}}{v_{a}} = 1h

No trecho b :

\displaystyle \triangle x_{b} = v_{b}.t_{b}

Isolando o tempo e calculando:

\displaystyle t_{b} = \dfrac{\triangle x_{b}}{v_{b}} = 1h

Como temos tempo em horas e em minutos, temos de reduzir a uma única unidade de tempo. Neste caso, vamos converter 15 minutos em horas.

Sabemos que:

\displaystyle 1h \longrightarrow 60min

\displaystyle x \longrightarrow 15min

Fazendo a multiplicação cruzada e isolando o {x}, obtemos:

\displaystyle x = \dfrac{1h.15min}{60min} = 0,25 \ h

Como o motorista partiu as 8h e tem que chegar as 11h e 15min,ou seja,11,25h,sendo que percorreu o conjunto do techo a e b por 2h, então, restam-lhe apenas 1h e 15min, ou seja 1,25h.

Então, para o trecho c teremos :

\displaystyle \triangle x_{c} = v_{c}.t_{c} \Rightarrow v_{c} =\dfrac{_{\triangle}x_{c}}{t_{c}} = 128 \ km/h

Exercício 2 A primeira metade da distância foi percorrida por um móvel com {v_{1}}. Do tempo restante, a primeira metade foi percorrida com a velocidade {v_{2}} e na segunda metade com a velocidade {v_{3}}, sendo que o tempo gasto em percorrer a 1{ª} e a 2{ª} metade, são iguais. Determinar a velocidade média em todo o percurso.
NÍVEL DE DIFICULDADE: Complexo .
Resolução 2 .

Sendo que : { t_{2} = \dfrac{t'}{2} \hspace{1cm} e\hspace{1cm} t_{3} = \dfrac{t'}{2}} {\hspace{1cm}} onde {t'} é o tempo restante após a 1ª parte e que : { \triangle x_{2} = \triangle x_{3}=\dfrac{\triangle x'}{2} =\dfrac{\triangle x}{2}}

{\triangle x'} é o trecho restante após a 1ª parte.

Então:{ \triangle x_{1} = \triangle x_{2} + \triangle x_3}.

Usando a definição de velocidade média para o troço 1, obtemos:

\displaystyle t_{1} = \dfrac{\triangle x_{1}}{v_{1}} = \dfrac{\triangle x_{2} + \triangle x_{3}}{v_{1}}

Os deslocamentos dos trechos 2 e 3 são:

\displaystyle \triangle x_{2} = v_{2}.t_{2}=v_{2}.\dfrac{t}{2}

\displaystyle \triangle x_{3} = v_{3}.t_{2}=v_{3}.\dfrac{t}{2}

Como os trechos 2 e 3 são percorridos durante o mesmo tempo, então a velocidade média é a média aritmética das velocidades. Neste caso, a velocidade média dos trechos 2 e 3 é:

\displaystyle v_{23} = \dfrac{v_2 + v_3}{2}

O deslocamento conjunto do trecho 2-3 é igual à primeira metade:

{\triangle x_{23}=\triangle x'=\triangle x_1=\dfrac{\triangle x}{2}}

A partir da equação da velocidade média para mais de um trecho,teremos :

\displaystyle v_{m} = \dfrac{\triangle x_{1}+\triangle x_{2}+\triangle x_{3}}{t_{1}+t_{2}+t_{3}}

Neste caso, teremos :

\displaystyle v_{m} = \dfrac{\triangle x_{1}+\triangle x_{23}}{t_{1}+t_{23}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 . \triangle x_{1}+\triangle x_{1}}{\dfrac{\triangle x_1}{v_1}+\dfrac{\triangle x_23}{v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 . \triangle x_{1}+}{\dfrac{\triangle x_1}{v_1}+\dfrac{\triangle x_1}{v_{23}}}

Factorizando e simplificando {\triangle x_{1}}, obtemos:

\displaystyle v_{m} = \dfrac{2 }{\dfrac{1}{v_1}+\dfrac{1}{v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 }{\dfrac{v_{23}+v_1}{v_1 . v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2. v_1 . v_{23}}{v_{23}+v_1}

Substituindo {v_{23}} pela formula de velocidade média no troço 2-3, obtemos:

\displaystyle \Rightarrow v_{m} = \dfrac{2 v_1 . \dfrac{ v_{2}+v_3}{2}}{\dfrac{v_{2}+v_3}{2}+v_1}

Simplificando as expressões, obtemos:

\displaystyle v_{m} = \dfrac{2 v_{1}(v_{2}+v_{3})}{2v_{1}+v_{2}+v_{3}}

Exercício 3 A equação do movimento de uma partícula ao longo do eixo OX é {x=t^{3}-6 \ t^{2}-15 \ t+40} (no SI). Determine: (a) o instante em que a velocidade se anula; (b) a posição e a distância percorrida pelo ponto material até ao instante em que v=0; (c) a aceleração do ponto material no mesmo instante.
NÍVEL DE DIFICULDADE: Elementar .
Resolução 3

  1. A posição da partícula é dada por:{ x \ = \ t^{3}-6 \ t^{2}-15 \ t+40}
    A velocidade é dada por: {v=\dfrac{dx}{dt} \Rightarrow v \ = \ 3 \ t^{2}-12 \ t-15}Portanto,quando a velocidade for nula,teremos as seguintes equações:

    \displaystyle 3 \ t^{2}-12 \ t-15=0

    Simplificando por 3, teremos:

    \displaystyle t^{2}-4 \ t-5=0

    Logo:

    \displaystyle \left\{\begin{array}{cccccc} t & = & 5 \ s, \textrm{Correcta}\\ t & = & -1 \ s, \textrm{Incorrecta}\\ \end{array}\right.

  2. Para obter a posição, substituímos o tempo da função horária pelo valor dado. Neste caso, a posição em {t=5 \ s} é:

    \displaystyle x_{f}=(5)^{3}-6.(5)^{2}-15.(5)+40

    \displaystyle \Rightarrow x_{f}=-60 \ m

    A posição no instante t=0s é:

    \displaystyle x_{i}=(0)^{3}-6.(0)^{2}-15.(0)+40

    \displaystyle \Rightarrow x_{i}=40 \ m

    A distância percorrida é dada por :

    \displaystyle \Delta x = |x_{f}-x_{xi}| \Rightarrow \Delta x = |-60-40| \Rightarrow\Delta = 100 \ m

  3. A aceleração instantânea é dada por:

    \displaystyle a=\dfrac{d^{2} x}{d t^{2}} \Rightarrow a=\dfrac{d{v}}{d{t}}

    Derivando a velocidade se obtém:

    \displaystyle a=6 \ t-12

    Logo, quando { t=5 \ s}, teremos :

    \displaystyle a=6.(5)-12 \Rightarrow a \ = \ 18 \ m/s^{2}

Exercício 4 Quando a luz verde de um semáforo acende, um condutor acelera uniformemente o seu veiculo durante 6 s em {2 \ m/s^{2}}. Em seguida ele passa a ter velocidade constante. No instante em que o carro começou a se mover, ele foi ultrapassado por uma motorizada movendo-se no mesmo sentido com a velocidade constante de 10 m/s. Após quanto tempo, os dois veículos encontrar-se-ão novamente?
NÍVEL DE DIFICULDADE: Complexo .
Resolução 4 .

Dados:

{a_{1A}=2 \ m/s^{2}}

{ t_{1A}= \ 6 \ s = t_{02}}

{ x_{01A}= \ 0 \ }

{ v_{0A}=0}

{ v_B=6 \ s}

{x_{0B}=0}

  • Neste Problema temos dois veículos A e B, mas o veiculo A não tem uma única equação de movimento, visto que inicialmente faz um MRUV, mas sem seguida faz um MRU. Então vamos usar os índices 1 e 2 para distinguir as duas partes do movimento do veiculo A. Para o veiculo B isto não é necessário.A Equação de movimento para o Veiculo A (condutor) :

Na 1ª Parte, em MRUV : { x_{1A}=\dfrac{1}{2}at^{2}}

Na 2ª parte (após os 6 s de MRUV), começa um MRU : {x_{2A} = x_{02A}+ v_{02A}.t}

A equação de movimento para a motorizada (Veiculo B) é a seguinte :

Na 1ª Parte em MRU {x _{B}=v_{B}.t}

Na 2ª parte ainda em MRU): {x_{B}=x_{0B2}+ v_{B}.t}

Calculando a posição e velocidade dos 2 após os primeiros 6 segundos, obtemos:

Para o veiculo A:

{x_{f1A}=\dfrac{1}{2}at^{2}=\dfrac{1}{2}.(2).(6)^{2}\Rightarrow x_{f1A}=36 \ m}

{v_{f1A}=v_{01A}+a_1.t \Rightarrow v_{f1A}=0+2.6=12 m/s}

Para o veiculo B:

{x_{f1B}=x_{01B}+v_{1B}.t \Rightarrow x_{f1B}=0+10.(6)\Rightarrow x_{f1B}=60 \ m}

Como o veiculo B faz MRU a velocidade é constante, logo:{v_{f1B}=v_{01B}=10 \ m/s}

Como podemos observar n figura, após o tempo {t_1=6 \ s} o condutor (A) ainda não alcançou a motorizada (B). Então para determinar a posição de encontro, vamos usar as equações da 2ª parte.

{x_{2A}=x_{02A}+v_{2A}.t \Rightarrow x_{2A}=36+12 \ t}

{x_{2B}=x_{02B}+v_{2B}.t \Rightarrow x_{2B}=60+10 \ t}

O encontro ocorre quando: {x_{2A}=x_{2B}}

\displaystyle \Rightarrow 36+12 \ t =60+10 \ t

Isolando o tempo, obtemos:

\displaystyle t = 12

Atenção que este 12 segundos é após o inicio da 2ª Parte (pois reiniciamos a analise dos movimentos no final da 1ª Parte). Considerando então os {6 \ s} de duração da primeira parte, temos:

\displaystyle t = \ 12+6 =18 \ s

Exercício 5 Partindo do repouso, um veiculo mantém uma aceleração de {4 \ m/s^{2}} durante {4 \ s}. Nos {10 \ s} seguintes ele tem um movimento rectilíneo uniforme. para travar, o veiculo passa a ter um movimento uniformemente retardado com aceleração de {8 \ m/s^{2}}, até parar. Fazer um gráfico da velocidade em função do tempo e mostrar que a área limitada pela curva e pelo eixo dos tempos é igual a distância total percorrida.
NÍVEL DE DIFICULDADE: Regular .
Resolução 5

Dados:

{x_{01}=0}

{v_{01}=0 \ m/s}

{a_{1}=4 \ m/s^{2}}

{t_{1}=4 \ s }

{x_{02}=x_{f2} \longrightarrow ?}

{v_{2}=v_{f1} \longrightarrow ?}

{t_{2}= 10 \ s}

{x_{03}=x_{f2} \longrightarrow ?}

{v_{03}=v_{f2}}

{a_{3}=8 \ m/s^{2}}

{t_{3} \longrightarrow ?}

Para este problema, temos de calcular a velocidade em cada um dos trechos e os respectivos tempos. é um movimento dividido em 3 partes. UM MRUV (acelerado), um MRU e um MRUV (Retardado).

A partir da equação das velocidades, para a 1ª parte,teremos:

\displaystyle v_{f1}=v_{01} + a_1.t_1=0+4.4=16

…para a 2ª etapa: {a=0}(M.R.U):

\displaystyle \Rightarrow v_{f2}=v_{02}=v_{f1} \Rightarrow v_{f2}=16 \ m/s

…para a 3ª etapa :

\displaystyle v_{f3}=0

Como conhecemos o tempo da 1ª e da 2ª parte, para completarmos o gráfico, precisamos obter o tempo da 3ª parte. Neste caso, usando a equação da velocidade, teremos:

\displaystyle v_{f3}=v_{03} - a_{3} . t_{3}\Rightarrow 0=v_{f_{2}} - a_{3} . t_{3} \Rightarrow t_{3}=\dfrac{v_{03}}{a_{3}}=2 \ s

Com os dados obtidos marcamos os 4 pontos no gráfico de {v=f(t)} e traçamos as rectas que unem os pontos:

{(t_{01};v_{01})=(0;0)}

{(t_{02};v_{02})=(4;16)}

{(t_{03};v_{03})=(14;16)}

{(t_{f1};v_{f1})=(16;0)}

Vamos então calcular a áreas do gráfico.

A primeira região é um triângulo. Neste caso:

{ A_{1}=\dfrac{1}{2}.l.h=\dfrac{1}{2}.4.16 }

{A_{1}=32 \ m}

A primeira região é um rectângulo. Neste caso:

{A_{2}=l.h=10.16=160 \ m}

A primeira região é um rectângulo. Neste caso:

{A_{3}=\dfrac{1}{2}.l.h=\dfrac{1}{2}.16}

{A_{3}=16 \ m}

Neste caso: {A_{Total}=A_{1}+A_2+A_3=208 \ m}

Calculando os deslocamentos de cada parte, temos:

{\Delta x_{1}=\dfrac{1}{2}a_{1}{t_1}^{2}=\dfrac{1}{2}.4.(4)^{2}}

{\Delta x_{1}=32 \ m}

{ \Delta x_{2}=v_2.t_2=16.(10)}

{\Delta x_{2}=160 \ m}

{ \Delta x_{3}=v_{03}.t-\dfrac{1}{2} a_3 t^{2}}

{ \Delta x_{3}=16.(2)-\dfrac{1}{2}.8.(2)^{2}=16 \ m}

{ \Delta x_{Total}=\Delta x_{1}+\Delta x_{2} + \Delta x_{3} = 208 \ m}

Logo a área total {A_{Total}=208 \ m} é igual á distancia total { \Delta x_{Total}=208 \ m"}

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

Exercícios Sobre de Fluidos: Conceitos Gerais

— 1. Exercícios de Fluidos: Conceitos Gerais —

Exercício 1 A unidade de Pressão no SI é o Pascal({Pa}).

Além desta, usam outras unidades como a atmosfera({atm}), milímetros de mercúrio({mmHg}), Torricelli ({Torr}), Bar({bar }), etc.

Conhecendo a relação:

\displaystyle 1 \ atm = 101325 \ Pa \approx 760 \ mmHg

\displaystyle 1 \ bar = 10^5 \ Pa

Converta para o SI os seguintes valores de pressão:

  1. {0,857 \ atm}.
  2. {850 \ mmHg}.
  3. {3,5 \ bar}.

NÍVEL DE DIFICULDADE: Elementar .

Resolução 1 .

  1. Pela relação anterior, usando a regra de “{3} simples”, podemos escrever:

    \displaystyle 1 \ atm \longrightarrow 101325 \ Pa

    \displaystyle 0,857 \ atm \longrightarrow \textbf{X}

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle 1 \ atm\textbf{.}\textbf{X} = 101325 \ Pa\textbf{.}0,857 \ atm

    Resolvendo e simplificando a unidade {atm}, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 86835,5 \ Pa

  2. Pela mesma regra de “3 simples”, obtemos:

    \displaystyle 101325 \ Pa \longrightarrow 760 \ mmHg

    \displaystyle \textbf{X} \longrightarrow 850 \ mmHg

    Fazendo a multiplicação cruzada, obtemos:

    \displaystyle 760 \ mmHg\textbf{.}\textbf{X} = 101325 \ Pa\textbf{.}850 \ mmHg

    Passando o {760 \ mmHg} para o membro direito, simplificando a unidade {mmHg} e resolvendo, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 113324,0 \ Pa

  3. Pela mesma regra de “3 simples”, obtemos:

    \displaystyle 1 \ bar \longrightarrow 10^5 \ Pa

    \displaystyle 3,5 \ bar \longrightarrow \textbf{X}

    Fazendo a multiplicação cruzada, obtemos:

    \displaystyle 1 \ bar\textbf{.}\textbf{X} = 10^5 \ Pa\textbf{.}3,5 \ bar

    Resolvendo e simplificando a unidade {bar}, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 3,5.10^5 \ Pa \Leftrightarrow \textbf{X} = 350000 \ Pa

Exercício 2 Uma caixa em forma de cubo, tem faces com área de {3 \ m^2} e está cheia com {10 \ kg} de um certo material. Qual é a pressão que ela exerce sobre o solo?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 2 .

Dados

{A_{face} = 3 \ m^2}

{m = 10 \ kg}

{g = 9,8 \ m/s^2}

{P - \ ?}

Como só uma das faces do cubo é que toca no chão, a área de contacto corresponde à área de uma das faces. Neste caso: {A = A_{face} = 3 \ m^2.}

Com a massa da caixa, podemos calcular o peso (força) que ela exerce ao solo, nesse caso:

\displaystyle P = F_g = m\textbf{.}g = 10 \ Kg\textbf{.}9,8 \ m/s^2 \Rightarrow P = 98 \ N

\bf{Nota: {1kg\textbf{.}1m/s^2 = 1N}}

Usando o conceito de pressão, podemos escrever:

\displaystyle p = \dfrac{F_{aplicada}}{A_{contacto}} = \dfrac{P}{A_{face}} \Rightarrow p = \dfrac{98\ N}{3m^2} \approx 32,67 \ Pa.

Exercício 3 Uma caixa tem um peso de {17 \ kg} e está apoiada em uma mesa. A pressão exercida pela caixa é de {200 \ Pa}. Qual é a área de contacto entre a caixa e a mesa?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 3 .

Dados

{P = 17 \ kgf}

{p = 200 \ Pa}

{A_{contacto} - ?}

A Unidade {Kgf} é uma unidade de força mas não está no SI. Sabendo que {1 \ kgf = 9,8 \ N}.

Neste caso: {P = 17 \ kgf = 17\textbf{.}9,8 \ N = 1666,6 \ N}

Como:

\displaystyle p = \dfrac{F_{aplicada}}{A_{contacto}} = \dfrac{P}{A_{contacto}}

Nesse caso, isolando a área, obtemos:

\displaystyle A_{contacto} = \dfrac{P}{p} =\dfrac{166,7}{200} \approx 0,834 \ m^2

Exercício 4 Um corpo tem uma massa de 3  kg e um volume de 5 litros. Determine a sua massa específica.

NÍVEL DE DIFICULDADE: Elementar .

Resolução 4 .

Dados

{m = 13 \ kg}

{V = 5 \ l}

{\rho - \ ?}

A Unidade litro({l}) não é a unidade de volume no SI e se quisermos obter a massa específica no SI(como é regra), devemos converter esta unidade.

Sabendo que:

\displaystyle 1 \ l \longrightarrow 10^{-3} \ m^3

\displaystyle 5 \ l \longrightarrow V_{SI}

Neste caso: {1 \ l\textbf{.}X = 5 \ l\textbf{.}10^{-3} \ m^3 \Rightarrow V_{SI} = 5\textbf{.}10^{-3} \ m^3}

Quer dizer que o {V_{SI} = 5\textbf{.}10^{-3} \ m^3}

A definição de massa específica impõe que:

\displaystyle \rho = \dfrac{m_{corpo}}{V_{corpo}} = \dfrac{m}{V_{SI}} = \dfrac{13}{5\textbf{.}10^{-3}}

\displaystyle \rho = 2600 \ kg/m^3

Exercício 5 Um corpo apresenta uma massa específica de {25 \ g/cm^3}. Qual é a sua massa específica no SI?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 5 .

Estamos diante de um problema de conversão de unidades, onde a unidade apresenta uma fracção:

\displaystyle \rho = 25 \dfrac{g}{cm^3}

Neste caso, faremos a conversão no numerador e denominador. Para simplificar faremos a conversão por substituição directa. Sabendo que {1 \ kg = 1000 \ g} e {1 \ g = 10^{-3} \ kg}.

Sabendo também que o prefixo “centi”(c) equivale a {10^{-2}}, neste caso {1 \ cm^3 = 1\textbf{.}(10^{-2})^3 \ m^3= \ (10^{-6}) \ m^3.}

Note que, o facto de a unidade ({cm}) estar elevada a 3, quando separamos o prefixo “centi”, ele também fica elevado a 3. Neste caso: {1 \ cm^3 = 10^{-6} \ m^3}. Então:

\displaystyle \rho = \dfrac{25\textbf{.} \ g}{cm^3} = \dfrac{25\textbf{.}10^{-3} \ kg}{10^{-6} \ m^3} = 25\textbf{.}10^{-3+6} \ kg/m^3

\displaystyle \rho = 25\textbf{.}10^3 \ kg/m^3

Exercício 6 Uma esfera maciça de alumínio tem uma massa de {50 \ g}. Qual é o seu volume?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 6 .

Dados

{m = 50 \ g = 50\textbf{.}10^{-3} \ kg}

{V - \ ?}

Apesar de não ser dado, mas a massa específica do alumínio é conhecida {\rho{al} = 2700 \ kg/m^3}. Neste caso, pela definição de massa específica, temos:

\displaystyle \rho = \dfrac{m}{V} \Rightarrow \rho\textbf{.}V = m \Rightarrow V = \dfrac{m}{\rho}

Neste caso:

\displaystyle V = \dfrac{50\textbf{.}10^{-3} \ kg}{2700 \ kg/m^3} = 1,852\textbf{.}10^{-5} \ m^3

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

Exercícios resolvidos

Vamos acompanhar a resolução de alguns exercícios.

Exercício 1

    Um calorímetro de alumínio, de {200g}, contem {500g} de água a {20^0C}. Um pedaço de alumínio de {300g} é aquecido até {100^0C} e colocado no calorímetro. Determine a temperatura final do sistema, supondo que não haja transferência de calor para o ambiente. ( { c_{agua}=4190 J/kg.K, c_{Al}=0,9 kJ/kg.K }).

  1. R: Como dados, temos:{m_{cal} = 200g = 0,2 kg,}{ m_{A} = 500g = 0,5 kg , }

    {m_{Al} = 300 g = 0,3 kg, }

    { T_{A} = 20 ^0C = 293 K = T_{cal},}

    { T_{Al} = 100^0C = 373 K , }

    { c_{A} = 4190 J/kg.K, }

    {c_{Al} = 900 J/kg.K}

    Como sabemos, ao juntarmos estes materiais, haverá troca de calor entre eles, ou seja, o calorímetro e a água, por estarem mais frios, vão receber calor do pedaço de alumínio, que está mais quente. Pelos valores das temperaturas do problema, e considerando as massas envolvidas, sabemos logo que o equilíbrio termodinâmico será atingido em uma temperatura entre {293 K} e {373 K}

    Partindo do princípio que não se perde calor para o exterior, a soma das quantidades de calor do sistema tem de ser nulas [o calor cedido por um corpo é sempre absorvido por outro corpo no sistema). Como o problema não envolve mudança de fase (mudança de estado de agregação), então teremos apenas três quantidades de calor:

    { Q_{A} = m_{A} . c_{A} . (T_F - T_{A}) }

    { Q_{Cal} = m_{Cal} . c_{Al} . (T_F - T_{Cal}) }

    { Q_{Al} = m_{Al} . c_{Al} . (T_F - T_{Al})}

    Como {Q_{A} + Q_{Cal} + Q_{Al} = 0}

    { \Rightarrow m_{A}. c_{A} . (T_F-T_{A}) + m_{Cal}. c_{Al} . (T_F-T_{Cal}) + m_{Al}. c_{Al} . (T_F - T_{Al})=0}

    Aplicando a propriedade distributiva, temos:

    {m_{A}. c_{A} . T_F-m_{A}. c_{A} .T_{A}+m_{Cal}. c_{Al} . T_F-m_{Cal}. c_{Al} . T_{Cal}}

    {+m_{Al}. c_{Al} . T_F-m_{Al}. c_{Al} . T_{Al}=0}

    { \Rightarrow}

    {m_{A}. c_{A} . T_F +m_{Cal}. c_{Al} . T_F +m_{Al}. c_{Al} . T_F = m_{A}. c_{A} .T_{A}  }

    { + m_{Cal}. c_{Al} . T_{Cal} + m_{Al}. c_{Al} . T_{Al}}

    Factorizando a temperatura de equilíbrio {T_F} e isolando-a, obtemos:

    { T_F= \frac{m_{A}. c_{A} .T_{A} + m_{Cal}. c_{Al} . T_{Cal} + m_{Al}. c_{Al} . T_{Al}}{m_{A}. c_{A} +m_{Cal}. c_{Al} +m_{Al}. c_{Al} }=301,5K=28,5^0C }

Exercício 2

    Uma amostra de 0,5 mol de Hélio (gasoso), expande-se adiabaticamente desde uma pressão inicial de {5 atm} e uma temperatura de {500 K} para uma pressão de {1 atm}. Determine:

  1. a)A temperatura final do gás.
  2. b)O volume final do gás.
  3. c)O trabalho realizado pelo gás.
  4. a)R: Temos como dados: {n=0,5 mol,}{ i=3 \Rightarrow \gamma=\frac{i+2}{i}=\frac{5}{3}=1,67 }

    (Hélio é um gás monoatómico),

    { p_1= 5 atm = 5,065.10^5 Pa,}

    { T_1=500K,}

    { p_2=1 atm = 1,013.10^5 Pa,}

    { R=8,31 J/mol. K}
    O processo realizado é uma expansão adiabática. A equação para um processo adiabático com pressões e temperaturas pode ser obtida dividindo a equação {p_1. V_1^\gamma=p_2.V_2^\gamma} pela equação {\frac{p_1^\gamma. V_1^\gamma}{T_1^\gamma} =\frac{p_2^\gamma. V_2^\gamma}{T_2^\gamma}}.

    A equação resultante será:

    { p_1^{1-\gamma}. T_1^\gamma= p_2^{1-\gamma}. T_2^\gamma. }

    Isolando {T_2}, ficamos com: { T_2=({\frac{p_1^{1-\gamma}. T_1^\gamma}{p_2^{1-\gamma}}})^{\frac{1}{\gamma}}=262,1K }

  5. b)R: como conhecemos a temperatura e a pressão do estado 2, podemos determinar o seu volume aplicando a equação de estado para um gás ideal: {V_2=n.R.T_2/p_2 = 0,01075 m^3}.
  6. c)R: Podemos calcular o trabalho aplicando a primeira lei da termodinâmica. {\Delta U= Q - W}. Como o processo é adiabático, então {Q=0}, logo {W=-\Delta U = -\frac{i}{2}.n.R.(T_2-T_1)=1482,7 J}
Exercício 3

Uma maquina térmica que opera com o ciclo reversível de Carnot, recebe calor de um depósito térmico a alta temperatura e conta com uma eficiência térmica de { 57,89\% } produzindo {2932 J} de trabalho em cada ciclo. Se o calor cedido vais para o ambiente que está a {27^0C}, Determine:

  1. a) A temperatura da fonte quente.
  2. b) A máquina cumpre com a desigualdade de Clausius? Justifique.
  3. a)R:Temos como dados:{W=2932 J,}

    {T_C=27^0C=300K,}

    {\eta=57,89\%=0,5789}

    Para o ciclo de Carnot, sabemos que {\eta=1-\frac{T_C}{T_H}}. Isolando {T_H}, temos: {T_H=\frac{T_C}{1-\eta}=712,4K=439,4^0C}

     

  4. b) R: O ciclo de Carnot é composto por dois processos isotérmicos e dois processos adiabáticos. Para o caso de motor, recebe calor na fonte quente e sede calor a fonte fria. Considerando os processos 1-2 expansão isotérmica, 2-3 expansão adiabática, 3-4 compressão isotérmica e 4-1 compressão adiabática, então a variação de entropia no ciclo será {\Delta S= \Delta S_{12} + \Delta S_{23} + \Delta S_{34} + \Delta S_{41}}. Nos processos 2-3 e 4-1 não há variação de entropia. Logo: {\Delta S= \Delta S_{12} + \Delta S_{34}= \frac{Q_H}{T_H}+\frac{(-Q_C)}{T_C}.} Para o ciclo de Carnot {\frac{Q_C}{Q_H} =\frac{T_C}{T_H} \Rightarrow \frac{Q_C}{T_C} =\frac{Q_H}{T_H}}, então {\Delta S= 0}, o que cumpre com a desiguldade de Clausius, que diz {\Delta S\geq 0}.
Exercício 4

      Um bloco de madeira de volume {V=60cm^3}, totalmente submerso está atado ao fundo de um recipiente com agua por meio de um fio inextensível de massa desprezável. quando o fio é cortado e o bloco emerge à superfície com {\frac{1}{4}} do seu volume fora da água. Sendo a densidade da água de {1g/cm^3}, determine:
  • a) A massa específica do bloco.
  • b) A tensão no fio, antes de ser cortado.
  1. a) R: Primeiro devemos tirar todos os dados e passa-los para o Sistema Internacional (S.I.).{V=60cm^3=60.10^{-6} m^3}{\rho_{agua}=1g/cm^3=1000kg/m^3}

    Quando o bloco flutua, o volume da parte imersa é {V_{im}=\frac{3.V}{4}=\frac{3.60.10^{-6}}{4}=45.10^{-6}m^3} De acordo com o princípio de Arquímedes, para o bloco flutuar é necessário que o Empuxo compense o peso do bloco, ou seja, {E=P\Rightarrow \rho_{liq}.V_{im}.g=\rho_{bloco}.V_{bloco}.g} Isolando a densidade do bloco, obtemos: {\rho_{bloco}=\frac{\rho_{liq}.V_{im}}{V}=750 Kg/m^3}.

  2. b) R: Quando o corpo está preso no fundo do recipiente por um fio, actuam nele três forças: Peso ou Força de gravidade, Força de Arquimedes ou Empuxo e Força de Tensão (no fio). O peso e a tensão actuam verticalmente de cima para baixo, enquanto que a força de Empuxo actua verticalmente de baixo para cima. Neste caso temos: { P+T=E\Rightarrow T=E-P=\rho_{liq}.V_{im}.g - \rho_{bloco}.V_{bloco}.g } Como, nesta situação, o bloco está completamente submerso, então {V_{bloco}=V_{im}} logo, { T=\rho_{liq}.V_{bloco}.g - \rho_{bloco}.V_{bloco}.g =0,147N}

 

%d bloggers gostam disto: