Luso Academia

Início » Posts tagged 'conversão de unidades'

Tag Archives: conversão de unidades

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 3)

Exercício 8 Se uma grandeza fictícia {K} tem unidade {\dfrac{ab^2}{c}} num certo sistema de unidade: Se as correspondências no SI são:

{1 \ a = 95 \ x}

{1 \ b = 57 \ y}

{1 \ c = 0,5 \ z}

Qual é o valor de {K = 18 \dfrac{ab^2}{c}} no SI ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 8 .

O objectivo do exercício é converter a unidade de {K} para o SI.

Vamos converter para o SI, substituindo o valor de {a}, {b}, {c} na expressão de {K = 18\dfrac{ab^2}{c}}.

.

\displaystyle K = 18\dfrac{ 95x \cdot (57y)^2}{0,5z}

\displaystyle \Rightarrow K = \dfrac{18 \cdot 95 \cdot (57)^2}{0,5} \cdot \dfrac{x \cdot y^2}{z}

\displaystyle K = 11111580\dfrac{x \cdot y^2}{z}

Exercício 9 Duas forças {\vec{F_1}} e {\vec{F_2}} de {10 \ N} e {20 \ N} respectivamente actuam sobre um corpo.

Qual deverá ser o modulo e a direcção da 3ª força ({\vec{F_3}}) para que a resultante seja nula?.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Teremos que inicialmente que a resultante entre as forças {\vec{F_1}}, {\vec{F_2}} e {\vec{F_3}} deve ser nula. Quer dizer que as três forças fazem parte do mesmo sistema bidimensional. A nível de análise gráfica, poderíamos determinar a resultante (parcial) das forças {F_{1}} e {F_{2}}. Chamamos ela de {F_{1/2}}. A força três, neste caso, terá sentido contrário ao vector força {F_{1/2}}, para que equilibre este resultante.

Neste caso:

\displaystyle \vec{F_3} = -\vec{F_{2/1}} \ ; \ F_3 = F_{1/2}

Para calcular a força {F_{1/2}}, vamos aplicaras componentes:

\displaystyle F_{1/2x} = F_{1x} + F_{2x}= F_{1} + 0 = F_{1} = 10 N

\displaystyle F_{1/2y} = F_{1y} + F_{2y}= 0 + F_{2} = F_{2} = 20 N

Então:

\displaystyle \vec{F_{1/2}} = F_{1/2x} \vec{i} + F_{1/2y} \vec{j} = 10 \vec{i} + 20 \vec{j} [N]

Logo:

\displaystyle \vec{F_3} = -\vec{F_{2/1}}= - 10 \vec{i} - 20 \vec{j} [N]

Em modulo:

\displaystyle F_3 = \sqrt{(-10)^2 + (-20)^2} = \sqrt{500} [N]

\displaystyle F_3 = 22,36 \ N

A direcção é definida pelos ângulos:

\displaystyle \alpha_1 = \arctan \frac{F_{3y}}{F_{3x}}

\displaystyle \alpha_2 = 180^o + \arctan \frac{F_{3y}}{F_{3x}}

Calculando:

\displaystyle \alpha_1 = \arctan{(\frac{-20}{-10})}=63 ^o

\displaystyle \alpha_2 = 180^o + \arctan{(\frac{-20}{-10})}= 243^o

Como o vector pertence ao 3º quadrante (as componentes são ambas negativas), a direcção e sentido são definidas por:

\displaystyle \alpha_2 = 243^o

Exercício 10 Um móvel percorre um troço de {400 \ km} em {2 \ dias}. Qual é a velocidade média desta viagem ? NÍVEL DE DIFICULDADE: Elementar.
Resolução 10 .

Dados

{v_m = \ ?}

{\Delta s = 400 \ km}

{\Delta t = 2 \ dias}

O exercício trate de um movimento genérico. Quando queremos analisar o movimento como um todo, usamos a velocidade e aceleração média. Então, a análise do movimento assemelha-se a um M.R.U, onde que a velocidade média é:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t}

Antes de calcular a {v_m}, vamos converter os {2 \ dias} para {h}, para usarmos unidades habituais em movimentos desta natureza. Vamos utilizar o sistema de “3 simples”:

\displaystyle 1 \ dia \longrightarrow 24 \ h

\displaystyle 2 \ dias \longrightarrow t

Multiplicado de forma cruzada, obtemos:

\displaystyle t \cdot 1 \ dia = 2 \ dias \cdot 24 \ h

\displaystyle t = 48 \ h

Agora podemos calcular a {v_m}:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t} = \dfrac{400 \ km}{48 \ h}

\displaystyle v_m = 8,33 \ km/h

Também poderíamos apresentar o valor da {v_m} em {m/s}, basta para isso dividir o valor em {km/h} por 3,6 e teremos em {m/s}.

\displaystyle v_m = \dfrac{8,33}{3,6} \ m/s

\displaystyle v_m = 2, 31 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 2)

Exercício 5 Converter para o SI s seguintes unidades:

  1. { 10 \ km/s }.
  2. { 20 \ polegadas }.
  3. { 25 \ km/h^2 }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 5 .

Para converter-mos no SI, vamos utilizar o sistema de “3 simples”.

  1. –    { \dfrac { 10 \ km}{s}\rightarrow \dfrac {m}{s} }Neste Caso, temos de converter apenas o numerador, de {km} para {m}.

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 10 \ km \longrightarrow x

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 10 \ km

    \displaystyle x = 10000 \ m

    Quer dizer que {10 \ km = 10000 \ m} logo, {10 \ km/s } no Sistema Internacional equivale a {10000 \ m/s }.

    .

  2. –      { 20 \ polegadas \rightarrow m }Sabemos que: { 1 \ polegada \approx 0,025 \ m } Então, usando o sistema de “3 simples”

    \displaystyle 1 \ polegada \longrightarrow 0,025 \ m

    \displaystyle 20 \ polegadas \longrightarrow x

    fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ polegada = 0,025 \ mc \cdot 20 \ polegadas

    \displaystyle x = 0,5 \ m

    Quer dizer que {20 \ polegadas} no Sistema Internacional equivale a {0,5 \ m }.

    .

  3. –    { \dfrac {25 \ km}{h^2} \rightarrow \dfrac {m}{s^2}}.Vamos começar por converter {km} em {m} e depois {h} em {s}, então: {2}

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 25 \ km \longrightarrow x

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 25 \ km

    \displaystyle x = 25000 \ m

    \displaystyle 1 \ h \longrightarrow 60 \ min

    \displaystyle 1 \ min \longrightarrow 60 \ s

    \displaystyle 1 \ h = 60 \times 60 \ s = 3600 \ s

    \displaystyle (1 \ h)^2 = (3600 \ s)^2 = 12960000 \ s^2

    \displaystyle 1 \ h^2 = 12960000 \ s^2

    Vamos substituir as equações {25 \ km = 25000 \ m} e {1 \ h^2 = 12960000 \ s^2} na expressão inicial:

    \displaystyle 25 \ km/h^2 =\dfrac {25 \ km}{h^2} = \dfrac {25000 \ m}{ 12960000 \ s^2}

    \displaystyle = \dfrac{25000 \ m}{12960000 \ s^2} =0,0019 \ m/s^2

    Quer dizer que, no SI { \dfrac {25 \ km}{h^2} = 0,0019 \ m/s^2}.

Exercício 6 Numa partícula actuam 3 forças conforme indica a figura abaixo:

Determine a força resultante sabendo que {F_1 = 3 \ N, F_2 = 5 \ N, F_3 = 8 \ N  \ e  \  \alpha = 10^o}

NÍVEL DE DIFICULDADE: Regular.

Resolução 6 .

Para sabermos a força resultante, devemos encontrar as componentes das forças aplicadas nos eixos Ox e Oy. Como as Forças primeiramente devemos traçar as correspondestes das {F_1} e {F_3} são paralelas aos eixos Ox e Oy, respectivamente, elas só têm uma componente não nula, que corresponde ao eixo a que são paralelas. A componente no outro eixo é nula. Para da força {F_2}, devemos projecta-la nos eixos e calcular as componentes para cada eixo (Ox e Oy).

Calculamos as componentes usando as razões trigonométricas:

\displaystyle F_{2x} = F_2 \sin \alpha \ ; \ F_{2y} = F_2 \cos \alpha

\displaystyle F_{2x} = 0,86 \ N \ ; \ F_{2y} = 4,92 \ N

Vamos agora Fazemos então a soma vectorial das componentes Ox e Oy:

\displaystyle \vec{F_{Rx}} = \vec{F_1} + \vec{F_{2x}} \ ; \ F_{Rx} = F_1 - F_{2x} = 3 - 0,86 = 2,14 \ N

\displaystyle \vec{F_{Ry}} = \vec{F_{2y}} - \vec{F_3} \ ; \ F_{Ry} = F_{2y} - F_3 = 4,92 - 8 = -3,08 \ N

O módulo força resultante é dada pelo teorema de Pitágoras:

\displaystyle F_R = \sqrt{F_{Rx}^2 + F_{Ry}^2}

\displaystyle F_R = \sqrt{(2,14)^2 + (-3,08)^2} = \sqrt{14,066}

\displaystyle F_R = 3,75 \ N \approx 4 \ N

Exercício 7 Se as componentes da velocidade de um móvel são {v_x = 10 \ m/s}, {v_y = 5 \ m/s} e {v_z = 2v_x + 3v_y}.

Determine: o modulo deste vector velocidade.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 7 .

Dados

{v_x = 10 \ m/s}

{v_y = 5 \ m/s}

{v_z = 2v_x + 3v_y}

{v_z\rightarrow \ ? }

{|v| \rightarrow \ ? }

Para determinar o modulo do valor velocidade, primeiramente devemos determinar o valor da coordenada da velocidade em z ({v_z}), substituindo o valor das velocidades de {v_x} e {v_y} em {v_z}.

\displaystyle v_z = 2v_x + 3v_y \Rightarrow v_z = 2 \cdot 10 + 3 \cdot 5

\displaystyle v_z = 35 \ m/s

Neste caso, a velocidade será obtida de modo seguinte:

\displaystyle |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{10^2 + 5^2 + 35^2}

\displaystyle |\vec{v}| = \sqrt{100 + 25 + 1225} = \sqrt{1350}

\displaystyle |\vec{v}| = 36,74 \ m/s

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

Exercício 1 .

Dois vectores têm módulos 3 e 5 unidades.

  1. Qual deverá ser o ângulo entre eles para que o vector resultante tenha módulo de 4 unidades?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

  1. Consideremos que os vectores de módulo 3 e 5 unidades são os vectores {\overrightarrow{u} e \overrightarrow{v}}, respetivamente, e o vector resultante de módulos 4 unidades é o vector {\overrightarrow{w}}.Consideremos também que { \theta} é o ângulo que os vectores {\overrightarrow{u} e \overrightarrow{v}} formam entre si. Daqui, temos os ângulos dados:Dados{\vert \overrightarrow{u} \vert=3 } .{ \vert \overrightarrow{v} \vert=5} .

    { \vert \overrightarrow{w} \vert=4} .

    { \theta \rightarrow ? }

    A adição de vectores, dada pela regra do paralelogramo, relacionas aos seus módulos através da lei dos cossenos.

    \displaystyle \textbf{Lei do Cosseno}:\vert \overrightarrow{w}\vert^2=\vert\overrightarrow{u}\vert^2+\vert\overrightarrow{v}\vert^2+2\times\vert\overrightarrow{u}\vert\times\vert\overrightarrow{v\vert}\times \cos\theta

    * Substituindo os dados:

    \displaystyle (4)^2=(3)^2+(5)^2+2\times(3)\times(5)\times \cos\theta

    \displaystyle 16=9+25+30\times \cos\theta

     Isolando {\cos\theta:}

    \displaystyle \cos \theta =\frac{16-(9+25)}{30}=\frac{16-34}{30}=\frac{18}{30}=-0.6

    O valor de { \theta: \theta=\arccos(-0.6)=126,869^o }

    \displaystyle \theta\cong 126,9^o

.

Exercício 2 .

Um Arco tem ângulo de 1,5 radiano.
Qual é o valor deste ângulo em graus?

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Para determinar o ângulo do arco em graus, vamos usar a regra de três simples, sabendo que { \pi } radiando equivale a { 180^o }. Com isto,temos as seguintes rotações:

\displaystyle \pi \ rad \rightarrow\rightarrow180^o

\displaystyle 1,5 \ rad \rightarrow\rightarrow \theta

Onde 1.5 é o ângulo do arco em radiano e {\theta} o ângulo do arco em graus que se pretende determinar.

Desta forma, temos:

\displaystyle \theta \times \pi=1,5 \ rad \times 180^o

Isolando {\theta}:

\displaystyle \theta=\frac{1,5 \ rad \times 180^o}{\pi \ rad}=\frac{270^o}{\pi}=85,94^o

Portanto:

\displaystyle \theta=85,9^o

.

Exercício 3 .

Um disco circular tem raio de { 5 \ m}. Qual é o cumprimento deste disco?
NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Dados

{ r= 5 \ m }

O cumprimento de um arco é:

\displaystyle l= \alpha \times r

onde {\alpha} é o ângulo do arco em radianos.

Para o nosso caso, o cumprimento de um disco circular é:

\displaystyle l=2 \pi \times r

Substituindo:

\displaystyle r=5 \ m \ em (1): l= 2 \pi \times 5 \ m= 31,415 \ m

Portanto, o cumprimento do disco é de:

\displaystyle 31,415 \ m.

Exercício  4 .

Dois vectores {\overrightarrow{a}} e { \overrightarrow{b}} tem módulo iguais a { 3 \ m} e {5 \ m },respetivamente.

Qual é o módulo de vector { \overrightarrow{c} }, se {\overrightarrow{c}=3\overrightarrow{a}-\overrightarrow{2b}} e o ângulo entre { \overrightarrow{a} } e { \overrightarrow{b} } for de { 30^o }?
NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

Dados .

{ \vert \overrightarrow{a} \vert =3 \ m } .

{ \vert \overrightarrow{b} \vert =5 \ m } .

{ \overrightarrow{c}=3\overrightarrow{a} - 2\overrightarrow{b}} .

{ \theta \rightarrow 30^o} .

{ \vert \overrightarrow{c} \vert=? }

Consideremos os vectores {\overrightarrow{a} e \overrightarrow{b}}.

Os vectores {\overrightarrow{a}} e {\overrightarrow{b}} formando {30^o} entre si {(\theta=30^o)}

Entretanto, o vector {\overrightarrow{c}} é dado como {\overrightarrow{c}=3\overrightarrow{a}-2\overrightarrow{b}}. Sendo assim, consideremos os vectores {3\overrightarrow{a} } e { 2\overrightarrow{b}} , isto é,os vectores {\overrightarrow{a}} e {\overrightarrow{b}} com dimensões triplicando e dobrada, respetivamente.

Por outro lado o vector {\overrightarrow{c}} representa a diferença entre {3\overrightarrow{a}} e {2\overrightarrow{b}} neste caso a resultante é:

Calculando {\beta}:

\displaystyle \beta+\theta=180^o \ \Rightarrow \beta=180^o-\theta

Como { \theta=30^o },temos: { \beta=180^o-30^o=150^o \ \Rightarrow \beta=150^o }\

O módulo de vector { \overrightarrow{c} } , é dada pela lei dos cossenos.\

Lei dos Cossenos:

\displaystyle \vert\overrightarrow{c}\vert^2=\vert3\overrightarrow{a}\vert^2+\vert2\overrightarrow{b}\vert^2+2\times\vert3\overrightarrow{a}\vert \times \vert2\overrightarrow{b} \vert\times \cos\beta

\displaystyle \vert\overrightarrow{c}\vert^2=9^2+10^2+180\times\cos150^o=181-155,88=25,12

\displaystyle \vert \overrightarrow{c} \vert ^2=25,12 \ \Rightarrow \vert\overrightarrow{c}\vert=\sqrt{25,12}=5,01

\displaystyle \rightarrow \vert\overrightarrow{c}\vert=5,01

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

Deixe a sua interacção nos comentários deste Post;
Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
Partilhe este Post nas tuas redes sociais.

Exercícios Sobre de Fluidos: Conceitos Gerais

— 1. Exercícios de Fluidos: Conceitos Gerais —

Exercício 1 A unidade de Pressão no SI é o Pascal({Pa}).

Além desta, usam outras unidades como a atmosfera({atm}), milímetros de mercúrio({mmHg}), Torricelli ({Torr}), Bar({bar }), etc.

Conhecendo a relação:

\displaystyle 1 \ atm = 101325 \ Pa \approx 760 \ mmHg

\displaystyle 1 \ bar = 10^5 \ Pa

Converta para o SI os seguintes valores de pressão:

  1. {0,857 \ atm}.
  2. {850 \ mmHg}.
  3. {3,5 \ bar}.

NÍVEL DE DIFICULDADE: Elementar .

Resolução 1 .

  1. Pela relação anterior, usando a regra de “{3} simples”, podemos escrever:

    \displaystyle 1 \ atm \longrightarrow 101325 \ Pa

    \displaystyle 0,857 \ atm \longrightarrow \textbf{X}

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle 1 \ atm\textbf{.}\textbf{X} = 101325 \ Pa\textbf{.}0,857 \ atm

    Resolvendo e simplificando a unidade {atm}, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 86835,5 \ Pa

  2. Pela mesma regra de “3 simples”, obtemos:

    \displaystyle 101325 \ Pa \longrightarrow 760 \ mmHg

    \displaystyle \textbf{X} \longrightarrow 850 \ mmHg

    Fazendo a multiplicação cruzada, obtemos:

    \displaystyle 760 \ mmHg\textbf{.}\textbf{X} = 101325 \ Pa\textbf{.}850 \ mmHg

    Passando o {760 \ mmHg} para o membro direito, simplificando a unidade {mmHg} e resolvendo, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 113324,0 \ Pa

  3. Pela mesma regra de “3 simples”, obtemos:

    \displaystyle 1 \ bar \longrightarrow 10^5 \ Pa

    \displaystyle 3,5 \ bar \longrightarrow \textbf{X}

    Fazendo a multiplicação cruzada, obtemos:

    \displaystyle 1 \ bar\textbf{.}\textbf{X} = 10^5 \ Pa\textbf{.}3,5 \ bar

    Resolvendo e simplificando a unidade {bar}, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 3,5.10^5 \ Pa \Leftrightarrow \textbf{X} = 350000 \ Pa

Exercício 2 Uma caixa em forma de cubo, tem faces com área de {3 \ m^2} e está cheia com {10 \ kg} de um certo material. Qual é a pressão que ela exerce sobre o solo?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 2 .

Dados

{A_{face} = 3 \ m^2}

{m = 10 \ kg}

{g = 9,8 \ m/s^2}

{P - \ ?}

Como só uma das faces do cubo é que toca no chão, a área de contacto corresponde à área de uma das faces. Neste caso: {A = A_{face} = 3 \ m^2.}

Com a massa da caixa, podemos calcular o peso (força) que ela exerce ao solo, nesse caso:

\displaystyle P = F_g = m\textbf{.}g = 10 \ Kg\textbf{.}9,8 \ m/s^2 \Rightarrow P = 98 \ N

\bf{Nota: {1kg\textbf{.}1m/s^2 = 1N}}

Usando o conceito de pressão, podemos escrever:

\displaystyle p = \dfrac{F_{aplicada}}{A_{contacto}} = \dfrac{P}{A_{face}} \Rightarrow p = \dfrac{98\ N}{3m^2} \approx 32,67 \ Pa.

Exercício 3 Uma caixa tem um peso de {17 \ kg} e está apoiada em uma mesa. A pressão exercida pela caixa é de {200 \ Pa}. Qual é a área de contacto entre a caixa e a mesa?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 3 .

Dados

{P = 17 \ kgf}

{p = 200 \ Pa}

{A_{contacto} - ?}

A Unidade {Kgf} é uma unidade de força mas não está no SI. Sabendo que {1 \ kgf = 9,8 \ N}.

Neste caso: {P = 17 \ kgf = 17\textbf{.}9,8 \ N = 1666,6 \ N}

Como:

\displaystyle p = \dfrac{F_{aplicada}}{A_{contacto}} = \dfrac{P}{A_{contacto}}

Nesse caso, isolando a área, obtemos:

\displaystyle A_{contacto} = \dfrac{P}{p} =\dfrac{166,7}{200} \approx 0,834 \ m^2

Exercício 4 Um corpo tem uma massa de 3  kg e um volume de 5 litros. Determine a sua massa específica.

NÍVEL DE DIFICULDADE: Elementar .

Resolução 4 .

Dados

{m = 13 \ kg}

{V = 5 \ l}

{\rho - \ ?}

A Unidade litro({l}) não é a unidade de volume no SI e se quisermos obter a massa específica no SI(como é regra), devemos converter esta unidade.

Sabendo que:

\displaystyle 1 \ l \longrightarrow 10^{-3} \ m^3

\displaystyle 5 \ l \longrightarrow V_{SI}

Neste caso: {1 \ l\textbf{.}X = 5 \ l\textbf{.}10^{-3} \ m^3 \Rightarrow V_{SI} = 5\textbf{.}10^{-3} \ m^3}

Quer dizer que o {V_{SI} = 5\textbf{.}10^{-3} \ m^3}

A definição de massa específica impõe que:

\displaystyle \rho = \dfrac{m_{corpo}}{V_{corpo}} = \dfrac{m}{V_{SI}} = \dfrac{13}{5\textbf{.}10^{-3}}

\displaystyle \rho = 2600 \ kg/m^3

Exercício 5 Um corpo apresenta uma massa específica de {25 \ g/cm^3}. Qual é a sua massa específica no SI?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 5 .

Estamos diante de um problema de conversão de unidades, onde a unidade apresenta uma fracção:

\displaystyle \rho = 25 \dfrac{g}{cm^3}

Neste caso, faremos a conversão no numerador e denominador. Para simplificar faremos a conversão por substituição directa. Sabendo que {1 \ kg = 1000 \ g} e {1 \ g = 10^{-3} \ kg}.

Sabendo também que o prefixo “centi”(c) equivale a {10^{-2}}, neste caso {1 \ cm^3 = 1\textbf{.}(10^{-2})^3 \ m^3= \ (10^{-6}) \ m^3.}

Note que, o facto de a unidade ({cm}) estar elevada a 3, quando separamos o prefixo “centi”, ele também fica elevado a 3. Neste caso: {1 \ cm^3 = 10^{-6} \ m^3}. Então:

\displaystyle \rho = \dfrac{25\textbf{.} \ g}{cm^3} = \dfrac{25\textbf{.}10^{-3} \ kg}{10^{-6} \ m^3} = 25\textbf{.}10^{-3+6} \ kg/m^3

\displaystyle \rho = 25\textbf{.}10^3 \ kg/m^3

Exercício 6 Uma esfera maciça de alumínio tem uma massa de {50 \ g}. Qual é o seu volume?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 6 .

Dados

{m = 50 \ g = 50\textbf{.}10^{-3} \ kg}

{V - \ ?}

Apesar de não ser dado, mas a massa específica do alumínio é conhecida {\rho{al} = 2700 \ kg/m^3}. Neste caso, pela definição de massa específica, temos:

\displaystyle \rho = \dfrac{m}{V} \Rightarrow \rho\textbf{.}V = m \Rightarrow V = \dfrac{m}{\rho}

Neste caso:

\displaystyle V = \dfrac{50\textbf{.}10^{-3} \ kg}{2700 \ kg/m^3} = 1,852\textbf{.}10^{-5} \ m^3

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers gostam disto: