Luso Academia

Início » Posts tagged 'coeficiente de dilatação volumétrica'

Tag Archives: coeficiente de dilatação volumétrica

1.3. Expansão térmica

Como vimos, o funcionamento do termómetro a gás baseia-se no princípio de expansão térmica… Mas, o que é isso de expansão térmica?

A expansão térmica está associada com o aumento das dimensões (comprimento, área ou volume) de um corpo ou substância qualquer, devido ao aumento de temperatura.

Os mais atentos já puderam observar no dia-a-dia muitas situações de expansão térmica… A expansão térmica vai explicar porquê é que não podemos acelerar demasiado o motor do nosso carro; porquê é que a água quando guardada num recipiente fechado e cheio rebenta após congelar e reduzir consideravelmente de temperatura; porquê é que os balões de ar aquecido voam; etc.

A consequência da dilatação térmica é que a maioria das substâncias, quando submetidas a um aumento de temperatura aumentam também o seu volume.

“Algumas”, porquê? Porque há algumas substâncias que , em certas condições violam este princípio… O exemplo mais simples e comum destas substâncias é a água, que, para temperaturas inferiores a 4ºC, invés de ter uma dilatação térmica, tem uma compressão térmica, isto é, a medida que a temperatura aumenta, o volume diminui. Isto para já explica a razão de que o gelo flutue sobre a água, visto que é menos denso do que ela (para uma mesma massa de água e gelo, o gelo ocupará um volume maior do que a água).

Isto também explica o porquê é que a água quando guardada num recipiente fechado e cheio, rebenta, após reduzir consideravelmente de temperatura (convertendo-se em gelo, e esfriando mais, consequentemente, dilatando mais).
Nota: por isso é que os fabricantes de refrigerantes e outras bebidas líquidas deixam um pequeno espaço sem liquido no interior da garrafa.

A dilatação térmica está, na realidade, associada ao significado microscópico da temperatura e tem dois sentidos de interpretação diferentes: no caso dos sólidos e líquidos, e no caso dos gases.

Como sabemos, a matéria é formada por átomos agregados em moléculas que ficam ligadas umas com as outras (no caso de sólidos e líquidos) ou que se movem quase que livremente (no caso dos gases).

Num sólido ou num líquido, ao aumentarmos a temperatura, estamos aumentando a energia de vibração das moléculas. Lembra-te de que o modelo físico de um sólido é o de um conjunto de moléculas ligadas entre si, mas com pequenos espaços intermoleculares, onde cada molécula vibra em torno de um ponto fixo.

Figura 4: Modelo físico do sólido. [7]

Naturalmente, o aumento das vibrações entre as moléculas levará a que as moléculas sedam parte da sua energia para as moléculas vizinhas, afastando-a mais (para ganhar mais espaço para poder vibrar mais). Isto conduzirá a um aumento das distâncias intermoleculares, conduzindo assim num aumento das dimensões (volume, comprimento, ária) do sólido. Nos líquidos, apesar de a distâncias intermoleculares serem maiores e as interacções intermoleculares também, mas o processo se dá por motivos muito semelhantes.

Nos gases, a dilatação térmica ocorre também, mais por razões diferentes. O modelo de um gás é o de um conjunto de moléculas (monoatómicas, diatómicas ou poliatómicas) que se movem quase que livremente, e que chocam sucessivamente umas com as outras. Explicar com palavras, por vezes é difícil, mas aprendi com um aluno numa das minhas aulas de Física 2, que para imaginarmos o comportamento de um gás monoatómico devemos observar a animação de protecção de ecrã “bolinhas coloridas” ou “bolhas” que vem em algumas edições do sistema operativo Windows.

Portanto, num gás, quando aumentamos a temperatura, estamos aumentando a energia cinética das moléculas que o constituem, ou seja, estamos aumentando a velocidade do movimento de translação (e, eventualmente, de rotação) das suas moléculas. Com isso, aumentarão significativamente as colisões intermoleculares, o que conduzirá a um aumento de pressão, e se as paredes que contêm o gás forem facilmente móveis, conduzira a um aumento de volume. Vale lembrar que o facto de os gases serem muito mais compressíveis do que os líquidos e sólidos, faz com que nem sempre um aumento de temperatura conduza a um aumento de pressão.

— 1.3.3. Dilatação Linear —

A dilatação linear é abordada com mais ênfase nos sólidos, pois , como sabemos, os sólidos têm forma própria. Nos líquidos e nos gases não tem muito de se falar de dilatação linear, visto que eles não têm forma própria, e portanto, quando aquecidos, dilatam- se por onde encontram “espaço livre”.

Imaginemos um corpo sólido qualquer . Vamos supor que uma das suas dimensões (comprimento, largura ou altura) será {L_0} para uma dada temperatura {T}. Se aumentarmos a sua temperatura em {\Delta T}, cada uma das suas dimensões também sofrerá um aumento, no caso de {L_0}, será {\Delta L}. Poderíamos pensar que este aumento é aleatório, mas não. Poderíamos também pensar que toda a elevação de temperatura igual em diferentes barras, mas feitas de um mesmo material ocasionariam um mesmo aumento de tamanho, mas também não. A dilatação linear vai depender da matéria que se dilata, da magnitude da grandeza que se dilata e das diferenças de temperatura.

A dependência da matéria de que é constituída o material que se dilata é descrita através do coeficiente de dilatação linear ({ \alpha}) que vai caracterizar o aumento de magnitude em função da diferença de temperaturas e do comprimento inicial. A unidade de {\alpha} no SI é o {(^0C)^(-1)}.

Figura 5: Coeficientes de dilatação linear de algumas substâncias. [7]

A dependência do comprimento é vista do seguinte modo: se pegarmos em duas barras do mesmo material, mas onde o comprimento da primeira é igual ao dobro do comprimento da segunda e submetermos ambas a uma mesma variação de temperatura, iremos observar que o aumento de comprimento da primeira barra será também igual ao dobro da segunda barra.

A dependência da variação da temperatura é vista do seguinte modo: A mesma barra de comprimento {L_0}, se for submetida a um aquecimento ou arrefecimento que produza uma variação de temperatura “absoluta” {\Delta T_1} ou em outra circunstância for submetida a uma variação de temperatura {\Delta T_2} que seja igual ao dobro de {\Delta T_1}, então veremos que na segunda situação a barra terá uma dilatação igual ao dobro da dilatação da primeira.

Portanto,os diversos parâmetros da dilatação linear estão relacionados a partir da seguinte equação:

\displaystyle \Delta L = L_0 . \alpha . \Delta T \ \ \ \ \ (7)

Vale notar que esta equação é a equação para o aumento de comprimento e não para o comprimento final… O comprimento final (após a dilatação ou compressão térmica) será:

\displaystyle L= L_0+ \Delta L = L_0 + L_0 . \alpha . \Delta T = L_0 ( 1 + \alpha . \Delta T) \ \ \ \ \ (8)

Quando se diminui a temperatura, a luz do que foi postulado anteriormente, as dimensões do corpo também diminuem, mas relações continuam a ser exactamente as mesmas.

Esta formula para a dilatação linear não é exacta, visto que o coeficiente de dilatação linear da maioria das substâncias sofre também variações com a temperatura, mas ela é válida para pequenas variações de temperatura, e, em geral é aplicada deste modo nos estudos mais simples de Física.

— 1.3.4. Dilatação volumétrica —

A dilatação volumétrica ocorre segundo as mesmas leis que a dilatação linear, mas é o um conceito que pode ser aplicado tanto em sólidos, líquidos ou gases. Na realidade é o único que se pode aplicar em líquidos , visto que nestes não se pode falar de dilatação linear.

Quando submetemos um sólidos ou líquido a um aquecimento (ou esfriamento), o seu volume aumenta (ou diminui). Este aumento ou diminuição de volume é, de igual modo como na dilatação linear, directamente proporcional ao volume inicial, ao coeficiente de dilatação volumétrica e a variação de temperatura.

Imaginemos uma substância qualquer (solida ou líquida) . Vamos supor que o seu volume inicial seja {V_0} para uma dada temperatura {T}. Se aumentarmos a sua temperatura em {\Delta T}, o seu volume sofrerá um aumento {\Delta V}.

O aumento de volume será dado pela seguinte equação:

\displaystyle \Delta V = V_0 . \beta . \Delta T \ \ \ \ \ (9)

Vale notar que esta equação é a equação para o aumento de volume e não para o volume final… O volume final (após a dilatação ou compressão térmica) será:

\displaystyle V= V_0+ \Delta V = V_0 + V_0 . \beta . \Delta T = V_0 ( 1 + \beta . \Delta T) \ \ \ \ \ (10)

O parâmetro {\beta} é chamado de coeficiente de dilatação volumétrica, o seu valor varia de substância para substância.

Figura 6: Coeficientes de dilatação volumétrica de algumas substâncias. [7]

É necessário recordar que, para os sólidos, o coeficiente de dilatação volumétrica é igual ao triplo do coeficiente de dilatação linear.

\displaystyle \beta = 3 . \alpha \ \ \ \ \ (11)

Nos sólidos, alem de se falar de dilatação linear e volumétrica, também pode se falar em dilatação superficial, que obedecerá a princípios semelhantes, e cujo coeficiente {\gamma} obedecerá à relação:

\displaystyle \gamma = 2 . \alpha \ \ \ \ \ (12)

— Referências Bibliográficas —

 

[1] Jorge A. V illar Alé. MECÂNICA DOS FLUIDOS:CURSO BÁSICO, [2011].

[2] Luiz F.  F. Carvalho. CURSO DE FORMAÇÃO DE OPERADORES DE REFINARIA – FÍSICA APLICADA: MECÂNICA DOS FLUIDOS, Curitiba, [2002].

[3] Daniel Fonseca de Carvalho & Leonardo Duarte Batista da Silva. FUNDAMENTOS DE HIDRÁULICA, [2008].

[4] J. Gabriel F. Simões. MECÂNICA DOS FLUIDOS: NOTAS DAS AULAS, [2008].

[5] Luiz Eduardo Miranda J. Rodrigues. MECÂNICA DOS FLUIDOS : NOTAS DAS AULAS, (2010)

[6] Halliday  & Resnick. FUNDAMENTOS DE FÍSICA, VOL. 2 (2008)

[7] Young & Freedman. FÍSICA 2: TERMODINÂMICA E ONDAS, 10ª ed (2003)

%d bloggers gostam disto: