Luso Academia

Início » 04 Ensino Superior » 02 Física » 14 Luz e Óptica (Página 2)

Category Archives: 14 Luz e Óptica

Porquê o peixe parece maior? Refração em superfície esférica.

— 2.7.16. Refração em superfície esférica —

Já analisamos a refração sobre um dióptro plano, onde vimos que, dependendo da relação entre os índices de refração, poderemos ver a imagem mais longe ou mais perto do que ela realmente está. Mas, o dióptro plano não produz a sensação de que o objecto é transversalmente maior ou menor, ou seja, quando a superfície de separação é plana, não temos ampliação transversal. Um exemplo disto é observarmos um peixe num lago, ou observarmos um peixe a partir da face plana de um aquário de faces planas.

Já, se observamos a imagem de um peixe que está num aquário esférico, em certas posições, notamos uma ampliação transversal da imagem, ou seja, o peixe parece maior do que ele realmente é. As razões desta aparente ampliação são explicadas pela refração em superfícies esféricas.

Figura 58: Refração em superfície esférica. [5] Adaptado

Consideremos a situação da figura 58, onde os raios incidentes que convergem no ponto {P}, refratam-se pela superfície esférica, convergindo no ponto {P'}. Neste caso, {P} é o objecto real e {P'} é a imagem real. A superfície esférica tem centro em {C} e raio {R}. Os índices de refração dos dois meios são {n_a} e {n_b} com {n_a<n_b}. Um raio que incide no ponto {P} pela direcção normal à superfície, ao refratar-se não sofre nenhum desvio, e passa pelo centro {C} (de acordo com a lei de Snell-Descartes) e pelo ponto {P'} (que é imagem de {P}). Um raio vindo do ponto {P} que incida num ponto {B} da superficial, ao refrata-se, vai necessariamente passar pelo ponto {P'}, visto que este é imagem de {P}. A recta que passa sobre o segmente {BC} é a normal à superfície no ponto {B}. Logo, podemos definir {\theta_a} como ângulo de incidência em {B} e {\theta_b} como ângulo de refração. Então:

\displaystyle n_a \cdot \sin\theta_a = n_b \cdot \sin \theta_b \ \ \ \ \ (51)

 

Sendo {d} a distância do objecto e {d'} a distância da imagem, e dado {\delta=VQ}, nos triângulos rectângulos {PBQ}, {CBQ} e {P'BQ} podemos obter:

\displaystyle \tan \alpha=\frac{h}{ d +\delta } \qquad \tan \beta=\frac{h}{ d' - \delta } \qquad \tan \phi=\frac{h}{ R- \delta } \ \ \ \ \ (52)

 

Note que {VC=R}.

Para raios paraxiais, todos os ângulos serão muito pequenos, então, será válida a aproximação {\tan \alpha \approx \sin\alpha\approx \alpha}. Logo, as equações 51 e 52 ficam:

\displaystyle n_a \cdot \theta_a = n_b \cdot \theta_b \ \ \ \ \ (53)

 

\displaystyle \alpha=\frac{h}{ d +\delta } \qquad \beta=\frac{h}{ d' - \delta } \qquad \phi=\frac{h}{ R- \delta } \ \ \ \ \ (54)

 

Analisando o triângulo rectângulo {PBC}, considerando que o ângulo interno sobre o vértice {B} deve ser {180^0-\alpha-\phi} (do teorema de ângulos internos de um triângulo) e também deve ser igual á {180^0-\theta_a} (por ser suplementar deste); e analisando o triângulo {P'BC} onde, no vértice {C}, o ângulo interno deve ser {180^0-\theta_b - \beta} e também deve ser {180^0-\phi}, obtemos então:

\displaystyle \theta_a=\alpha+\phi \qquad \phi =\theta_b + \beta \Rightarrow \theta_b =\phi - \beta \ \ \ \ \ (55)

 

Substituindo os valores de {\theta_a} e {\theta_b} da equação 55 na equação 53, obtemos { n_a\cdot(\alpha+\phi)=n_b\cdot(\phi - \beta)}. Organizando a expressão, obtemos:

\displaystyle n_a\cdot\alpha+n_b \cdot \beta =(n_b-n_a)\cdot\phi \ \ \ \ \ (56)

 

Substituindo {\alpha}, {\beta} e {\phi} pelos valores da equação 54 na equação 56 e simplificando {h}, obtemos:

\displaystyle \frac{n_a}{ d +\delta } + \frac{n_b}{ d' - \delta } =\frac{n_b-n_a}{ R- \delta } \ \ \ \ \ (57)

 

Lembrando que para raios paraxiais, {\delta} tende para zero, logo, obtemos:

\displaystyle \frac{n_a}{ d } + \frac{n_b}{ d' } =\frac{n_b-n_a}{ R } \ \ \ \ \ (58)

 

Esta é a equação que relaciona a distância entre o objecto e a imagem na refração sobre uma superfície esférica.

Figura 59: Ampliação na refração em superfície esférica. [59] Adaptado

A figura 2 representa um sistema com um objecto {PQ} de altura {y} e a sua imagem {P'Q'} de altura {y'}. A ampliação transversal da imagem é a relação entre as alturas (medidas transversalmente ao eixo principal) da imagem e do objecto.

\displaystyle k=-\frac{y'}{y} \ \ \ \ \ (59)

 

Para este caso, é válida a relação:

\displaystyle n_a \cdot \sin\theta_a = n_b \cdot \sin \theta_b \ \ \ \ \ (60)

 

Analisando os triângulos {PQV} e {P'Q'V}, obtemos as relações:

\displaystyle \tan \theta_a = \frac{y}{d} \qquad \tan \theta_b = \frac{y'}{d'} \ \ \ \ \ (61)

 

Como os raios são paraxiais, é válida a aproximação {\tan \alpha \approx \sin\alpha\approx \alpha}. Logo, as equações 61 e 60 ficam:

\displaystyle n_a \cdot \theta_a = n_b \cdot \theta_b \ \ \ \ \ (62)

 

\displaystyle \theta_a = \frac{y}{d} \qquad \theta_b = \frac{y'}{d'} \ \ \ \ \ (63)

 

Substituindo os resultados da equação 63 na equação 62, obtemos {n_a \cdot \frac{y}{d} = n_b \cdot \frac{y'}{d'}}. Isolando a fracção {\frac{y'}{y}}, obtemos:

\displaystyle k=-\frac{y'}{y}=-\frac{n_a \cdot d'}{n_b \cdot d} \ \ \ \ \ (64)

 

Está é a ampliação transversal na refração numa superfície esférica.

Podemos ver assim que, quando observamos um corpo qualquer sobre uma superfície de separação esférica, além de uma sensação de proximidade ou afastamento, podemos também ter a ilusão de que o objecto tem um tamanho transversal maior ou menor do que o real. É o caso do peixe no aquário. a ampliação da imagem vai depender da posição do objecto e do observador, bem como dos índices de refração dos meios onde estes se encontram.

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.]

 

Conheça a física dos óculos. Lentes. Características principais.

— 2.7.10. Lentes —

A possibilidade de observar a imagem dos objectos em um tamanho muitas vezes maior que o próprio objecto acabou por marcar um grande passo no desenvolvimento do mundo. A invenção do microscópio óptico e dos telescópios, permitiu ao mundo conhecer outras dimensões microscópicas (células, bactérias, vírus, etc) como astronómicas (galáxias, sistemas solares, etc).

Há certos dispositivos que são usados para aumentar, diminuir ou tornar mais nítida uma imagem. São exemplos destes dispositivos as lupas, microscópios, telescópios, as objectivas (lentes objectivas), etc. Estes dispositivos são, em geral, lentes, ou são constituídos principalmente por lentes.

As lentes acabam assim por ser uma invenção importantíssima para a humanidade. Além das aplicações anteriormente citadas, são ferramenta importante para a maioria dos humanos com deficiência de visão. Uma lente é um dispositivo óptico formado por uma substância transparente, homogénea, limitada por duas superfícies esféricas ou cilíndricas, ou por uma superfície esférica ou cilíndrica e outra plana. Por incrível que pareça, até o fundo de certos copos e garrafões enquadra-se no conceito de lente.

As lentes que aqui vamos estudar são as lentes delgadas, isto é, lentes de espessura muito pequena. Para a nomenclatura das lentes, o critério mais adotado é nomear as faces voltadas para o meio exterior, assinalando em primeiro lugar a face de maior raio de curvatura.

Figura 52 : (a) Lentes convergentes: Lente bi-convexa, lente plano-convexa, lente côncavo-convexa. (b) Lentes divergentes: Lente bi-côncava, lente plano-côncava, lente convexo-côncava.

Uma recta que seja simultaneamente perpendicular a ambas superfícies que limitam a lente é denominada eixo principal da lente. Essa recta passa necessariamente no centro das duas superfícies (no caso em que ambas sejam esféricas ou cilíndricas). O ponto de interceção desta recta (eixo principal) com a lente é denominado centro óptico da lente.

Figura 53: Eixo principal e Centro da Lente.

De acordo com as características das faces, as lentes classificam-se em dois grupos. Consideremos, inicialmente, lentes de vidro (n = 1,5) colocadas no ar (n = 1). Nestes casos, que são os mais comuns, temos:

  • Lentes cuja espessura vai diminuindo gradualmente do centro para o bordo são chamadas lentes convergentes;
  • Lentes cuja espessura vai aumentando gradualmente do centro para o bordo são chamadas lentes divergentes.

Figura 54: Representação simbólica da lente: a) Lente divergente. b) Lente convergente. [7]

Para simplificar a representação das lentes na resolução de exercícios e problemas, usaremos a representação simbólica da figura 54 .

Quando os raios luminosos incidem paralelamente ao eixo principal de uma lente convergente, refratam-se no interior da lente e emergem passando por um ponto {F'} a que se dá o nome de foco imagem da lente.

Numa lente divergente, os raios paralelos ao eixo principal refratam-se no interior e saem para fora da lente (emergem) de modo a que os seus prolongamentos passam por um ponto {F'}, denominado foco imagem da lente. O foco imagem de uma lente convergente é real e o de uma lente divergente é virtual.

Figura 55: Foco imagem: a) Lente convergente. b) Lente divergente. [4] Adaptado

Tanto nas lentes convergentes como nas lentes divergentes, há, sobre o eixo principal um ponto simétrico {F} do foco imagem {F'} em relação ao centro óptico {0} da lente. Este ponto {F} chama-se foco objecto. Os raios que passam pelo foco objecto e atingem a lente convergente, emergem paralelamente ao eixo principal. No caso de uma lente divergente, os raios incidentes cujos prolongamentos passam pelo foco objecto {F} refratam-se no interior e saem da lente paralelamente ao seu eixo principal.

Figura 56: Foco objecto: a) Lente convergente. b) Lente divergente. [4] Adaptado.

 

Se considerarmos um conjunto de raios incidentes paralelos a um eixo suplementar {S0} da lente convergente (que é um eixo constituído por uma recta que passa pelo centro óptico {0} inclinada em relação ao eixo principal da lente), eles passam pelo foco secundário {S'}. O conjunto desses focos secundários constituem o plano focal imagem.

Figura 57: Plano focal: a) Lente convergente. b) Lente divergente. [4] Adaptado

Um parâmetro muito importante para uma lente é a distância focal. A distância focal {f} de uma lente delgada é a distância entre o centro óptico {0} da lente e o seu foco imagem {F'} ou foco objecto {F}. Vale lembrar que, para lentes delgadas, a distância entre o centro e o foco objecto é igual a distância entre o centro e o foco imagem. Mais adiante, demonstraremos a seguinte fórmula:

\displaystyle \frac{1}{f}=(n_{21}-1)\cdot(\frac{1}{R_1}+\frac{1}{R_2})\ \ \ \ \ (49)

 

Em que:

  • {n_{21}}– Índice de refracção relativo do meio de que é feita a lente com respeito ao meio circundante.
  • {R_1} e {R_2} são respectivamente os raios de curvatura das faces anterior e posterior da lente.

A convenção de sinal para {R_1} e {R_2} é:

  • Se a face é convexa: {R>0}
  • Se a face é côncava: {R<0}
  • Se a face é plana: {R=\infty}

Se o valor da distância focal obtido no cálculo for positivo ({f > 0}), a lente é convergente. Se o valor da distância focal for negativo ({f <0}) a lente é divergente.

A convergência de uma lente ou potência focal é ao inverso da distância focal da lente.

\displaystyle D= \frac{1}{f} \ \ \ \ \ (50)

No sistema internacional de unidades (SI) a distância focal é expressa em metros, então, a convergência da lente é expressa em dioptrias ({D} ou {dp}).

A convergência de uma lente pode ser positiva ou negativa.

Convencionalmente:

  • Para as lentes convergentes, a convergência é positiva: {f >0}
  • Para as lentes divergentes, a convergência é negativa: {f<0}

É claro que quanto menor for a distância focal, mais acentuadamente a lente refrata os raios incidentes reunindo-os ou dispersando-os, e maior é o valor absoluto da convergência.

 

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.]

 

Como a Física explica o arco-íris? Dispersão da luz. Prisma.

— 2.7.14. Dispersão da luz. Prisma. —

O arco-íris é um fenómeno natural muito bonito, que suscita a curiosidade de muitos. Como se formam aquelas cores? De onde vêm?

A resposta desta questão está na dispersão da luz. Dispersão da luz é o fenómeno da separação de uma onda luminosa em várias componentes espectrais.

Como estudamos, existe luz monocromática (com uma única componente espectral, ou seja, um único comprimento de onda) e luz policromática (com várias componentes espectrais). A luz da maioria das fontes ordinárias (lâmpadas incandescentes, lâmpadas fluorescentes, lâmpadas de descarga, luz solar, luz emitida por aquecimento dos corpos, etc.) são policromáticas. No nosso dia-a-dia, só a luz provenientes de alguns LED´s como vermelhos, azuis, amarelos e verdes e a luz proveniente de um laser são monocromáticas.

Como estudamos também, no item em que falamos de índice de refração, a forma como feixes de diferentes comprimentos de onda passa por um material é ligeiramente diferente, ou seja, ao refratar-se numa dada superfície de separação, os raios de comprimentos de onda diferente passarão de modo diferente. Mesmo que dois feixes com comprimento de onda diferente incidam sobre uma superfície de separação com o o mesmo ângulo de incidência, os ângulos de refração serão minimamente diferentes. Essa diferença ocorre porque o índice de refração de um material não é fixo para todo tipo de radiações, ou seja, radiações diferentes, têm, para o mesmo material, índice de refração diferente. É como se a oposição que o material oferece a passagem da luz variasse de acordo com o comprimento de onda da mesma.

Alguns sistemas acentuam esta diferença e outros não. Um dos sistemas que acentua esta diferença é o prisma. Isaac Newton usou-o para mostrar que a luz branca é policromática, provocando a dispersão da luz branca num prisma, observando assim o seu espéctro.

Figura 48: Prisma. [4]

Um bloco de material transparente e homogéneo com duas faces laterais lisas e inclinadas como indica a figura 48, é um prisma.

Figura 49: Dispersão no prisma.[4]

Observe a figura 49. Quando um raio de luz policromático, por exemplo a luz branca, incide num prisma com o certo ângulo, sendo que os diversos comprimentos de onda sofrem refração como se o índice de refração do material de que é feito o prisma fosse diferente para cada um deles, os ângulos com que eles saem do prisma serão então diferentes, saindo cada um numa direcção relativamente diferente. Se colocarmos um anteparo branco no caminho do feixe que sai do prisma, poderemos observar o espéctro da cor branca (arco-íris).

Em geral, a extremidade mais delgada da gota de água apresenta formato idêntico ao de um prisma, logo, quando a luz incide sobre as gotas de água, acontece algo idêntico ao que acontece no prisma; só que, tal como no prisma, a dispersão só é observada para certos ângulos.

Figura 50: Dispersão da luz na gota de água. Arco-íris. [4]

No caso mais simples de passagem da luz no prisma, em que a luz incide sobre uma das faces do prisma e refrata-se na face imediatamente a seguir (relativamente a passagem do raio), as relações entre os diversos ângulos podem ser deduzidas.

Figura 51: Dedução das fórmulas do prisma.

Seja um raio luminoso que fica no plano de uma certa secção transversal do prisma {RST} e que incide sobre a aresta {RS} sob o ângulo de incidência {\alpha_1}. Este raio é refratado no interior do prisma com um ângulo {\beta_1} e, ainda no interior do prisma, incide sobre a face {RT} com um ângulo {\beta_2} e refrata-se novamente no ar sob o ângulo de emergência {\alpha_2}. Consideramos {n} o índice de refracção do meio de que é feito o prisma em relação ao meio ambiente e {A} o ângulo no vértice superior do prisma (vértice oposto á base do triângulo, ver figura 51).

Na figura, {c} e {d} são as normais às superfícies {RS} e {RT}, respectivamente. {\delta} é o desvio que o prisma provoca no raio incidente, ou seja, a separação angular entre o raio incidente e o raio emergente.

No triângulo {MOP}, aplicando o teorema dos ângulos internos de um triângulo, podemos obter para o ângulo {x}:

\displaystyle x=180^0-\beta_1-\beta_2 \ \ \ \ \ (45)

 

No quadrilátero {MROP}, como as rectas {c} e {d} são normais às superfícies {RS} e {RT}, então os seus ângulos internos são {90^0}. Logo, aplicando o teorema dos ângulos internos de um quadrilátero, teremos: {A+90^0+90^0+x=360^0\Rightarrow A=180^0-x}. Substituindo {x} pela equação 45, obtemos:

\displaystyle A=\beta_1+\beta_2 \ \ \ \ \ (46)

 

Analisando o triângulo {MNP}, de acordo com o teorema de ângulos opostos em rectas que se cruzam, obtemos {w=\alpha_1-\beta_1} e {z=\alpha_2-\beta_2}. Logo, {y=180^0-w-z=180^0-\alpha_1+\beta_1-\alpha_2+\beta_2}. Substituindo a equação 46, obtemos:

\displaystyle y=180^0-\alpha_1-\alpha_2+A \ \ \ \ \ (47)

 

Como {y} e {\delta} são suplementares, então {\delta=180^0-y}. Substituindo {y} pelo valor obtido na equação 47, e efectuando as devidas simplificações, obtemos:

\displaystyle \delta=\alpha_1+\alpha_2-A \ \ \ \ \ (48)

 

Os ângulos {\alpha_1} e {\beta_1}, bem como os ângulos {\alpha_2} e {\beta_2} estão relacionados pela lei de Snell-Descartes para a refração (ar-material do prisma, para o primeiro caso, e material do prisma-ar para o segundo caso).

Se o prisma estiver imerso na água ou noutra substância qualquer, devemos apenas mudar o índice de refração relativo do material de que é feito o prisma, ou seja, {n}.

Vale lembrar que podem haver situações em que a luz, na segunda superfície ({RT}, no nosso caso) sofra reflexão total interna, e o raio emergente saia num outra face. Nestes casos, estas equações não se aplicam, sendo necessário aplicar raciocínios idênticos para deduzir as suas equações.

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.]

 

Como a Física explica a deformação da imagem dos corpos submersos na água?

— 2.7.12. Refração em Dióptro plano —

Dióptro plano é o conjunto de dois meios homogéneos e transparentes, separados por uma superfície plana (ex: a água tranquila de um lago e o ar, ar e um objecto de vidro de superfície plana, etc.). Quando estamos fora da água e observamos um peixe que está dentro da água, temos a sensação de que o peixe se encontra a uma certa distância, mas se sentarmos apanha-lo, notamos que há uma diferença entre a posição real onde o peixe realmente se encontra e a posição da imagem deste peixe que nós vemos. O mesmo ocorre quando estando dentro da água (por exemplo de uma piscina), observamos uma pessoa que está na margem, acima da superfície livre da água.

Este fenómeno é chamado de profundidade aparente e é explicado através da lei de Snell-Descartes, quando se analisa a refração em um dióptro plano.

Um peixe dentro da água difunde luz em todas as direcções. Parte da luz difundida refrata-se ao atingir a superfície de separação dos meios água-ar.

Figura 45: Imagem observada num dióptro plano. [5]

Como a água é mais refringente que o ar (mais densa opticamente), os raios refratados da água para o ar afastam-se da normal e podem ser captados por um observador; este, em vez de ver directamente o objecto na posição {P}, vê a sua imagem, em {P'}, na intercecção dos prolongamentos dos raios refratados (imagem virtual do objecto real {P}). O observador fica com a sensação de que o objecto (no caso, o peixe) está mais próximo, quando na realidade ele está mais distante. Lembre-se que num sistema óptico qualquer, nós vemos a imagem produzida por este sistema óptico e não o objecto propriamente dito.

Figura 46: Profundidade aparente. [7]

Podemos estabelecer a relação entre profundidade real e profundidade aparente.

Na figura 46, o triângulo {API}, o ângulo interno do vértice A é {i_1} e no triângulo {A'PI} o ângulo no vértice {A'} é {i_2}. As suas tangentes são {tg (i_1) =\frac{PI}{AP}=\frac{x}{d}} e {tg (i_2) =\frac{PI}{A'P}=\frac{x}{d'}}. Dividindo estas duas relações, fica { \frac{tg (i_1)}{tg (i_2)} =\frac{d'}{d}}. Para observadores muito próximos da normal, {i_1} e {i_2} são muito pequenos , logo é válida a aproximação {tg (i_1) \approx sen (i_1) \approx i_1}. O mesmo ocorre com {i_2}. Logo a relação pode ser escrita por { \frac{tg (i_1)}{tg (i_2)} = \frac{sen (i_1)}{sen (i_2)} =\frac{n_2}{n_1} = \frac{d'}{d}}:

Neste caso a relação entre a profundidade real e a profundidade aparente será:

\displaystyle d=\frac{n_2}{n_1} . d' \ \ \ \ \ (39)

 

Observamos assim que a profundidade aparente {d'} é diferente da profundidade real {d}, podendo ser maior ou menor.

A profundidade aparente será menor do que a profundidade real se o meio no qual se situa o observador tiver um índice de refração menor do que o índice de refração do meio onde se encontra o objecto. Nestes casos o observador terá a sensação de que o objecto está mais próximo do que a sua posição real. Um exemplo disto é uma pessoa, na fora do lago que observa um peixe no lado.

De modo análogo, a profundidade aparente será maior do que a profundidade real quando o observador se encontrar num meio que tenha o índice de refração maior do que o índice de refração do meio onde se encontra o objecto. Neste caso, o observador terá a sensação de que o objecto está mais distante do que a sua posição real. Um exemplo disso é o caso de uma pessoa no interior da água que observa algo ou alguém fora da água.

Este conceito tem muitas consequências, com várias aplicações no dia-a-dia. Se quiseres atingir um peixe na água com um arpão, por exemplo, não deves atira-lo na direção da imagem que vês, mas sim um pouco abaixo dela. Caso contrário, falharás o alvo.

— 2.7.13. Superfície de faces paralelas —

Quando falamos de lâmina de faces paralelas (ou superfície de faces paralelas), falamos de uma placa de material transparente e homogénea, limitada por duas faces lisas, planas e paralelas.

Vários sistemas ópticos usados no nosso dia-a-dia são lâminas de faces paralelas, mas um exemplo mais simples são os vidro que constituem as janelas vidradas, muito comuns, nos dias de hoje.

Ao observarmos perpendicularmente sobre a lâmina, não ocorre nenhuma modificação na imagem, mas quando observamos obliquamente sobre ela, podemos notar uma certa deformação na imagem do objecto. Esta deformação será mais notada quanto maior for o índice de refração do material que constitui a lâmina, bem como quanto maior for a espessura da lâmina.

A deformação também aumenta com o aumento do ângulo de visualização. Este experimento pode ser facilmente realizado. Arranje um bloco (em forma de paralelepípedo) de material transparente (vidro, plástico ou outro). Caso não encontre o paralelepípedo, pode usar um material com outro formato qualquer, desde que tenha duas faces paralelas. Coloque um papel com letras num das faces e observe pela outra. Em seguida, vá inclinando a lâmina (em relação as letras e observa o que acontece com a imagem.

Figura 47: Trajecto de raios luminosos numa lâmina de faces paralelas. [7]

Na figura, a espessura da lâmina é designada por {e}, o seu índice de refracção relativo com respeito ao meio circundante (o ar) é {n} ({n>1}). O raio incidente {SD} é refratado pela face superior da lâmina passando de no caminho indicado pelo segmento {DF} e sai fora da lâmina no raio indicado por {FR} . Segundo a lei de Snell-Descartes, para a refracção pela face superior, temos:

\displaystyle 1. sen( i_1) = n . sen (r_1) \ \ \ \ \ (40)

 

e para a refracção pela face inferior, temos:

\displaystyle n. sen (r_2) = 1. sen (i_2) \ \ \ \ \ (41)

 

Ora, como se vê na figura, os ângulos {r_1} e {r_2} são iguais. Logo: { r1 = r2 = r} Substituindo esta igualdade nas equações 40 e 41, obtemos que:

\displaystyle i_1=i_2=i \ \ \ \ \ (42)

Ao atravessar a lâmina de faces paralelas o raio luminoso não muda de direcção de propagação. O raio emergente é paralelo ao raio incidente. Apesar de o raio emergente ser paralelo ao raio incidente, mas a imagem observada não é (em geral) igual ao objecto. Suponhamos que o objecto luminoso {S} emite raios pouco inclinados em relação a normal das faces da lâmina. A imagem de {S} criada pela lâmina será {S'}. O deslocamento da imagem em relação ao objecto é {\delta = SS'}. O afastamento entre os dois raios paralelos (incidente {SD} e emergente {FR}), ou seja, o deslocamento transversal do raio emergente em relação ao raio incidente é igual a {d}. A relação entre estes parâmetros poderá ser deduzida.

Consideremos a figura 47. O triângulo {FGD}, recto no ângulo sob o vértice {G}, o ângulo interno do vértice {F} será {i-r}. O seu seno será {sen (i-r) =\frac{DG}{DF}=\frac{d}{DF}}. Então:

\displaystyle DF=\frac{d}{sen(i-r)} \ \ \ \ \ (43)

 

No triângulo rectângulo {DEF}, recto em {E}, o ângulo sobre o vértice {D} é {r}, logo: {cos (r)= \frac{DE}{DF}=\frac{e}{DF}}. Então:

\displaystyle DF=\frac{e}{cos (r)} \ \ \ \ \ (44)

 

Combinando as expressões 43 com 44, obtemos :

\displaystyle d=\frac{e . sen (i-r)}{cos (r)} \ \ \ \ \ (45)

 

O afastamento entre os raios será directamente proporcional a espessura da lâmina. Podemos também verificar, experimentalmente , que o afastamento entre os raios {d} aumenta com o aumento do ângulo de incidência. Mas demonstrar isso matematicamente acaba por ser um pouco extenso. Por outro lado, se consideramos o triângulo {CHI}, recto em {I}, o ângulo sob o vértice {C} será {90^0-i}. Logo, o seu cosseno será {cos ( 90^0-i)=\frac{CI}{CH}=\frac{d}{\delta}}. Lembre-se que {cos(90^0-i)=sen (i) \Rightarrow sen (i)=\frac{d}{\delta}\Rightarrow d= \delta . sen (i)}. Substituindo isso na equação 43, obtemos:

\displaystyle \delta=\frac{e . sen (i-r)}{cos (r). sen (i)}\ \ \ \ \ (46)

 

Desenvolvendo o seno da diferença, separando os denominadores, e simplificando, obtemos a expressão obtemos:

\displaystyle \delta=(1-\frac{cos(i)}{n . cos (r)}).e \ \ \ \ \ (47)

 

Quando a lâmina é bastante delgada (fina, pouco espessa), podemos considerar que o raio emergente é confundido com o raio incidente.

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.]

A luz pode ser usada em telecomunicações? Fibras ópticas.

— 2.7.6. Fibras ópticas —

A reflexão total interna da luz é utilizada em telecomunicações para a transmissão da luz através de cabos de fibras flexíveis transparentes chamados de fibras ópticas. As fibras ópticas permitiram o surgimento de uma nova forma de telecomunicar, que apresenta diversas vantagens em relação a comunicação tradicional por ondas electromagnéticas.

Uma das grande vantagens é a imunidade da luz às restantes ondas electromagnéticas, oferecendo assim um possibilidade de comunicar com menos ruído.

As fibras ópticas são tubos cilíndricos de vidro de quartzo ou de plástico, muito finos e transparentes, de reduzidas dimensões, usados como veículos de transmissão da luz de um meio para o outro. São constituídas por um núcleo de forma cilíndrica, de diâmetro de valor {d = 62,5 \mu m} (para a fibra de vidro) ou de {d = 900 \mu m} (para a fibra de plástico), composto por duas camadas de material transparente, sendo a camada interior o núcleo e a camada exterior o invólucro ou casca, onde o índice de refracção do núcleo {n_1} é maior que o índice de refracção do invólucro {n_2}. O conjunto é protegido de um revestimento de plástico.

 

Figura 42: Constituição da fibra óptica. [4]

A fibra é como se fosse um pequeno tubo, que permite que a luz atravesse-o sem sofrer dispersão na lateral, ou seja, sem que a luz se refrate nas paredes laterais. Um fino feixe de luz penetra por uma das extremidades do tubo (a fibra) e propaga-se ao longo da fibra, sofrendo reflexão total sempre que incida sobre a superfície de separação dos meios 1 (núcleo) e meio 2 (casca).

As fibras ópticas possuem muitas aplicações:

  • Nas telecomunicações: Os cabos ópticos constituídos por várias dezenas de fibras são mais leves que os cabos de cobre com capacidade equivalente. Em igualdade de condições, podem enviar 100.000 vezes mais informações.
  • Na medicina: Observações clínicas de vários órgãos internos como o estômago, intestinos, útero, etc., são usados dois feixes de fibras ópticas e introduzidas no interior do corpo do paciente. Um leva o sinal luminoso e, o outro, trás a imagem do órgão, permitindo ao médico fazer a observação. A fonte da luz utilizada é sempre o laser, pela sua grande potência e por poder ser transmitido por meio de feixes muito finos.
  • Na decoração: Usam-se em candeeiros e iluminação de fontenários.

 

Figura 43: Trajecto do raio luminosos através da Fibra óptica. [7]

O mecanismo básico de transmissão da luz ao longo da fibra baseia-se na óptica geométrica. A diferença do índice de refração do núcleo com relação à casca é representada pelo perfil de índices da fibra óptica. Essa diferença pode ser conseguida usando-se materiais dieléctricos distintos (por exemplo, sílica-plástico, diferentes plásticos, etc.) ou através de dopagens convenientes de materiais semicondutores (por exemplo, GeO , P O , B O , F etc.) na sílica (SiO).

A variação de índices de refração pode ser feita de modo gradual ou descontínuo, originando diferentes formatos de perfil de índices. As alternativas quanto ao tipo de material e ao perfil de índices de refração implicam a existência de diferentes tipos de fibras ópticas com características de transmissão, e, portanto, aplicações, distintas. Por exemplo, a capacidade de transmissão, geral e fundamentalmente depende (além do seu comprimento) da geometria e do perfil de índices da fibra óptica. O tipo de material utilizado, por sua vez, é determinante quanto às frequências ópticas suportadas e aos níveis de atenuação correspondente.

As características mecânicas das fibras ópticas expressam em termos de resistência e flexibilidade, dependem do material dielétrico utilizado e da qualidade dos processos de fabricação. Embora mais resistentes que fios de aço de mesmas dimensões, as fibras ópticas costumam ter a sua estrutura básica protegida das perturbações mecânicas ou ambientais por encapsulamentos ou revestimentos diversos.

 

Figura 44: Cabo óptico agrupado com 70 fibras. [7]

Elas costumam ser classificadas a partir de suas características básicas de transmissão e nas facilidades operacionais em termos de conexões e acoplamento com fontes e detectores de luz. É possível adotar classificações específicas, como:

  • Composição material: fibras com o par núcleo-casca do tipo sílica-sílica, sílica-plástico ou plástico-plástico tem propriedades distintas quanto às facilidades operacionais e de fabricação, às perdas de transmissão, à tolerância a temperaturas etc.
  • Frequências ópticas de atuação: esta classificação, que inclui, por exemplo, as fibras no infravermelho e as fibras no ultravioleta, refletem o desenvolvimento de fibras ópticas para operar fora da faixa típica actual usada em comunicações.
  • Geometria ou sensibilidade à polarização: além da secção circular típica, as fibras monomodo podem ter um núcleo de secção elíptica com implicações importantes quanto à filtragem e manutenção de polarização.

· Os Principais tipos são:

  • Fibra de Índice Degrau (Step Index);
  • Fibra de Índice Gradual (Graded Index);
  • Fibra Monomodo.

 

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.].

Entenda matematicamente a ampliação de imagem do espelho. Espelhos esféricos 2.

— 2.7.9. Fórmula do espelho esférico e convenção de sinais —

Quando um objecto está diante de um espelho, definimos {d}, a distancia entre o objecto e o espelho e {d'} a distância entre a imagem e o espelho. A fórmula do espelho esférico (ou equação de Gauss) permite determinar de forma analítica as características da imagem. Esta fórmula relaciona entre si as grandezas {d}, {d'} e {f} do espelho esférico. Escolhemos sobre o eixo principal do espelho, o sentido da luz incidente como sentido positivo e sobre o eixo perpendicular ao eixo principal, o sentido apresentado para cima como sentido positivo.

Figura 41: Dedução da Equação de Gauss. [5]

Vamos imaginar que o objecto está sobre o eixo principal, a uma distancia superior ao raio, num ponto {P} (Ver fig. 41). O Ponto {P} é o objecto e o Ponto {P'} será a imagem. Podemos ver então que qualquer raio que incidir sobre o espelho passando pelo ponto {P}, quando for refletido, irá passar pelo ponto {P'}. Vamos analisar o caso de um raio incidente que seja refletido no ponto {B} do espelho.

No triângulo {PCB}, o ângulo interno no vértice {C} é {180^0-\phi}. A soma dos ângulos interno deste triângulo deve ser {180^0}, então {\alpha+180^0-\phi+\theta=180^0 }, o que nos dá :

\displaystyle \alpha+\theta=\phi. \ \ \ \ \ (28)

 

De modo análogo, no triângulo {CP'B}, o ângulo interno no vértice {P'} é {180^0-\beta}. A soma dos ângulos internos deve ser {180^0}, então {\phi+180^-\beta+\theta=180^0}, o que nos dá:

\displaystyle \theta=\beta-\phi. \ \ \ \ \ (29)

 

Substituindo 29 em 28, obtemos:

\displaystyle \alpha+\beta=2.\phi. \ \ \ \ \ (30)

 

Analisando os triângulos rectângulos, temos {tg\alpha=\frac{h}{d-\delta} }, {tg\beta=\frac{h}{d'-\delta} } e {tg\phi=\frac{h}{R-\delta} }. Para ângulos {\alpha} muitos pequenos, os ângulos {\beta} e {\phi} também o serão. Nestas circunstâncias, serão válidas as aproximações {sen\alpha\approx tg\alpha \approx \alpha} e {\delta\approx 0}. O mesmo será válido para {\beta} e para {\phi}.

Logo, as relações no triângulo reduzir-se-ão para:

\displaystyle \alpha=\frac{h}{d} \ \ \ \ \ (31)

 

\displaystyle \beta=\frac{h}{d'} \ \ \ \ \ (32)

 

\displaystyle \phi=\frac{h}{R} \ \ \ \ \ (33)

 

Combinando as equações 31, 32 e 33 com a equação 30, e eliminando {h}, obtemos:

\displaystyle \frac{1}{d}+\frac{1}{d'}=\frac{2}{R} \ \ \ \ \ (34)

 

Como {f=R/2\Rightarrow R=2f}, então podemos escrever:

\displaystyle \frac{1}{d}+\frac{1}{d'}=\frac{1}{f} \ \ \ \ \ (35)

 

Esta é a equação do espelho.

Nota: quando se aplica esta equação, é preciso recordar as seguintes convenções de sinais:

  • Se o objecto é real: {d > 0}.
  • Se o objecto é virtual: {d <0}.
  • Se a imagem é real: {d' > 0}.
  • Se a imagem é virtual: {d' <0}.
  • Se o espelho é côncavo: {f > 0}.
  • Se o espelho é convexo: {f <0}.

Podemos também deduzir a relação entre {R} e {f} a partir desta equação. Raios paralelos ao eixo principal são obtidos quando o objecto está no infinito, ou seja, {d=\infty} e a imagem será formada no foco, ou seja, {d'=f}. Substituindo isso na equação 35, obtemos:

\displaystyle \frac{1}{\infty}+\frac{1}{f}=\frac{2}{R} \Rightarrow f=\frac{R}{2} \ \ \ \ \ (36)

 

Podemos ainda deduzir a relação entre distâncias num espelho plano. Um espelho plano pode ser entendido como um espelho esférico com raio {\infty}, logo:{ \frac{1}{d}+\frac{1}{d'}=\frac{2}{\infty} \Rightarrow d=-d'}. Num espelho plano, a imagem está sempre situada no lado oposto ao objecto. Se o objecto é real, a imagem é virtual e se o objecto é virtual, então a imagem é real. A distância é igual em módulo… Mas tudo isso já foi demonstrado graficamente.

— 2.7.10. Ampliação linear do objecto —

Por definição, a ampliação linear do objecto é a razão entre o tamanho da imagem [medido transversalmente ao eixo principal) e o tamanho do objecto(também transversalmente). Se chamarmos de {h} para a altura do objecto e {h'} para a altura da imagem, então a ampliação será:

\displaystyle K=\frac{h '}{h} \ \ \ \ \ (37)

O termo ampliação poder gerar alguma confusão se associamo-lo a ideia de aumento. Em Óptica Geométrica, a ampliação refere-se apenas a razão entre o tamanho da imagem e o tamanho do objecto, não importando se houve aumento ou diminuição. A ampliação também pode ser relacionada com outros parâmetros. Usando a congruência dos triângulos {ABV} e {A'B'V} da figura 2, temos:

\displaystyle K=-\frac{d '}{d} \ \ \ \ \ (38)

O sinal deve ser respeitado de acordo com a convenção de sinais. Se {h>0} então o objecto é directo (para cima) e se {h<0} então é invertido. o mesmo se passa com a imagem.

Nota:

  • Se {K} é positiva, a imagem {A'B'} tem o mesmo sentido que o objecto {AB}.
  • Se {K} é negativa, a imagem {A'B'} tem sentido contrário ao do objecto {AB}.
  • Se {\mid K \mid >1} a imagem é maior que o objecto.
  • Se {\mid K \mid <1} a imagem é menor que o objecto.

 

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.].

Entendendo melhor os espelhos esféricos. Espelhos esféricos 1.

— 2.7.7. Espelhos esféricos —

O espelho esférico é uma superfície lisa, mas de forma esférica que reflete a luz.

Os espelhos esféricos apresentam, em geral, imagens sem nitidez. Gauss observou que, se os raios incidentes obedecessem a certas condições, as imagens seriam obtidas com maior nitidez. Essas condições podem resumir-se no seguinte:

  • Os raios incidentes sobre o espelho devem ser paralelos ou pouco inclinados em relação ao eixo principal e devem ser próximos ao mesmo.
  • A abertura útil do espelho deve ser pequena ({\alpha < 10^0}).

Estudaremos apenas os espelhos esféricos de Gauss.

Imaginemos uma casca metálica cuja sua superfície é refletora, quer a interior como a exterior. Se cortarmos ao meio esta casca, obtemos duas superfícies esféricas refletoras.

Figura 34: Casca esférica reflectora. Espelho Côncavo e Convexo. [4]

Se a luz estiver a refletir numa das superfícies internas de qualquer metade da casca , dizemos que o espelho é côncavo, e se a reflexão ocorrer num superfície externa qualquer de qualquer metade da casca, dizemos que o espelho é convexo. O espelho côncavo também é chamado de espelho convergente e o espelho convexo também é chamado de espelho divergente. Isso deve-se ao modo como um conjunto de raios paralelos são refletidos neles (ver figura 36).

Os principais elementos de um espelho esférico (representados na figura 35) são:

  • A recta CV, denominada eixo principal do espelho.
  • O raio de curvatura R, do espelho (raio de curvatura da esfera que constitui o espelho).
  • O ponto V (intersecção entre o eixo principal e o espelho), denominado vértice do espelho.
  • O ponto C (centro de curvatura da esfera), denominado centro do espelho.

Figura 35: Elementos do espelho. Espelho Côncavo e Convexo. [7]

Além dos pontos apresentados, há um ponto com especial destaque no espelho. O Foco.

Quando um feixe de raios luminosos paralelos incidir sobre um espelho côncavo, incidindo paralelamente ao seu eixo principal, observaremos, traçando os raios refletidos de acordo com as leis de reflexão, que eles convergem no ponto {F'}, denominado foco imagem do espelho. Por este motivo, é costume dizer que o espelho côncavo é um espelho convergente, porque os raios paralelos ao incidirem sobre ele, convergem (encontram-se) num ponto.

Por outro lado, fazendo um feixe de raios incidir paralelamente ao eixo de um espelho convexo, observamos que eles divergem após a reflexão. Entretanto, os prolongamentos de todos os raios reflectidos passam por um mesmo ponto, {F'}, que é o foco imagem do espelho convexo. Assim, tudo se passa como se o feixe divergente fosse emitido de {F'}. O espelho convexo costuma, então, ser denominado espelho divergente.

Figura 36: Foco imagem de um espelho. [7]

De acordo com o princípio de reversibilidade dos raios luminosos, se mudarmos o sentido de propagação da luz nos dois casos anteriores, ou seja, se usarmos o ponto {F'} como fontes de luz, então os raios reflectidos sobre os espelhos côncavo e convexo são raios paralelos ao eixo principal {CV}. Assim, os focos imagens {F]} são também chamados focos objectos {F}, quer dizer que, em outras palavras, para os espelhos côncavo e convexo, os focos imagem {F'} e objecto {F} são confundidos. Por isso mesmo, os focos imagem {F'} e objecto {F} de um espelho (côncavo ou convexo) podem ser chamadas simplesmente por foco do espelho.

A distância {f}, entre o foco e o vértice, é denominada distância focal do espelho.

Figura 37: Dedução da formula de Distância Focal. [7]

Na figura 37,o raio incidente é paralelo ao eixo principal {CV} do espelho côncavo. Como {C} é o centro de curvatura e {CI} é a normal ao espelho em relação ao ponto {I}, assim, podemos traçar o raio reflectido, formando com a normal um ângulo {i'} igual ao ângulo de incidência {i}. Como sabemos, o ponto em que este raio corta o eixo {CV} é o foco do espelho, visto ser um raio que incide paralelamente ao eixo principal. Pelo teorema de rectas paralelas, o ângulo {i} deve ser igual ao ângulo {x}, e como a lei de reflexão impõe que {i=i'}, então o triângulo {CFI} da figura 37 é isóscele porque tem dois ângulos iguais. Logo, {CF = FI}. Vamos agora supor que o raio incidente {S} incidem sobre o espelho em pontos muito próximos do seu vértice. Nestas condições, podemos considerar que {FI = FV}. Então {CF = FV} e {CV=CF+FV=2FV}. Como, {CV=R} e {FV=f}, logo, temos:

\displaystyle f=\frac{R}{2} \ \ \ \ \ (24)

 

Este resultado é válido também para um espelho convexo. Então, podemos destacar: A distância focal {f} de um espelho esférico é igual a metade do seu raio de curvatura {R}, isto é, {f =\frac{R}{2}} . Noutras palavras, o foco de um espelho esférico está situado no meio da distância entre o centro e o vértice do espelho. Os espelhos esféricos tem muitas aplicações em sistemas que requerem alteração do tamanho da imagem. Por exemplo: Espelho retrovisores dos veículos automóveis e não só, sistemas de captação de energia solar, sistemas de vigilância, etc. Uma outra aplicação muito importante dos espelhos esféricos é na construção de telescópios refletores. Ao contrário dos telescópios refractores, os refletores aplicam um espelho como elemento principal, ao invés de lente. O modelo mais comum é o popularmente conhecido “Newtoniano” que utiliza um espelho côncavo montado no fundo do tubo do telescópio. Aplica-se um outro espelho, chamado “secundário”, que direciona a luz captada pelo espelho principal para a direção da ocular. Esses modelos permitem grandes aberturas e quando bem construídos produzem excelentes imagens.

Figura 38:Telescópio reflector. [4]

— 2.7.8. Imagens produzidas pelos espelhos esféricos —

Podemos construir a imagem ou localizar com maior facilidade a sua posição nos espelhos esféricos fazendo uso de determinados raios luminosos, denominados raios auxiliares, os quais apresentamos a seguir:

  • O raio luminoso que incide no espelho côncavo paralelamente ao seu eixo principal, reflete-se passando pelo foco.
  • O raio luminoso que incide sobre o espelho convexo paralelamente ao seu eixo, reflete-se de tal modo que o seu prolongamento passa pelo foco.
  • O raio luminoso que incide num espelho côncavo passando pelo seu foco, reflete-se paralelamente ao eixo principal do espelho.
  • Um raio luminoso que incide num espelho convexo de tal maneira que sua direcção passe pelo foco, reflete-se paralelamente ao eixo principal do espelho.
  • O raio luminoso que incide sobre o espelho côncavo passando pelo seu centro de curvatura, reflete sobre si mesmo (este raio incide perpendicularmente ao espelho).
  • O raio luminoso que incide sobre o espelho convexo de tal maneira que seu prolongamento passe pelo centro de curvatura do espelho, reflete-se sobre si mesmo.
  • Um raio que incide sobre o vértice do espelho, reflete-se segundo a lei da reflexão, sendo que a normal fica sobre o eixo principal (como se o eixo principal fosse a normal).

Figura 39: Raios auxiliares. [7] Adaptado

Para encontrar a imagem que o espelho formaria de um objecto, só devemos encontrar a imagem dos vários pontos que constituem o objecto. Para encontrar cada um desses pontos imagem, devemos, com a ajuda dos raios auxiliares descritos acima traçar a dois raios que passem pelo ponto objecto e a partir dos seu raios emergentes, determinar a sua imagem. Vale recordar que, quer o objecto como a imagem podem ser virtuais ou reais.

Figura 40: Formação da imagem num espelho esférico côncavo. [7]

Para um espelho côncavo temos:

  1. Quando o objecto real {AB} está situado a uma distância {d} maior que a dupla distância focal, a sua imagem {A'B'} é real, invertida e menor que o objecto e fica situada entre o foco e o centro de curvatura do espelho.
  2. , Quando o objecto real {AB} está situado entre o foco e o centro de curvatura do espelho, a sua imagem {A'B'} é real, invertida, maior que o objecto e está situada a uma distância superior ao raio de curvatura do espelho.
  3. Quando o objecto real está situado entre o foco e o vértice do espelho, a sua imagem {A'B'} é virtual, direita e maior que o objecto.

Também podemos observar o seguinte para um espelho convexo: Quando o objecto {AB} é real e fica numa posição qualquer diante do espelho convexo, a sua imagem {A'B'} é sempre virtual, direita e menor que o objecto (ex: retrovisor de um automóvel).

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO [s.d.].

Entenda matematicamente a imagem do espelho. Espelhos planos.

— 2.7.6. Espelhos planos —

O espelho plano é uma superfície lisa e plana, bem polida, que reflete especularmente a luz (reflexão regular). Por exemplo, uma placa de vidro plana relativamente fina, cuja face traseira é prateada ou uma placa metálica niquelada são exemplos de um espelho plano. A visão humana ocorre devido aos raios de luz que chegam aos nossos olhos. Dependendo de como esses raios chegam, podem nos transmitir sensações diferentes sobre a forma dos objectos e a distância a que eles se encontram. Sensações sim, porque, por vezes pode não ser a realidade.

Vejamos o exemplo da figura 30. Quando um observador está situado em frente de um espelho, ele observa parte dos raios de luz reflectidos pelo espelho. Este feixe parece ter sido emitido do ponto {A'}, isto é, tudo se passa como se no ponto {A'} existisse um objecto emitindo aquele feixe. É por isso que o observador tem a sensação que o objecto (que na realidade está situado no ponto {A}) está no ponto {A'}. O ponto {A'} é chamado de imagem do objecto {A}.

A imagem {A'} está situada atrás do espelho, no ponto de encontro dos prolongamentos dos raios reflectidos.

A nível de Óptica Geométrica, definimos como ponto objecto como sendo o ponto de intersecção dos raios incidentes (ou, no caso em que estes não chegam a interceptar-se, o ponto de intersecção dos prolongamentos dos raios incidentes).

O ponto imagem é o ponto de intersecção dos raios emergentes (refletidos ou refratados do sistema óptico), ou, no caso em que estes não se interceptem, o ponto de intersecção dos prolongamentos dos raios emergentes. Consideramos, raios emergentes, aos raios que emergem (ou saem) do sistema.

Figura 30: Imagem de um espelho plano.[7]

Para se determinar a posição da imagem de um pequeno objecto pontual A, colocado em frente de um espelho plano, temos apenas de traçar raios luminosos que partem do objecto e se reflectem no espelho. Atenção á lei da reflexão. Pelo menos dois raios. Isto foi feito na figura 2 onde foram traçados os raios incidentes {1} e {2} e os raios refletidos {1'} e {2'}. A imagem seria o ponto de intersecção de {1'} e {2'}, mas como podemos ver na figura, eles são divergentes. A posições da imagem , {A'}, é encontrada prolongando-se os raios reflectidos {1'} e {2'}.

Quando o objecto (ou a imagem) é formado pela intercessão dos raios incidentes (ou emergentes), então é chamado de objecto (ou imagem) real. Quando os raios incidentes (ou emergentes) são divergentes, então o objecto (ou a imagem) será formado pela intercessão dos prolongamentos dos raios incidentes (ou emergentes), então será chamado de objecto (ou imagem) virtual.

O conceito de imagem real e virtual pode parecer abstrato, mas na realidade não. É um conceito muito prático e útil no dia -a-dia. Suponhamos que vamos usar um espelho para projectar uma imagem sobre um filme fotográfico a fim de ser revelada esta imagem. Neste caso, devemos colocar o filme no ponto onde se formará a imagem. Se nesse ponto se formar uma imagem real, após a revelação do filme, teremos a imagem do objecto estampada no filme. Mas se este ponto onde foi colocado o filme é um ponto onde se forma uma imagem virtual, ao revelarmos o filme não aparecerá nada além de ruídos… Porquê? Na imagem virtual, a luz nem chegara efectivamente naquele ponto. A luz é desviada antes de chegar naquele ponto, portanto, não chega a interagir com o filme fotográfico. Esse conceito é muito útil em projecções.

A imagem formada por um espelho plano está sempre situada a uma distância (em relação ao espelho) igual á distância entre o objecto e o espelho. Isso pode ser facilmente demonstrado pela figura 31.

Figura 31: Relação entre distâncias no espelho. [7] Adaptado

O objecto é {A} e a sua imagem é {A'}. O raio incidente é {AI} e o refletido é {AR}. A distancia entre o objecto e o espelho é {H} e a distância entre a imagem e o espelho é {D}. Podemos notar que o objecto e a imagem estão sob uma mesma linha perpendicularmente ao espelho. A lei da reflexão impõe que {i=i'}, e o teorema de ângulos opostos pelo vértice impõe que {x=90^0-i'}. Logo, os triângulos {API} e {A'PI} são congruentes. Como o cateto adjacente, em relação ao vértice I são iguais, isto implica que todos os ângulos equivalentes dos dois triângulos sejam iguais, logo, todos os lados também o são. Sendo assim, {H=D}.

Se enviarmos um feixe luminoso convergente sobre um espelho plano, mas de modos que o ponto de convergência fique por detrás do espelho, criamos um objecto virtual no ponto {A}. Neste caso, o feixe luminoso reflectido convergirá no ponto {A'} que fica em frente do espelho a uma mesma distância do objecto ao espelho. Este ponto luminoso {A'} pode ser recebido numa tela e é chamado imagem real do objecto virtual {A} (ver figura 32).

Figura 32: Objecto virtual – imagem real.[7] Adaptado

Imaginemos agora um objecto que não possa ser reduzido a um ponto, ou seja, um objecto extenso. Um objeto extenso pode ser considerado como um conjunto de pontos. A sua imagem será determinada determinando a imagem de cada um dos ponto que o constituem e ligando assim estes pontos imagem.

Figura 33: Imagem de um objecto extenso. [4]

A imagem de espelhos planos sempre é invertida, de mesmo tamanho e de natureza oposta ao objecto, ou seja, se o objecto é virtual então a imagem é real e vice-versa.

A imagem é invertida em que sentido? Quando estás em frente ao espelho a tua orelha direita fica ao teu lado esquerdo e a tua orelha esquerda fica do teu lado direito. Outra forma simples de verificar que a imagem de um espelho plano é invertida é colocarmos uma t-shirt com algum texto escrito na parte de frente e posicionarmos em frente a um espelho. Como aparece o texto na imagem?

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO [s.d.].

Como a Física explica a miragem? Princípio de Fermat. Princípio de Huygens.

— 2.5. Principio de Fermat —

A propagação rectilínea da luz pode parecer um principio fundamental , do qual derivamos muitos outros principios da Óptica Geométrica, mas podemos mostrar que não. Podemos mesmo pensar que a propagação rectilínea da luz é uma consequência de um comportamento peculiar que a mesma apresenta. Isto, na realidade, é consequência do principio de movimento da luz.

Quando queremos sair de um lugar para outro, procuramos escolher, em geral, a rota que nos apresente um caminho percorrido menor. Mas na Natureza isso não é regra… Os movimentos naturais podem ocorrer em caminhos que não obedecem ao princípio do menor caminho. Repare no exemplo da corrente eléctrica (isto se já estiver familiarizado com o electromagnetismo…): Se juntarmos dois condutores, por exemplo, um de {100m} e outro de {120m}, sendo que o condutor maior tenha uma resistência eléctrica muito menor que o segundo. Ao estabelecermos uma diferença de potencial nos dois, observamos que haverá uma corrente eléctrica maior no condutor mais comprido. Podemos imaginar que, um electrão na extremidade de potencial menor, com duas opções de caminho, teria mais probabilidade de escolher o caminho mais longo, onde há menos oposição, do que optar pelo caminho mais curto.

Imagine um dia de intenso congestionamento e que pretende sair de sua casa para a Universidade, de carro. Indo pela via principal, enfrentas um congestionamento de transito terrível, e levarias duas horas. Mas indo por um atalho, que é bem mais distante, levarias menos de uma hora. O quê escolherias?

De certeza que escolheu o caminho mais longo, desde que chegue mais rápido… pois a luz também comporta-se assim e este é o conteúdo fundamental do princípio de Fermat.

O princípio de Fermat estabelece que a luz, no caso em que não sofre reflexões, propaga-se de um ponto para o outro pela trajectória que leva o menor tempo (princípio do tempo mínimo).

Para entendermos melhor o princípio de Fermat, vamos considerar o exemplo da luz propagando-se em vários meios com índice de refração diferentes. Saindo do ponto A para o ponto B, era esperado que a luz percorresse a trajetória rectilínea que une estes ponto, mas tal não acontece. A luz seguirá a trajectória descrita na figura 25.

Figura 25: Propagação de um raio numa série de meios homogéneos. [3] Adaptado.

Porque não seguiu a trajectória rectilínea? A resposta está no princípio de Fermat.

O tempo total para ele realizar o percurso indicado é dado pelo somatório dos tempos gastos em cada meio:

\displaystyle t=\sum_{i=1}^n t_i \ \ \ \ \ (20)

O tempo percorrido em cada porção do trajecto é {t_i=\frac{d_i}{v_i}}. Se relacionarmos a velocidade de propagação da luz no meio com o índice de refração, obteremos que {n_i=\frac{c}{v_i}\Rightarrow v_i=\frac{c}{n_i}}. Então,{t_i= \frac{n_i.d_i}{c}=\frac{1}{c} . n_i . d_i} Logo: {t=\sum_{i=1}^n \frac{1}{c} . n_i . d_i = \frac{1}{c} \sum_{i=1}^n . n_i . d_i} O parâmetro {\sum_{i=1}^n . n_i . d_i=[\Delta]} é chamado de caminho óptico. Então, o tempo mínimo, não corresponde exactamente a trajectória com menor distância, mas sim àquela com menor caminho óptico.

O princípio de Fermat é muito útil, pois ele explica aspectos que determinam a trajectória de um feixe luminoso. Com o princípio de Fermat, podemos até mesmo deduzir a Lei de Snell. Consideremos o exemplo da figura 26.

Figura 26: Dedução da Lei de Snell. [3] Adaptado.

Vamos supor que a luz saia do ponto {P_1} para o ponto {P_2}. Qual seria a trajectória? Sabemos que num meio homogéneo, a luz propaga-se rectilineamente, portanto a trajectória no meio 1 e no meio 2 são retilíneas. Mas esta trajectória deve obedecer o princípio de Fermat, ou seja, deve ser feita no menor caminho óptico. Neste caso, temos:

{[\Delta]= n_1 . d_1 + n_2 . d_2 }

Usando os parâmetros da figura, o caminho óptico pode ser escrito da seguinte forma:

\displaystyle [\Delta]=n_1. \sqrt{(x_1)^{2}+(y_1)^2} + n_2. \sqrt{(x_2)^{2}+(y_2)^2} \ \ \ \ \

\displaystyle [\Delta]=n_1. \sqrt{(x_1)^{2}+(y_1)^2} + n_2. \sqrt{(x_2)^{2}+(y-y_1)^2} \ \ \ \ \

Como os pontos {P_1} e {P_2} são fixos, então {x_1}e {x_2} também o são. Mas {y_1} e {y_2} podem variar em função da trajectória.

Como a trajectória deve ser aquela para a qual o caminho óptico é mínimo, então vamos derivar o caminho óptico em relação a uma das suas variáveis (no caso {y_1}) e igualar a sua derivada a zero.

\displaystyle \frac{d [\Delta]}{d y_1}=\frac{2. n_1. y_1}{2. \sqrt{(x_1)^{2}+(y_1)^2} }+\frac{-2. n_2. (y-y_1)}{2. \sqrt{(x_2)^{2}+(y-y_1)^2} }=0 \ \ \ \ \ (21)

Simplificando a expressão obtemos:

\displaystyle \frac{d [\Delta]}{d y_1}=\frac{n_1. y_1}{\sqrt{(x_1)^{2}+(y_1)^2} }-\frac{n_2. y_2}{\sqrt{(x_2)^{2}+(y_2)^2} }=0 \ \ \ \ \ (22)

 

Lembre-se que {\frac{y_1}{\sqrt{(x_1)^{2}+(y_1)^2} }=sen\theta_1} e {\frac{ (y_2)}{sqrt{(x_2)^{2}+(y_2)^2} }=sen\theta_2}. Logo, a equação 22 pode ser escrita da seguinte forma:

\displaystyle n_1 sen\theta_1= n_2 sen\theta_2 \ \ \ \ \ (23)

 

Concluímos assim que a trajectória seguida pelos raios de luz entre os pontos dados, seria aquela que obedece a lei de Snell.

Este princípio, explica a trajectória escolhidas pelos raios luminosos em diversas situações. Uma delas é a miragem.

Quando o a temperatura atmosférica está muita alta (normalmente em dias muito ensolarados), ao olharmos obliquamente para o chão, numa direcção de observação quase que horizontal, numa estrada ou até mesmo num deserto, temos a sensação de ver água no chão, devido ao brilho que observamos no chão, que é idêntico ao brilho da luz refletida no chão quando este está molhado. Por isso, ficamos com a sensação que há água no chão.

Mas ao aproximarmo-nos, obervamos que não há água nenhuma. O que estávamos a ver na realidade é a luz do sol (mas luz directa do sol, sem ser refletida) que sofreu um desvio e moveu-se curvamente até aos nossos olhos. A luz vem da direcção do chão, mas é a luz solar a incidir directamente aos nossos olhos. Essa mudança de direcção ocorre devido as variações do índice de refração do ar com a temperatura. Os pontos próximos do chão estarão mais aquecidos e terão um índice de refração diferente dos pontos mais afastados dele. Assim o índice de refração do ar não é constante, e portanto, a luz já não se propaga rectilineamente.

 

 

— 2.6. Princípio de Huygens —

O principio de Huygens, é uma ferramenta muito útil para a Óptica Geométrica, bem como para a Óptica Ondulatória, podendo servir de base para comprovar muitas das leis destas duas áreas da Óptica, e dando mais um contributo para a sustentação da teoria de dualidade onda- partícula.

Como sabemos (da mecânica e do electromagnetismo) uma onda é uma perturbação que se propaga no espaço, e no caso da luz, é uma perturbação do campo electromagnético que se propaga no espaço.

Para melhor imaginarmos uma onda, é bom recordar-se das ondas que se criam na superfície da água tranquila quando deixamos cair um objecto nela.

Existirão sempre vários pontos que terão o mesmo tipo de movimento. O conjunto de todos os pontos da onda que tenham o mesmo tipo de movimento e que possam ser interligados por uma envolvente são chamados de frente de onda. Por exemplo, nas ondas criadas na superfície da água, podemos ver as crias que formam uma superfície sobrelevada na água.

Segundo Huygens, cada ponto na frente de onda age como uma fonte produzindo ondas secundárias que espalham em todas as direções, com uma velocidade igual a velocidade de propagação da onda. A função envolvente das frentes de onda das ondas secundárias forma a nova frente de onda total. A figura 27 ilustra este conceito.

Figura 27: Ilustração do princípio de Huygens para a construção geométrica de uma frente de onda, a partir de uma frente de onda anterior.[5]

O principio de Huygens vai nos ajudar a prever o comportamento da onda no seu movimento, bem como a passagem da onda por certos objectos.

Podemos utilizar o princípio de Huygens para deduzir a lei de reflexão e a lei de refração, bem como a difração da luz. Acompanhe, por exemplo, a dedução da lei de reflexão. Considere a figura 28 onde uma onda plana dirige-se a um obstáculo {MM'} plano.

Figura 28: Dedução da lei de reflexão através do princípio de Huygens. [5]Adaptado

A linha {AA'} representa a frente de onda de uma onda plana num dado instante {t}. A recta {OB'} representa a frente de onda da mesma onda num outro instante {t+\Delta t} e a recta {NC'} representa a frente de onda da mesma onda num outro instante {t+2.\Delta t}

Os pontos da frente de onda {AA'} que estejam acima do ponto {P}, apor o intervalo de tempo {\Delta t} vão constituir a frente de onda {OB'}. Mas os pontos da frente de onda {AA'} abaixo do ponto {P}, após esse intervalo, ter-se-ão chocado com obstáculo o obstáculo {MM'} e ter-se-ão refletido, seguindo a trajectória {OB}. o mesmo sucede com os pontos da frente de onda {OB'} após o intervalo de tempo {2.\Delta t}. Queremos mostrar a relação entre os ângulos da frente de onda {OB'} (que corresponde a onda incidente) e a frente de onda {OB} ( que corresponde a onda refletida). Se analisarmos bem, no instante {t}, o ponto {P} encontra-se a uma distância {vt} do ponto {O} (que éstá sobre o obstáculo{MM'}) enquanto que o ponto {A} já se encontra no obstáculo {MM'}. Portanto, de acordo com o princípio de Huygens, o ponto {P} vai originar uma onda (ainda incidente) que vai originar a frente de onda no ponto {O} e que vai constituir a nova frente de onda {OB'}, enquanto que o ponto {A} (já refletido) vai originar uma onda que vai originar uma frente de onda no ponto {Q} e que vai constituir a frente de onda {OB}. Na figura 28 (b), vemos esta representação.

Pela simetria dos triângulos, podemos concluir que os angulos {\theta_a} e {\theta_r} são iguais, comprovando assim a lei da reflexão.

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, 2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young &amp; Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young &amp; Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO [s.d.].

2.4. Índice de Refração. Reflexão total interna. Ângulo crítico

A velocidade da luz não é igual em todos os meios. O seu valor no vácuo é aproximadamente {3.10^8 m/s}. O índice de refração absoluto ({n}) de um meio caracteriza a densidade óptica deste meio. É definido como sendo a relação entre a velocidade da luz no vácuo (c) e a velocidade da luz nesse meio (v).

\displaystyle n=\frac{c}{v} \ \ \ \ \ (17)

 

O índice de refração relativo ({n_{21}}) é a relação entre o índice de refração do meio 2 e o índice de refração do meio 1.

\displaystyle n_{21}=\frac{n_2}{n_1} \ \ \ \ \ (18)

 

Na prática, utiliza-se o índice de refração relativo {n_{21}} de um dado meio em relação ao índice de refração da água. Quando o feixe de luz incide sobre a superfície de separação entre dois meios de índices de refração diferentes {n_1} e {n_2} (por exemplo água e ar, ar e vidro, etc.), transparentes, parte dela reflete-se (volta para o meio de onde incidiu) e outra parte refrata-se (penetra no outro meio) conforme a figura 2.

Figura 21: Reflexão e Refracção da Luz.

Como sabemos, a velocidade de propagação de uma onda é função do meio; portanto, na reflexão, podemos afirmar: A onda refletida terá a mesma velocidade da onda incidente, pois ambas se propagam no mesmo meio.

Quando uma onda sofre refração, sua frequência e sua fase não variam. O que caracteriza a refração é uma mudança na velocidade de propagação, podendo haver ou não mudança na direção de propagação. Chamamos de ângulo de incidência ({i_1}) ao ângulo formado entre o raio (ou feixe) luminoso incidente e a normal à superfície; e ângulo de refração ({i_2}) ao ângulo formado entre o raio refratado e a normal à superfície.

Segundo a lei de Snell:

\displaystyle \frac{sen (i_1)}{sen (i_2)}=\frac{n_2}{n_1} =n_{21} \ \ \ \ \ (19)

Se {n_2>n_1}, então {i_1>i_2}, quer dizer, o raio refratado do meio de densidade óptica menor para o meio mais denso, aproxima-se à normal, e vice-versa. Na figura 2 o meio 1 é menos denso do que o meio 2. pelo princípio de reversibilidade dos raios luminosos, podemos analisar na mesma figura a passagem do meio 1 para o meio 2 (sentido indicado pelas setas, que corresponde a passagem do meio menos denso para o meio mais denso), ou a passagem do meio 2 para o meio 1 (sentido oposto ao indicado pelas setas, que corresponde a refração do meio mais denso para o meio menos denso).

Figura 22: Refracção da Luz do meio 1 para o meio 2 e vice-versa .

Se consideramos a passagem da luz do meio 2 para o meio 1, então os raios {1'}, {2'}, {3'} e {4'} são incidentes e os raios {1}, {2}, {3}, {4} são os raios refratados. Neste caso, teremos vários raios refratados desde {0^0} até {\alpha_C}, e observadores em posições cujo ângulo de visão corresponde aos ângulos de refração de {90^0- \alpha_C} até {90^0} não observarão os raios (terão uma imagem escura), porque nestes ângulos não se refratará nenhum raio. Chama-se ângulo limite ou ângulo crítico ({\alpha_{C}}) ao ângulo de incidência para o qual o ângulo de refração é igual a 90º, ou seja, ao angulo de incidência a partir do qual já não haverá refracção.

Quando os raios incidentes saem do meio menos denso (meio 1) para o meios mais denso (meio 2), os raios incidentes com ângulos menores que o ângulo limite, refratarão no segundo meio e serão parcialmente refletidos no primeiro meio, enquanto os raios que incidem com um ângulo superior ao ângulo limite, serão refletidos totalmente no primeiro meio sem se refratarem para o segundo. Por isso o ângulo limite também é chamado de ângulo de reflexão total interna.

Os instrumentos ópticos que se utilizam para determinar o índice de refração através da medição do ângulo limite chamam-se Refratómetros.

Figura 23: Índice de refração absoluto de algumas substâncias.

— 2.4.5. Algumas considerações sobre o índice de refração —

Dado que a velocidade da luz no vazio é maior que a velocidade da luz em qualquer outro meio óptico ({c > v}), o índice de refracção absoluto é sempre superior a unidade, {n\geqslant 1} .

O índice de refracção absoluto do ar é aproximadamente igual a 1, pois {v_{ar}\cong c}. O índice de refracção absoluto de uma substância pode designar-se por refrangência; o seu valor depende da cor da luz, ou seja, da frequência da onda luminosa. Este aumenta do vermelho ao violeta que explica o fenómeno da dispersão da luz branca pelo prisma ou pelas gotas de água das nuvens originando o arco – íris.

Figura 24: Índice de refracção do vidro crown para diversas cores (diversas frequências)

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, 2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young &amp; Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young &amp; Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO [s.d.].

%d bloggers like this: