Luso Academia

Início » 00 Geral (Página 2)

Category Archives: 00 Geral

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 4)

Exercício 13 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 13 .

Dados .

{ v= \dfrac {5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \cdot t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \cdot t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \cdot t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s} é:

\displaystyle x= 5 + 2,5 \cdot 25= 67,5 \ m

\displaystyle x=67,5 \ m

Exercício 17 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .

NÍVEL DE DIFICULDADE: Elementar.

Resolução 17 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \dfrac {\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \dfrac {\Delta s}{v}

Substituindo os dados na fórmula anterior, obtemos:

\displaystyle \Delta t = \dfrac {10,000 \ m}{1,5 \ m/s} = 6,66 \cdot 10^3 \ s \ \ \ \ \ (7)

Transformando { 6,66 \cdot 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h \rightarrow 3600 \ s \\ x \rightarrow 6,66 \cdot 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \cdot 3600 \ s= 1 \ h \cdot 6,66 \cdot 10^3 \ s

\displaystyle \Rightarrow x = \dfrac {1 \ h \cdot 6,66 \cdot 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 19 Um corpo está se deslocando diretamente para o sol. No instante {t_1} está {x_1 = 3,0\cdot 10^{12} \ m}, em relação ao sol. Um ano depois, está em {x_2 = 2,1\cdot 10^{12} \ m}. Achar o seu deslocamento e a sua velocidade média.

NÍVEL DE DIFICULDADE: Elementar.

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  • Deixe a sua interacção nos comentários deste Post;
  • Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  • Partilhe este Post nas tuas redes sociais.
Resolução 19 .

Este problema envolve apenas parâmetros cinemáticos. Não se engane confundindo com gravitação universal.

\displaystyle Deslocamento

\displaystyle \Delta x = x_1 - x_2

\displaystyle \Delta x = 3,0\cdot 10^{12} - 2,1\cdot 10^{12}

\displaystyle \Delta x = 0,9\cdot 10^{12} \ m

\displaystyle \Delta x = 9,0\cdot 10^{8} \ km

\displaystyle Intervalo \ de \ tempo

\displaystyle \Delta t = 1 \ ano = 365 \ dia

\displaystyle \Delta t = 8760 \ h

A velocidade média será:

\displaystyle v_{med} = \frac{\Delta x}{\Delta t} = \frac{9,0\cdot 10^8 \ km}{8760 \ h}

\displaystyle v_{med} = 1,02\cdot 10^5 \ km/h

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação (Parte 2)

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 4 Dois trens de pulso de certa radiação electromagnética são criados simultaneamente, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com comprimento de {L_1 = \ 125 \ m} e {L_2 = \ 70 \ m}. O trem de pulso 1 passa pelo material de índice de refração {n_1}. O trem de pulso 2 passa pelo material de índice {n_2}.

  1. Sendo que a parte externa é o ar, e { n_1 = \ 1,5}, qual deverá ser o valor de {n_2} para que os pulsos cheguem ao mesmo tempo na tela.
  2. Qual é a diferença entre o tempo de chegada dos dois pulsos no caso em que {n_2 = \ 1,5}.

NÍVEL DE DIFICULDADE: Regular.

 

Resolução 4

    1. .
  1. Para que os trens de pulsos das ondas cheguem na tela ao mesmo tempo é os caminhos ópticos sejam iguais. Como temos 3 materiais, é necessário apenas comparar o trajecto aonde há diferença de índices de refração. Neste caso, o trem pulso 1 passa pelo material de índice de refração {n_1}. Analisaremos o trajecto de B-E. O trem de pulso 2 passa pelo material de índice {n_2} e depois passa por um percurso de ar, até chegar ao ponto D que está alinhado com o ponto E. Analisaremos o trajecto B-C-D.

    A condição para que cheguem ao mesmo tempo é que os caminhos ópticos sejam iguais. Note que o caminho óptico é defino pela relação:

    \displaystyle \textless AB \textgreater = \int_{A}^{B} n \cdot dl

    Para meios em que { n=const \ \Rightarrow \textless AB \textgreater = \bar{AB} \cdot n }.

    Então:

    \displaystyle \textless AE \textgreater = \textless BD \textgreater \Rightarrow \textless AE \textgreater = \textless BC \textgreater + \textless CD \textgreater

    \displaystyle \Rightarrow \bar{AE} n_1 = \bar{BC} n_2 + \bar{CD} n_{Ar}

    onde: {n_{Ar} = \ 1}. Logo, isolando {n_2}, obtemos:

    \displaystyle n_2= \frac{\bar{AE} n_1 - \bar{CD} n_{Ar}}{ \bar{BC}}= \frac{ L_1 n_1 - (L_1 - L_2 )}{ L_2}

    \displaystyle n_2 = \frac{ 125 \cdot 1,5 - (125 - 50 )}{ 50}=1,89

     

  2. Para este caso, o tempo de passagem no troço em análise será determinada pela equação do MRU, considerando a velocidade de propagação {c} e o caminho óptico.

    .

    Neste caso, para o trem 1:

  3.  

    \displaystyle c= \frac{ \textless AE \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{\bar{AE} n_1}{c}= \frac{125*1,5}{3\cdot10^8}= \frac{125*1,5}{3\cdot10^8}=6,25 \cdot 10^{7} s

    Para o trem 2:

    \displaystyle c= \frac{ \textless BD \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless BC \textgreater + \textless CD \textgreater }{t_1}

    \displaystyle \Rightarrow t_1 = \frac{L_2 n_2 + (L_1 - L_2) n_{Ar} }{c}= \frac{70 \cdot 1,5 + (150 - 70) \cdot 1}{3 \cdot 10^8} =5,33 \cdot 10^{7} s

    Neste caso, diferença de tempos é:

    \displaystyle |t_2 - t_1 |= | 6,25 \cdot 10^{7} - 5,33 \cdot 10^{7} | = 0,92 \cdot 10^{7} s

    Como a seguir aos pontos D e E o material é comum aos dois trens de pulsos, então esta diferença mantém-se até o final.

Exercício 5 Na figura a seguir, dois pulsos electromagnéticos são criados em simultâneo, propagam-se paralelamente e atravessam o sistema composto por materiais transparentes com índice de refração {n_{1} = \ 1,4; \ n_{2} = \ \ 1,7; \ n_{3} = \ \ 1,95; \ n_{4} = \ \ n_{5} = \ \ 1,2; \ n_{6} = \ \ 1; \ n_{7} = \ \ 1,3}.O valor de L é 25 m.Qual pulso chegará primeiro e qual é a diferença entre o tempo de chegada dos dois pulsos?

NÍVEL DE DIFICULDADE: Regular.

.

Resolução 5 \vspace{0,3cm}

Para não termos de calcular o tempo em cada porção, podemos usar o conceito de caminho óptico. Neste conceito, em vez de se considerar que o índice de refração afecta a velocidade, ele será visto como afectando apenas o percurso. Pelo que, podemos considerar que a luz sempre se propaga com a mesma velocidade {c}. Neste caso, temos apenas de calcular os dois caminhos ópticos e depois calcular os temos.

Para o pulso 1:

\displaystyle \textless l_1 \textgreater = L \cdot n_1 +L \cdot n_2 + L \cdot n_3 + L \cdot n_4 = \ L \cdot (n_1 + n_2 + n_3 + n_4)

\displaystyle \Rightarrow \textless l_1 \textgreater = \ 25 \cdot (1,4 + 1,7 + 1,95 + 1,2)=156,25 \ m

Neste caso, o tempo será obtido a seguir:

\displaystyle c= \frac{ \textless l_1 \textgreater }{t_1} \Rightarrow t_1 = \frac{ \textless l_1 \textgreater }{c}= \frac{156,25}{3\cdot10^8}=5,21 \cdot 10^{7} s

Para o pulso 2:

\displaystyle \textless l_2 \textgreater = 2L \cdot n_5 +L \cdot n_6 + L \cdot n_7 = \ L \cdot (2 n_5 + n_6 + n_7)

\displaystyle \Rightarrow \textless l_2 \textgreater = \ 25 \cdot (2 \cdot 1,2 + 1 + 1,3)=117,5 \ m

Neste caso, o tempo deste pulso será obtido a seguir:

\displaystyle c= \frac{ \textless BD \textgreater }{t_2} \Rightarrow t_2 = \frac{ \textless l_2 \textgreater }{c} = \frac{117,5}{3 \cdot 10^8} =3,92 \cdot 10^{7} s

Como a seguir a este trecho, o material é comum aos dois pulsos, então esta diferença mantém-se até o final.

Neste caso, diferença de tempos é:

\displaystyle |t_2 - t_1 |= | 3,92 \cdot 10^{7} - 5,21 \cdot 10^{7}| = 1.29 \cdot 10^{7} s

Como {t_1 \textgreater t_2 }, significa que o pulso 2 leva menos tempo a percorrer o trecho. Portanto, o pulso 2 chega primeiro.

— 1.2. Exercícios sobre Energia e Potência da Radiação —

Exercício 6 Uma onda electromagnética de frente plana de intensidade de {6 \ W/m^2} inside sobre uma superfície totalmente refletora de {40 \ cm^2} de área, posicionado perpendicularmente à direcção de propagação da onda.

Determine a força que a onda exerce sobre esta superfície.NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Quando uma OEM incide sobre uma superfície totalmente reflectora como o espelho, sua pressão de radiação será:

\displaystyle P_r = \ \frac{2I}{c} \ \ \ \ \ (3)

Por definição, a pressão é a força por unidade de área:

\displaystyle P = \ \frac{F}{A} \ \ \ \ \ (4)

Então:

\displaystyle P_r = \ \frac{2I}{c} \Rightarrow \frac{F}{A} = \ \frac{2I}{c} \Rightarrow F = \ \frac{2AI}{c}

Substituindo:

  • \displaystyle F = \ \frac{2 \cdot 40 \cdot 10^{-4} \cdot 6}{3 \cdot 10^8} = \ 1,6 \cdot 10^{-10} N

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação

— 1. Exercícios sobre Natureza da Luz e Propagação de Ondas Electromagnéticas —

— 1.1. Exercícios sobre Equações Ondas Electromagnéticas e Propagação —

Exercício 1 Uma onda electromagnética com frequência de 65 Hz desloca-se em um material magnético isolante que possui constante dieléctrica relativa é igual à 3,64 e a permeabilidade magnética relativa é igual à 5,18 nessa frequência. o campo eléctrico possui amplitude de {7,2 \cdot 10^{-3} \ V/m}.

  1. Calcule a velocidade de propagação da onda?
  2. Qual é o comprimento de onda?
  3. Qual é a amplitude do campo magnético?NÍVEL DE DIFICULDADE: Regular.
Resolução 1

Dados

{f = \ 65 Hz}

{\varepsilon_r = \ 3,64}

{\mu_r = \ 5,18}

{E_0 = \ 7,2 \cdot 10^{-12} \ v/m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\Pi \cdot 10^{-7} \ Wb/Am}

{\textbf{a)}v-? \ \ textbf{b)} \lambda-? \ \textbf{c)}H_0-?}

  • {v-?}

    Conhecemos a equação duma onda electromagnética que é:

    {\frac{\partial ^2B}{\partial t^2} = \ \frac{1}{\mu \varepsilon} \cdot \frac{\partial ^2B}{\partial x^2}}, onde {\frac{1}{\mu \varepsilon} = \ v^2} é a velocidade de propagação da onda.

\displaystyle v^2 = \ \frac{1}{\mu \ \varepsilon} \Rightarrow v = \ \sqrt{\frac{1}{\mu \varepsilon}}

{\mu} e {\varepsilon} são as constantes magnéticas e eléctricas do meio, respectivamente.

A relação entre estas e as constantes magnéticas e eléctricas relativa é a seguinte:

{\mu = \ \mu_0 \mu_r} e {\varepsilon = \ \varepsilon_0 \varepsilon_r}.

Então a velocidade de propagação da onda será:

{v = \ \frac{1}{\sqrt{\mu \varepsilon}} = \ \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}}}.

Sabe-se que:

\displaystyle c = \ \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3 \cdot 10^8 \ m/s

Logo:

\displaystyle v = \ \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot c = \ \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \ \frac{3 \cdot 10^8 \ m/s}{\sqrt{5,18 \cdot 3,64}} = \ 0,7 \cdot 10^8 \ m/s

  1. {\lambda-?}

    A onda electromagnética em questão é uma onda sinusoidal e periódica que pode ser expressa em termos dos seus campos eléctricos e magnéticos da seguinte forma:

    \displaystyle \overrightarrow {E}(x,t) = \ E_0 \cdot \cos(\omega t+ Kx) \overrightarrow{j}

    O comprimento de onde é

    \displaystyle \overrightarrow{B}(x,t) = \ B_0 \cdot \cos(\omega t+ Kx) \overrightarrow{k}

    Para as ondas, a velocidade obedece a relação:

    {v = \ \dfrac{\lambda}{T}}, e sabemos que {T = \ \frac{1}{f}}

    \displaystyle \Rightarrow \lambda = \ \frac{v}{f}

    \displaystyle \Rightarrow \lambda = \ \frac{0,7 \cdot 10^8 \ m/s}{65 \ s^{-1}} = \ 0,011 \cdot 10^8 \ m = \ 1,1 \cdot 10^6 \ m = \ 1100 \ Km

     

  2. {H_0-?}

    Utilizando a relação das amplitudes dos campos eléctricos e magnéticos na Onda Electromagnética (O.E.M.), temos:

  3.  

    \displaystyle \sqrt{\varepsilon_0 \varepsilon_r} \cdot E_0 = \ \sqrt{\mu_0\mu_r} \cdot H_0

    \displaystyle H_0 = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r} E_0}{\sqrt{\mu}_0 \mu_r} = \ \frac{\sqrt{\varepsilon_0 \varepsilon_r}}{\sqrt{\mu_0 \mu_r}} \cdot E_0

    \displaystyle \Rightarrow H_0 = \ \sqrt{\frac{\varepsilon_0 \varepsilon_r}{\mu_0 \mu_r}} \cdot E_0 = \ \sqrt{\frac{8,85 \cdot 10^{-12} \ \cdot 3,64}{4 \pi \cdot 10^{-7} \cdot 5,18}} \cdot 7,2 \cdot 10^{-3}

    \displaystyle \Rightarrow H_0 = \ 9,43 \cdot 10^{-3} \ A/m

Exercício 2 A potência irradiada pela antena de uma estação radiofónica é de 4 kW. A 4 km do transmissor foi colocada uma antena de recepção de 65 cm de comprimento. Qual é o valor de pico da f.e.m induzida por esse sinal entre as extremidades da antena receptora.

NÍVEL DE DIFICULDADE: Regular.

Resolução 2

Dados

{P = \ 4 \ kW = \ \ 4 \cdot 10^3 \ W }

{l = \ 65 \ cm = \ \ 0,65 \ m}

{r = \ 4Km = \ 4 \cdot 10^3 \ m}

{\varepsilon_{ind}-?} {\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4\pi \cdot 10^{-7} \ Wb/Am}

{C = \ 3\cdot 10^8 \ m/s}

{\varepsilon = \ \oint \overrightarrow{E}d\overrightarrow{l}}

O módulo ou amplitude da f.e.m é:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l \ \ \ \ \ (1)

 

Precisamos antes determinar a amplitude do campo eléctrico {(E_0)}. Em seguida poderemos determinar {\varepsilon_ind}. A intensidade da onda é:

\displaystyle I = \ \frac{1}{2}E_0H_0 = \ \frac{1}{2}E_0(\frac{B_0}{\mu,_0}) = \ \frac{E,_0 B_0}{2\mu,_0}

Como {c = \ \frac{E_0}{B_0}\Rightarrow B_0 = \ \frac{E_0}{c}}. Então:

\displaystyle I = \ \frac{E_0 \frac{E_0}{c}}{2 \mu_0}\Rightarrow I = \ \frac{\frac{E_0}{c}}{2\mu_0} = \ \frac{E_0^2}{2c \cdot \mu_0}

Isolando {E_0}, temos:

\displaystyle E_0^2 = \ 2 \mu_0 c I \Rightarrow E_0 = \ \sqrt{2 \mu_0 c I}

A intensidade da OEM é : {I = \ \frac{P}{A} = \ \frac{P}{4 \pi r^2}}, então:

\displaystyle E_0 = \ \sqrt{2 \mu_0 c \frac{P}{4\pi \cdot r^2}} = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \ \ \ \ \ (2)

 

Substituindo esta formula na equação 1, temos:

\displaystyle \varepsilon_{ind} = \ E_0 \cdot l = \ \sqrt{\frac{ \mu_0 c P}{2\pi r^2}} \cdot l

\displaystyle \Rightarrow \varepsilon_{ind} = \ \frac{l}{r} \sqrt{\frac{ \mu \cdot c\cdot P}{2\pi}} = \frac{0,65 \ m}{4 \cdot 10^3 \ m} \sqrt{\dfrac{4 \pi 10^{-7} \cdot 3 \cdot 10^8 \cdot 4 \cdot 10^3}{2 \pi}}

\displaystyle \Rightarrow \varepsilon_ind = \ 0,0796 \ V

 

Exercício 3 Um condutor de resistência de 150 {\Omega} e conduz uma corrente contínua de 1 A, e emite ondas electromagnéticas, devido o aquecimento. O condutor tem 8 cm de comprimento e 0,9 nm de raio.

  1. Calcule o vector de Poynting na superfície do filamento?.
  2. Encontre as magnitudes dos campos eléctricos e magnéticos na superfície do filamento;.

    NÍVEL DE DIFICULDADE: Regular.

Resolução 3

Dados {R = \ 150 \Omega}

{i = \ 1A}

{l = \ 8 \ cm}

{r = \ 0,3 \ n m = \ 0,3 \cdot 10^{-3} \ m}

{\varepsilon_0 = \ 8,85 \cdot 10^{-12} \ C^2/Nm^2}

{\mu_0 = \ 4 \pi \cdot 10^{-7} \ Wb/Am}

{c = \ 3 \cdot 10^8 \ m/s}

.
OBS: Para distinguir intensidade da radiação da intensidade de corrente eléctrica, nomeamos {I} para Intensidade da Radiação e {i} para intensidade de corrente eléctrica.

  1. A intensidade duma O.E.M. corresponde ao valor médio do vector de poynting, assim:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| \Rightarrow |\overrightarrow{S}| = \ 2I

    A intensidade duma OEM tem relação com a potência desta onda e com a área:

    \displaystyle I = \ \frac{P}{A}

    Sabemos que a potência pode ser dada por :

    \displaystyle P = \ U \cdot i = \ (i \cdot R)i\Rightarrow P = \ i^2 \cdot R

    Para área, vamos considerar a área lateral. Modelamos o condutor como um cilindro. Então, a área lateral será: {A = \ 2 \pi \cdot r \cdot l}.

    Substituindo estas duas relações na fórmula da intensidade , temos:

    \displaystyle I = \ \frac{P}{A} = \ \frac{i^2 \cdot R}{2 \pi \cdot r \cdot l}

    Substituindo na equação do módulo vector de Poyting, obtemos:

    \displaystyle |\overrightarrow{S}| = \ 2I = \ \frac{2R \cdot i^2}{2 \pi \cdot r \cdot l} = \ \frac{2 \cdot 150 \ \Omega \cdot (1 A)^2}{2 \pi \cdot 0,9 \cdot 10^{-9} \cdot 8 \cdot 10^{-2}} = \ 1989,4 \cdot 10^3 \ W/m^2

     

  2. Sabemos que para as O.E.M.:

    \displaystyle I = \ \frac{1}{2}E_0H_0

    Mas {c = \ \frac{E_0}{B_0} \Rightarrow B_0 = \ \frac{E_0}{c}} e {H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{\mu_0 \cdot C}}

    Então:

    \displaystyle I = \ \frac{1}{2}E_0 \cdot \frac{E_0}{\mu_0 \cdot c} = \ \frac{E_0^2}{2c \cdot \mu_0}

    . Isolando {E_0} nesta equação anterior, obtemos :

    \displaystyle E_0^2 = \ 2c \cdot \mu_0 \cdot I \Rightarrow E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I}

    Já sabemos que a intensidade é:

    \displaystyle I = \ \frac{1}{2}|\overrightarrow{S}| = \ \frac{1}{2} \cdot 1989,4 \cdot 10^3 \ W/m^2 = \ 994,7 \cdot 10^3 \ W/m^2

    Logo a amplitude do vector campo magnético será:

    \displaystyle E_0 = \ \sqrt{2c \cdot \mu_0 \cdot I} = \ \sqrt{2 \cdot 3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7} \cdot 994,7 \cdot 10^3}

    \displaystyle E_0 = \ 27,386 \cdot 10^3 \ V/m

    Então, a intensidade do campo magnético é:

    \displaystyle H_0 = \ \frac{B_0}{\mu_0} = \ \frac{\frac{E_0}{c}}{\mu_0} = \ \frac{E_0}{c \cdot \mu_0} = \ \frac{27,386 \cdot 10^3}{3 \cdot 10^8 \cdot 4\pi \cdot 10^{-7}} = 72,64 \ A/m

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 3)

Exercício 8 Se uma grandeza fictícia {K} tem unidade {\dfrac{ab^2}{c}} num certo sistema de unidade: Se as correspondências no SI são:

{1 \ a = 95 \ x}

{1 \ b = 57 \ y}

{1 \ c = 0,5 \ z}

Qual é o valor de {K = 18 \dfrac{ab^2}{c}} no SI ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 8 .

O objectivo do exercício é converter a unidade de {K} para o SI.

Vamos converter para o SI, substituindo o valor de {a}, {b}, {c} na expressão de {K = 18\dfrac{ab^2}{c}}.

.

\displaystyle K = 18\dfrac{ 95x \cdot (57y)^2}{0,5z}

\displaystyle \Rightarrow K = \dfrac{18 \cdot 95 \cdot (57)^2}{0,5} \cdot \dfrac{x \cdot y^2}{z}

\displaystyle K = 11111580\dfrac{x \cdot y^2}{z}

Exercício 9 Duas forças {\vec{F_1}} e {\vec{F_2}} de {10 \ N} e {20 \ N} respectivamente actuam sobre um corpo.

Qual deverá ser o modulo e a direcção da 3ª força ({\vec{F_3}}) para que a resultante seja nula?.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Teremos que inicialmente que a resultante entre as forças {\vec{F_1}}, {\vec{F_2}} e {\vec{F_3}} deve ser nula. Quer dizer que as três forças fazem parte do mesmo sistema bidimensional. A nível de análise gráfica, poderíamos determinar a resultante (parcial) das forças {F_{1}} e {F_{2}}. Chamamos ela de {F_{1/2}}. A força três, neste caso, terá sentido contrário ao vector força {F_{1/2}}, para que equilibre este resultante.

Neste caso:

\displaystyle \vec{F_3} = -\vec{F_{2/1}} \ ; \ F_3 = F_{1/2}

Para calcular a força {F_{1/2}}, vamos aplicaras componentes:

\displaystyle F_{1/2x} = F_{1x} + F_{2x}= F_{1} + 0 = F_{1} = 10 N

\displaystyle F_{1/2y} = F_{1y} + F_{2y}= 0 + F_{2} = F_{2} = 20 N

Então:

\displaystyle \vec{F_{1/2}} = F_{1/2x} \vec{i} + F_{1/2y} \vec{j} = 10 \vec{i} + 20 \vec{j} [N]

Logo:

\displaystyle \vec{F_3} = -\vec{F_{2/1}}= - 10 \vec{i} - 20 \vec{j} [N]

Em modulo:

\displaystyle F_3 = \sqrt{(-10)^2 + (-20)^2} = \sqrt{500} [N]

\displaystyle F_3 = 22,36 \ N

A direcção é definida pelos ângulos:

\displaystyle \alpha_1 = \arctan \frac{F_{3y}}{F_{3x}}

\displaystyle \alpha_2 = 180^o + \arctan \frac{F_{3y}}{F_{3x}}

Calculando:

\displaystyle \alpha_1 = \arctan{(\frac{-20}{-10})}=63 ^o

\displaystyle \alpha_2 = 180^o + \arctan{(\frac{-20}{-10})}= 243^o

Como o vector pertence ao 3º quadrante (as componentes são ambas negativas), a direcção e sentido são definidas por:

\displaystyle \alpha_2 = 243^o

Exercício 10 Um móvel percorre um troço de {400 \ km} em {2 \ dias}. Qual é a velocidade média desta viagem ? NÍVEL DE DIFICULDADE: Elementar.
Resolução 10 .

Dados

{v_m = \ ?}

{\Delta s = 400 \ km}

{\Delta t = 2 \ dias}

O exercício trate de um movimento genérico. Quando queremos analisar o movimento como um todo, usamos a velocidade e aceleração média. Então, a análise do movimento assemelha-se a um M.R.U, onde que a velocidade média é:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t}

Antes de calcular a {v_m}, vamos converter os {2 \ dias} para {h}, para usarmos unidades habituais em movimentos desta natureza. Vamos utilizar o sistema de “3 simples”:

\displaystyle 1 \ dia \longrightarrow 24 \ h

\displaystyle 2 \ dias \longrightarrow t

Multiplicado de forma cruzada, obtemos:

\displaystyle t \cdot 1 \ dia = 2 \ dias \cdot 24 \ h

\displaystyle t = 48 \ h

Agora podemos calcular a {v_m}:

\displaystyle v_m = \dfrac{\Delta s}{\Delta t} = \dfrac{400 \ km}{48 \ h}

\displaystyle v_m = 8,33 \ km/h

Também poderíamos apresentar o valor da {v_m} em {m/s}, basta para isso dividir o valor em {km/h} por 3,6 e teremos em {m/s}.

\displaystyle v_m = \dfrac{8,33}{3,6} \ m/s

\displaystyle v_m = 2, 31 \ m/s

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades (Parte 2)

Exercício 5 Converter para o SI s seguintes unidades:

  1. { 10 \ km/s }.
  2. { 20 \ polegadas }.
  3. { 25 \ km/h^2 }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 5 .

Para converter-mos no SI, vamos utilizar o sistema de “3 simples”.

  1. –    { \dfrac { 10 \ km}{s}\rightarrow \dfrac {m}{s} }Neste Caso, temos de converter apenas o numerador, de {km} para {m}.

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 10 \ km \longrightarrow x

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 10 \ km

    \displaystyle x = 10000 \ m

    Quer dizer que {10 \ km = 10000 \ m} logo, {10 \ km/s } no Sistema Internacional equivale a {10000 \ m/s }.

    .

  2. –      { 20 \ polegadas \rightarrow m }Sabemos que: { 1 \ polegada \approx 0,025 \ m } Então, usando o sistema de “3 simples”

    \displaystyle 1 \ polegada \longrightarrow 0,025 \ m

    \displaystyle 20 \ polegadas \longrightarrow x

    fazendo multiplicação cruzada, obteremos:

    \displaystyle x \cdot 1 \ polegada = 0,025 \ mc \cdot 20 \ polegadas

    \displaystyle x = 0,5 \ m

    Quer dizer que {20 \ polegadas} no Sistema Internacional equivale a {0,5 \ m }.

    .

  3. –    { \dfrac {25 \ km}{h^2} \rightarrow \dfrac {m}{s^2}}.Vamos começar por converter {km} em {m} e depois {h} em {s}, então: {2}

    \displaystyle 1 \ km \longrightarrow 1000 \ m

    \displaystyle 25 \ km \longrightarrow x

    \displaystyle x \cdot 1 \ km = 1000 \ m \cdot 25 \ km

    \displaystyle x = 25000 \ m

    \displaystyle 1 \ h \longrightarrow 60 \ min

    \displaystyle 1 \ min \longrightarrow 60 \ s

    \displaystyle 1 \ h = 60 \times 60 \ s = 3600 \ s

    \displaystyle (1 \ h)^2 = (3600 \ s)^2 = 12960000 \ s^2

    \displaystyle 1 \ h^2 = 12960000 \ s^2

    Vamos substituir as equações {25 \ km = 25000 \ m} e {1 \ h^2 = 12960000 \ s^2} na expressão inicial:

    \displaystyle 25 \ km/h^2 =\dfrac {25 \ km}{h^2} = \dfrac {25000 \ m}{ 12960000 \ s^2}

    \displaystyle = \dfrac{25000 \ m}{12960000 \ s^2} =0,0019 \ m/s^2

    Quer dizer que, no SI { \dfrac {25 \ km}{h^2} = 0,0019 \ m/s^2}.

Exercício 6 Numa partícula actuam 3 forças conforme indica a figura abaixo:

Determine a força resultante sabendo que {F_1 = 3 \ N, F_2 = 5 \ N, F_3 = 8 \ N  \ e  \  \alpha = 10^o}

NÍVEL DE DIFICULDADE: Regular.

Resolução 6 .

Para sabermos a força resultante, devemos encontrar as componentes das forças aplicadas nos eixos Ox e Oy. Como as Forças primeiramente devemos traçar as correspondestes das {F_1} e {F_3} são paralelas aos eixos Ox e Oy, respectivamente, elas só têm uma componente não nula, que corresponde ao eixo a que são paralelas. A componente no outro eixo é nula. Para da força {F_2}, devemos projecta-la nos eixos e calcular as componentes para cada eixo (Ox e Oy).

Calculamos as componentes usando as razões trigonométricas:

\displaystyle F_{2x} = F_2 \sin \alpha \ ; \ F_{2y} = F_2 \cos \alpha

\displaystyle F_{2x} = 0,86 \ N \ ; \ F_{2y} = 4,92 \ N

Vamos agora Fazemos então a soma vectorial das componentes Ox e Oy:

\displaystyle \vec{F_{Rx}} = \vec{F_1} + \vec{F_{2x}} \ ; \ F_{Rx} = F_1 - F_{2x} = 3 - 0,86 = 2,14 \ N

\displaystyle \vec{F_{Ry}} = \vec{F_{2y}} - \vec{F_3} \ ; \ F_{Ry} = F_{2y} - F_3 = 4,92 - 8 = -3,08 \ N

O módulo força resultante é dada pelo teorema de Pitágoras:

\displaystyle F_R = \sqrt{F_{Rx}^2 + F_{Ry}^2}

\displaystyle F_R = \sqrt{(2,14)^2 + (-3,08)^2} = \sqrt{14,066}

\displaystyle F_R = 3,75 \ N \approx 4 \ N

Exercício 7 Se as componentes da velocidade de um móvel são {v_x = 10 \ m/s}, {v_y = 5 \ m/s} e {v_z = 2v_x + 3v_y}.

Determine: o modulo deste vector velocidade.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 7 .

Dados

{v_x = 10 \ m/s}

{v_y = 5 \ m/s}

{v_z = 2v_x + 3v_y}

{v_z\rightarrow \ ? }

{|v| \rightarrow \ ? }

Para determinar o modulo do valor velocidade, primeiramente devemos determinar o valor da coordenada da velocidade em z ({v_z}), substituindo o valor das velocidades de {v_x} e {v_y} em {v_z}.

\displaystyle v_z = 2v_x + 3v_y \Rightarrow v_z = 2 \cdot 10 + 3 \cdot 5

\displaystyle v_z = 35 \ m/s

Neste caso, a velocidade será obtida de modo seguinte:

\displaystyle |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{10^2 + 5^2 + 35^2}

\displaystyle |\vec{v}| = \sqrt{100 + 25 + 1225} = \sqrt{1350}

\displaystyle |\vec{v}| = 36,74 \ m/s

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Carga e Forças Eléctricas (Parte 1)

— 1. Exercícios sobre Electrostática —

 

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 1 .

Uma esfera metálica carregada negativamente tem { -25 \ \mu C } quantos eletrões em excesso foram adicionados a esta esfera? ({ q_e=-1,6 \cdot 10 ^{19} \ C }).
NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

Dados .

{ q= -25 \ \mu5=-25 \cdot 10 ^{-6} \ 6 } .

{ q_e=-1,6 \cdot 10 ^{-19} \ 6 } .

{ n \rightarrow ? } .

. A carga total é dada por:

\displaystyle q=n \cdot q_c

Onde:

{q-} é a carga eléctrica total.

{n-} é o numero de electrões em excesso ou defeito.

{q_e}= é a carga eléctrica elementar

Neste caso, isolando {n}, obtemos:

\displaystyle q= n \cdot q_c \Rightarrow n= \frac{q}{q_c}= \frac{-25 \cdot 10 ^{-6} \ 6}{-1,6 \cdot 10 ^{-19} \ 6}

\displaystyle n= \frac{25 \cdot 10 ^{-6}}{1,6 \cdot 10 ^{-19}}

\displaystyle n=1562,5 \cdot 10^{11}

.

Neste caso a esfera tem {1562,5 \cdot 10^{11}} electrões.

Exercício 2 .

Qual é a força da interação entre o núcleo e o electrão de um átomo de Hidrogénio, se o raio atómico é de { 53 \ pm}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 2 .

Dados .
{ q_p= 1,6 \cdot 10 ^{-19} \ C } .

{ q_e= -1,6 \cdot 10 ^{-19} \ C } .

{ r= 53 \ pm = 53 \cdot 10 ^{-12} \ C} .

{ k \approx \ 9 \cdot 10 ^{9} \ N \cdot m^2/C^2 }

De acordo com a lei do coulomb temos:

\displaystyle \overrightarrow{F}=k \cdot \frac{q_1 \cdot q_2}{r^2} \overrightarrow{u_r}

Em módulo:

\displaystyle F=k \cdot \frac{|q_1| \cdot |q_2|}{r^2}

O átomo de Hidrogénio, no estado fundamental, tem contem duas cargas (um electrão e um protão) e a distância entre elas é igual ao raio da orbita. Então:

\displaystyle F=k\frac{ | q_e| \cdot |q_p | }{ r^2}= 9 \cdot 10 ^{9} \frac{( 1,6 \cdot 10 ^{-19} )^2}{( 53 \cdot 10 ^{-12})^2}

\displaystyle F= 8,2 \cdot 10 ^{-8} \ N

A força de interação é de { 8,2 \cdot 10 ^{-8} \ N }.

Exercício 3 Quando duas esferas(A e B), carregadas e condutoras, com respectivamente {10 \ nC } e {-5 \ nC} e inicialmente num,a distância d, uma da outra, apresentam uma força de {50 \ m N}. Se colocadas em contacto e separadas novamente à distância inicial, qual será a força e a natureza da mesma (actração ou repulsão)?

NÍVEL DE DIFICULDADE: regular.

Resolução 3 .

Dados .

{q_{dA}=10 \ nC= \ 10 \cdot 10^{-9} \ C }

{q_{dB}=-5 \ nC= \-5 \cdot 10^{-9} \ C}

{d=d_0=d_1}

{F_0=50 \ nN= \ 50 \cdot 10^{-3} \ N}

{F_{1}-?}

Natureza{-?} .

.
Se trata de duas situações, onde a distância inicial {(d_0) } é igual a distância final {(d_1)} logo: {d=d_0=d_1}.

.

Ao colocar as esferas juntas, a carga total será a soma das cargas de cada um deles. Como ambas são condutoras, ocorre tranferencia de electrões de um material para outro. Esta transferência cessa quando as cargas dos dois ficam, iguais. Ao separa-los, cada uma fica com a carga obtida do equilíbrio, que no caso, é igual a metade da carga resultante. Logo:

\displaystyle q_{1A}=q_{1B}=\frac{q_{A} + q_{B}}{2}=\frac{10 \ nC \ + \ (-5 \ nC)}{2}=\frac{5 \ nC)}{2}= \ 2,5 \ nC = \ 2,5 \cdot 10^{-9} \ C

.

No inicio (situação 0), a força de que actua entre as cargas é:

\displaystyle F_0=k \frac{|q_A| \cdot |q_B|}{d^2} \Rightarrow k=\frac{d^2 \cdot F_0}{2 \cdot |q_A| \cdot |q_B|} \ \ \ \ \ (1)

Após contacto, os valores das cargas mudam e consequentemente, a força muda. A força de que actua entre as cargas nesta situação 1 é:

\displaystyle F_{1}=k \frac{(|q_{0A}| \cdot |q_{0B}|}{d^2}= k\frac{|q_{0A}| \cdot |q_{0B}|}{d^2} \ \ \ \ \ (2)

Substituindo {k} da equação 1 na equação 2, temos:

\displaystyle F_{1}=\frac{d^2 \cdot F_0}{|q_A| \cdot |q_B|} \cdot \frac{|q_{0A}| \cdot |q_{0B}|}{d^2}

\displaystyle F_{1}=\frac{50 \cdot 10^{-3}}{|10 \cdot 10^{-9}| \cdot |-5 \cdot 10^{-9}|} \cdot \frac{ (2,5 \cdot 10^{-9} )^2}{1}

Nota: Simplificamos as distâncias, pois são iguais.

\displaystyle F_{1}=6,25 \cdot 10^{-3} \ N

\displaystyle F_{1}=6,25 \ mN

Sendo que as cargas são iguais, a natureza da Força será de Repulsão.

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 2)

Exercício 8 .

O gráfico ilustra um MRU. Determine a velocidade média deste movimento?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8 .

Para o caso de MRU a velocidade média é dada, por definição como sendo:

\displaystyle v_m = \frac{\Delta x}{\Delta t} = \frac{x-x_0}{t-t_0} \ \ \ \ \ (6)

Do gráfico temos os seguintes dados:

\displaystyle \left\{\begin{array}{ccccccccc} t_0 = 0 \ s : x_0 = 10 \ m \\ t = 5 \ s : x = 40 \ m \\ \end{array}\right.

Substituindo estes valores em (1):

\displaystyle v_m =\frac{40 \ m-10 \ m}{5 \ s- 0 \ s}=\frac{30}{5}\times\frac{m}{s}

\displaystyle v_m= 6 \ m/s

Exercício 9 .

A equação de um MRU é:

\displaystyle x=10+20 \ t \ (SI)

Determine o deslocamento no intervalo de { 4 \ s \leq t \leq 7 \ s }

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

Nos casos de MRU sem mudança de direcção, o deslocamento, em módulo é igual a distância percorrida no intervalo {\Delta t } definido.
Para determinarmos o deslocamento, precisamos da posição inicial e final.

No intervalo

\displaystyle 4 \ s \leq t \leq 7 \

A posição inicial é obtida da seguinte forma:

\displaystyle t= 4 \ s \Rightarrow x_0= 10+20 \times t_0=10+20 \times 40

Obtemos:

\displaystyle x_0=90 \ m

A posição final é obtida da seguinte forma:

\displaystyle t= 7 \ s \Rightarrow x=10+20 \times t=10+20 \times 7

\displaystyle x=150 \ m

O deslocamento é :

\displaystyle \vert \overrightarrow{\Delta s} \vert= \Delta x=x - x_0 =150 \ m -90 \ m

\displaystyle \Delta x = 60 \ m

Exercício 10 .

Um atleta de corrida percorre { 1,5 \ m } em cada segundo. Quanto tempo demora fazer um percurso de { 10 \ km }. .
NÍVEL DE DIFICULDADE: Elementar.

Resolução 10 .

Dados

{ v= 1.5 \ m/s } .

{ \Delta s = 10 \ km= 10.000 \ m } .

{\Delta t \rightarrow ? }

Por definição, no MRU, a velocidade é dada por:

\displaystyle v= \frac{\Delta s}{\Delta t}

Isolando o espaço percorrido:

\displaystyle \Delta t = \frac{\Delta s}{v}

Substituindo os dados na formula anterior, obtemos:

\displaystyle \Delta t = \frac{10,000 \ m}{1,5 \ m/s} = 6,66 \times 10^3 \ s \ \ \ \ \ (7)

 

Transformando { 6,66 \times 10^3 \ s } em horas usando a regra de três simples:

\displaystyle \begin{array}{ccccccccc} 1 \ h\rightarrow \rightarrow 3600 \ s \\ x \rightarrow \rightarrow 6,66 \times 10^3 \ s\\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x \times 3600 \ s= 1 \ h \times6,66 \times 10^3 \ s

\displaystyle \Rightarrow x = \frac{1 \ h \times 6,66 \times 10^3 \ s }{3600 \ s}

\displaystyle \Rightarrow x = 1,85 \ h

Logo, o atleta leva { 1,85 \ h } para percorrer { 10 \ km }.

Exercício 11 .

A equação horária de um móvel é { x = 100+50 \times t } . Qual séria a sua equação horária se a posição fosse dada em Km e o tempo em h?..

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Dados

{ x = 100+50 \times t } .

A equação horária, na forma escalar é dada como:

\displaystyle x= x_0+ v \times t \ \ \ \ \ (8)

A equação horária do móvel é:

\displaystyle x= 100+50 \times t \ \ \ \ \ (9)

Ao comparar-mos ambas equações, obtemos os seguintes dados:

\displaystyle \begin{array}{ccccccccc} x_0=100 \ m \\ v=50 \ m/s \\ \end{array}

Para escrever-mos a equação horária,com a posição dada em Km e o tempo dado em h, devemos transformar { x_0 = 100 \ m} e {v =50 \ m/s } nas unidades respectivas, usando o sistema (regra) de três simples.

Então temos:

\displaystyle \begin{array}{ccccccccc} 1 \ km \rightarrow  1000 \ m \\ x_0 \rightarrow  100 \ m \\ \end{array}

Fazendo a multiplicação cruzada, obtemos:

\displaystyle x_0 \times 1000 \ m =1 \ km \times 100 \ m

\displaystyle \Rightarrow x_0=\frac{1 \ km \times 100 \ m}{1000 \ m} x_0=0.1 \ km

E:

\displaystyle  36\ km/h \rightarrow 10 \ m/s

\displaystyle  v \rightarrow 50 \ m/s

Logo:{x_0=0,1 \ km } e { v=180 \ km/h }.

Então:

Substituindo estes valores em na equação horária do MRU, obtemos:{ x=0.1+180 \times t }.

Portanto, para a posição dada em km e tempo em h, temos a equação horária:

\displaystyle x=0.1+180 \times t

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais

— 1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —

Exercício 5 .

Considere o sistema representado abaixo.Considerando a origem do referencial sua base direita do prédio, o Eixo ox horizontal dirigido a esquerda e o Eixo oy vertical e dirigido para cima.

Determine a posição dos pontos A, B e C.

NÍVEL DE DIFICULDADE: Elementar

Resolução 5 .

O referencial(bidimensional) do sistema é necessário ser traçado para a determinação da posição dos pontos A, B e C. Logo temos as seguintes características do referencial:

* Eixo Ox: eixo horizontal dirigido da direita para a esquerda;

* Eixo Oy: eixo vertical dirigido para cima;

* Origem do referencial: base direita do prédio.\

.

Aposição do ponto A tem coordenada { 50 \ m} na horizontal e { 100 \ m } na vertical, então :

\displaystyle B(50,100)\ m

onde

\displaystyle x_A=50 \ m

\displaystyle y_A=100 \ m

A posição do ponto B tem coordenada { -40 \ m } na horizontal e 0 na vertical, então:

\displaystyle B(-40,0) \ m

Onde:

\displaystyle x_B=-40 \ m

\displaystyle y_B=0

A posição do ponto C tem coordenada {-35 \ m } na horizontal e { 20 \ m} na vertical então:

\displaystyle C(-35,20) \ m

\displaystyle x_C= -35 \ m

\displaystyle x_C= 20 \ m

Exercício 6 .

A velocidade de um móvel é tal que ele percorre {5 \ m} a cada {2 \ s},em MRU. Determine a posição final no MRU se a posição inicial for { 5 \ m} e o tempo do movimento for de {25 \ s }.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

Dados .

{ v= \frac{5 \ m}{2 \ s}= 2,5 \ m/s } .

{x_0=5 \ m } .

{t=25 \ s } .

{x=? }

Para determinarmos a posição final x do móvel no tempo t precisamos da equação de movimento ( função horária) do móvel.
Para este caso, de movimento retilíneo e uniforme(MRU), a equação de movimento é:

\displaystyle \overrightarrow{x}=\overrightarrow{x_0}= + \overrightarrow{v} \times t \ \ \ \ \ (1)

Na forma escalar, temos:

\displaystyle x= x_0+v \times t \ \ \ \ \ (2)

Substituindo {x_0} e {v}, obtemos:

\displaystyle x= 5 + 2,5 \times t \ \ \ \ \ (3)

A posição final {x} para { t=25 \ s}:

\displaystyle x= 5 + 2,5 \times 25= 67,5 \ m

\displaystyle x=67,5 \ m

Resolução 7 .

Calcule a velocidade média do móvel da figura abaixo, se { t_1=10 \ s } e é { t_2= 20 \ s }, no movimento { A\rightarrow B \rightarrow C }.

.

Resolution 7 . Dados

{ t_1=t_{A\rightarrow B} = 10 \ s } .

{ t_2=t_{B\rightarrow C} = 20 \ s }. Por definição a velocidade média de um móvel é dada por:

\displaystyle \overrightarrow{v_m}=\frac{\overrightarrow{\Delta s}}{\Delta t}

.

{ \overrightarrow{\Delta s} } – Vector deslocamento.

{ \Delta t } – Intervalo de tempo total durante o movimento.

Em módulos:

\displaystyle v_m=\frac{\Delta s}{\Delta t}

.

Portanto, para determinar a velocidade média precisamos determinar o deslocamento { A\rightarrow B \rightarrow C } e o tempo total para o móvel sair de A para C.

Note que o vector deslocamento é o vector que une a posição inicial à posição final, ou seja, no nosso caso {\overrightarrow{\Delta s}=\overrightarrow{AC}}

Então temos:

\displaystyle \Delta s= \sqrt{(x_C-x_A)^2+(y_C-y_A)^2} \ \ \ \ \ (4)

A equação 4 é a fórmula para o cálculo de distancia em um sistema bidimensional.Considerando o ponto de partida A e o de chegada C, :

A(10,20) e B(20) considerando a abcissa y e a ordenada x.

Portanto, temos:

\displaystyle (x_C - x_A)= (40-10)=30 \\ (y_C - y_A)= (30-20)=10 \ \ \ \ \ (5)

.

Substituindo 7 em 4, obtemos:

\displaystyle \Delta s_{A-C}= \sqrt{(30)^2+(10)^2}=31,6 \ m

O tempo { \Delta t } do movimento de { A \rightarrow B \rightarrow C } é a soma dos tempos de { A \rightarrow B } e de { B \rightarrow C }.

Dos dados temos temos

\displaystyle t_{A-B} = 10 \ s e t_{B-C}= 20 \ s

Então

\displaystyle \Delta t = t_{A-B} + t_{B-C} =10+20=30 \ s \Delta t = 30 \ s

Sendo assim:

\displaystyle v_m = \frac{\Delta s}{\Delta t} = \frac{31,6 \ m}{30 \ s} = 1,05 \ m/s

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

1.1. Exercícios sobre Introdução à Física: Vectores, Grandezas e Unidades —

Exercício 1 .

Dois vectores têm módulos 3 e 5 unidades.

  1. Qual deverá ser o ângulo entre eles para que o vector resultante tenha módulo de 4 unidades?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 1 .

  1. Consideremos que os vectores de módulo 3 e 5 unidades são os vectores {\overrightarrow{u} e \overrightarrow{v}}, respetivamente, e o vector resultante de módulos 4 unidades é o vector {\overrightarrow{w}}.Consideremos também que { \theta} é o ângulo que os vectores {\overrightarrow{u} e \overrightarrow{v}} formam entre si. Daqui, temos os ângulos dados:Dados{\vert \overrightarrow{u} \vert=3 } .

    { \vert \overrightarrow{v} \vert=5} .

    { \vert \overrightarrow{w} \vert=4} .

    { \theta \rightarrow ? }

    A adição de vectores, dada pela regra do paralelogramo, relacionas aos seus módulos através da lei dos cossenos.

    \displaystyle \textbf{Lei do Cosseno}:\vert \overrightarrow{w}\vert^2=\vert\overrightarrow{u}\vert^2+\vert\overrightarrow{v}\vert^2+2\times\vert\overrightarrow{u}\vert\times\vert\overrightarrow{v\vert}\times \cos\theta

    * Substituindo os dados:

    \displaystyle (4)^2=(3)^2+(5)^2+2\times(3)\times(5)\times \cos\theta

    \displaystyle 16=9+25+30\times \cos\theta

     Isolando {\cos\theta:}

    \displaystyle \cos \theta =\frac{16-(9+25)}{30}=\frac{16-34}{30}=\frac{18}{30}=-0.6

    O valor de { \theta: \theta=\arccos(-0.6)=126,869^o }

    \displaystyle \theta\cong 126,9^o

.

Exercício 2 .

Um Arco tem ângulo de 1,5 radiano.
Qual é o valor deste ângulo em graus?

NÍVEL DE DIFICULDADE: Elementar

Resolução 2 .

Para determinar o ângulo do arco em graus, vamos usar a regra de três simples, sabendo que { \pi } radiando equivale a { 180^o }. Com isto,temos as seguintes rotações:

\displaystyle \pi \ rad \rightarrow\rightarrow180^o

\displaystyle 1,5 \ rad \rightarrow\rightarrow \theta

Onde 1.5 é o ângulo do arco em radiano e {\theta} o ângulo do arco em graus que se pretende determinar.

Desta forma, temos:

\displaystyle \theta \times \pi=1,5 \ rad \times 180^o

Isolando {\theta}:

\displaystyle \theta=\frac{1,5 \ rad \times 180^o}{\pi \ rad}=\frac{270^o}{\pi}=85,94^o

Portanto:

\displaystyle \theta=85,9^o

.

Exercício 3 .

Um disco circular tem raio de { 5 \ m}. Qual é o cumprimento deste disco?
NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Dados

{ r= 5 \ m }

O cumprimento de um arco é:

\displaystyle l= \alpha \times r

onde {\alpha} é o ângulo do arco em radianos.

Para o nosso caso, o cumprimento de um disco circular é:

\displaystyle l=2 \pi \times r

Substituindo:

\displaystyle r=5 \ m \ em (1): l= 2 \pi \times 5 \ m= 31,415 \ m

Portanto, o cumprimento do disco é de:

\displaystyle 31,415 \ m.

Exercício  4 .

Dois vectores {\overrightarrow{a}} e { \overrightarrow{b}} tem módulo iguais a { 3 \ m} e {5 \ m },respetivamente.

Qual é o módulo de vector { \overrightarrow{c} }, se {\overrightarrow{c}=3\overrightarrow{a}-\overrightarrow{2b}} e o ângulo entre { \overrightarrow{a} } e { \overrightarrow{b} } for de { 30^o }?
NÍVEL DE DIFICULDADE: Elementar

Resolução 4 .

Dados .

{ \vert \overrightarrow{a} \vert =3 \ m } .

{ \vert \overrightarrow{b} \vert =5 \ m } .

{ \overrightarrow{c}=3\overrightarrow{a} - 2\overrightarrow{b}} .

{ \theta \rightarrow 30^o} .

{ \vert \overrightarrow{c} \vert=? }

Consideremos os vectores {\overrightarrow{a} e \overrightarrow{b}}.

Os vectores {\overrightarrow{a}} e {\overrightarrow{b}} formando {30^o} entre si {(\theta=30^o)}

Entretanto, o vector {\overrightarrow{c}} é dado como {\overrightarrow{c}=3\overrightarrow{a}-2\overrightarrow{b}}. Sendo assim, consideremos os vectores {3\overrightarrow{a} } e { 2\overrightarrow{b}} , isto é,os vectores {\overrightarrow{a}} e {\overrightarrow{b}} com dimensões triplicando e dobrada, respetivamente.

Por outro lado o vector {\overrightarrow{c}} representa a diferença entre {3\overrightarrow{a}} e {2\overrightarrow{b}} neste caso a resultante é:

Calculando {\beta}:

\displaystyle \beta+\theta=180^o \ \Rightarrow \beta=180^o-\theta

Como { \theta=30^o },temos: { \beta=180^o-30^o=150^o \ \Rightarrow \beta=150^o }\

O módulo de vector { \overrightarrow{c} } , é dada pela lei dos cossenos.\

Lei dos Cossenos:

\displaystyle \vert\overrightarrow{c}\vert^2=\vert3\overrightarrow{a}\vert^2+\vert2\overrightarrow{b}\vert^2+2\times\vert3\overrightarrow{a}\vert \times \vert2\overrightarrow{b} \vert\times \cos\beta

\displaystyle \vert\overrightarrow{c}\vert^2=9^2+10^2+180\times\cos150^o=181-155,88=25,12

\displaystyle \vert \overrightarrow{c} \vert ^2=25,12 \ \Rightarrow \vert\overrightarrow{c}\vert=\sqrt{25,12}=5,01

\displaystyle \rightarrow \vert\overrightarrow{c}\vert=5,01

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

Deixe a sua interacção nos comentários deste Post;
Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais (Parte 3)

— 1. Exercícios sobre Cinemática da Partícula —

— 1.1. Exercícios sobre Movimentos: Generalidade e Movimentos uni-dimensionais —

Exercício 1 Um homem realiza uma viagem de uma cidade para outra, para atender a um compromisso. A distância entre as cidade é de 300 km. O compromisso foi marcado para as 11h15min. O homem planeia conduzir o seu carro a 100 km/h e parte às 8h00 para ter algum tempo de sobra. Ele conduz a velocidade planeada durante os primeiros 100 km, mas, em seguida, um trecho é obrigado a reduzir a velocidade para 40 km/h durante 40 km. Qual é a menor velocidade que ele deve manter no resto da viagem para chegar a tempo?
NÍVEL DE DIFICULDADE: Regular .
Resolução 1

.

Trecho a:1º trecho percorrido,na qual {\triangle x = 100 \ km }.

Trecho b: 2º trecho, na qual {\triangle x = 40 \ km }.

Trecho c: trecho restante, na qual {\triangle x = 160 \ km }

Para que se calcule a velocidade necessária para percorrer o trecho c é necessário que se conheça o tempo restante. Para isso,devemos determinar os tempos gastos para percorrer a trechos a e b. Consideraremos MRU em todos trechos, pois estamos a usar parâmetros médios.

No trecho a:

\displaystyle \triangle x_{a} = v_{a}.t_{a}

Isolando o tempo e calculando:

\displaystyle t_{a} = \dfrac{\triangle x_{a}}{v_{a}} = 1h

No trecho b :

\displaystyle \triangle x_{b} = v_{b}.t_{b}

Isolando o tempo e calculando:

\displaystyle t_{b} = \dfrac{\triangle x_{b}}{v_{b}} = 1h

Como temos tempo em horas e em minutos, temos de reduzir a uma única unidade de tempo. Neste caso, vamos converter 15 minutos em horas.

Sabemos que:

\displaystyle 1h \longrightarrow 60min

\displaystyle x \longrightarrow 15min

Fazendo a multiplicação cruzada e isolando o {x}, obtemos:

\displaystyle x = \dfrac{1h.15min}{60min} = 0,25 \ h

Como o motorista partiu as 8h e tem que chegar as 11h e 15min,ou seja,11,25h,sendo que percorreu o conjunto do techo a e b por 2h, então, restam-lhe apenas 1h e 15min, ou seja 1,25h.

Então, para o trecho c teremos :

\displaystyle \triangle x_{c} = v_{c}.t_{c} \Rightarrow v_{c} =\dfrac{_{\triangle}x_{c}}{t_{c}} = 128 \ km/h

Exercício 2 A primeira metade da distância foi percorrida por um móvel com {v_{1}}. Do tempo restante, a primeira metade foi percorrida com a velocidade {v_{2}} e na segunda metade com a velocidade {v_{3}}, sendo que o tempo gasto em percorrer a 1{ª} e a 2{ª} metade, são iguais. Determinar a velocidade média em todo o percurso.
NÍVEL DE DIFICULDADE: Complexo .
Resolução 2 .

Sendo que : { t_{2} = \dfrac{t'}{2} \hspace{1cm} e\hspace{1cm} t_{3} = \dfrac{t'}{2}} {\hspace{1cm}} onde {t'} é o tempo restante após a 1ª parte e que : { \triangle x_{2} = \triangle x_{3}=\dfrac{\triangle x'}{2} =\dfrac{\triangle x}{2}}

{\triangle x'} é o trecho restante após a 1ª parte.

Então:{ \triangle x_{1} = \triangle x_{2} + \triangle x_3}.

Usando a definição de velocidade média para o troço 1, obtemos:

\displaystyle t_{1} = \dfrac{\triangle x_{1}}{v_{1}} = \dfrac{\triangle x_{2} + \triangle x_{3}}{v_{1}}

Os deslocamentos dos trechos 2 e 3 são:

\displaystyle \triangle x_{2} = v_{2}.t_{2}=v_{2}.\dfrac{t}{2}

\displaystyle \triangle x_{3} = v_{3}.t_{2}=v_{3}.\dfrac{t}{2}

Como os trechos 2 e 3 são percorridos durante o mesmo tempo, então a velocidade média é a média aritmética das velocidades. Neste caso, a velocidade média dos trechos 2 e 3 é:

\displaystyle v_{23} = \dfrac{v_2 + v_3}{2}

O deslocamento conjunto do trecho 2-3 é igual à primeira metade:

{\triangle x_{23}=\triangle x'=\triangle x_1=\dfrac{\triangle x}{2}}

A partir da equação da velocidade média para mais de um trecho,teremos :

\displaystyle v_{m} = \dfrac{\triangle x_{1}+\triangle x_{2}+\triangle x_{3}}{t_{1}+t_{2}+t_{3}}

Neste caso, teremos :

\displaystyle v_{m} = \dfrac{\triangle x_{1}+\triangle x_{23}}{t_{1}+t_{23}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 . \triangle x_{1}+\triangle x_{1}}{\dfrac{\triangle x_1}{v_1}+\dfrac{\triangle x_23}{v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 . \triangle x_{1}+}{\dfrac{\triangle x_1}{v_1}+\dfrac{\triangle x_1}{v_{23}}}

Factorizando e simplificando {\triangle x_{1}}, obtemos:

\displaystyle v_{m} = \dfrac{2 }{\dfrac{1}{v_1}+\dfrac{1}{v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2 }{\dfrac{v_{23}+v_1}{v_1 . v_{23}}}

\displaystyle \Rightarrow v_{m} = \dfrac{2. v_1 . v_{23}}{v_{23}+v_1}

Substituindo {v_{23}} pela formula de velocidade média no troço 2-3, obtemos:

\displaystyle \Rightarrow v_{m} = \dfrac{2 v_1 . \dfrac{ v_{2}+v_3}{2}}{\dfrac{v_{2}+v_3}{2}+v_1}

Simplificando as expressões, obtemos:

\displaystyle v_{m} = \dfrac{2 v_{1}(v_{2}+v_{3})}{2v_{1}+v_{2}+v_{3}}

Exercício 3 A equação do movimento de uma partícula ao longo do eixo OX é {x=t^{3}-6 \ t^{2}-15 \ t+40} (no SI). Determine: (a) o instante em que a velocidade se anula; (b) a posição e a distância percorrida pelo ponto material até ao instante em que v=0; (c) a aceleração do ponto material no mesmo instante.
NÍVEL DE DIFICULDADE: Elementar .
Resolução 3

  1. A posição da partícula é dada por:{ x \ = \ t^{3}-6 \ t^{2}-15 \ t+40}
    A velocidade é dada por: {v=\dfrac{dx}{dt} \Rightarrow v \ = \ 3 \ t^{2}-12 \ t-15}Portanto,quando a velocidade for nula,teremos as seguintes equações:

    \displaystyle 3 \ t^{2}-12 \ t-15=0

    Simplificando por 3, teremos:

    \displaystyle t^{2}-4 \ t-5=0

    Logo:

    \displaystyle \left\{\begin{array}{cccccc} t & = & 5 \ s, \textrm{Correcta}\\ t & = & -1 \ s, \textrm{Incorrecta}\\ \end{array}\right.

  2. Para obter a posição, substituímos o tempo da função horária pelo valor dado. Neste caso, a posição em {t=5 \ s} é:

    \displaystyle x_{f}=(5)^{3}-6.(5)^{2}-15.(5)+40

    \displaystyle \Rightarrow x_{f}=-60 \ m

    A posição no instante t=0s é:

    \displaystyle x_{i}=(0)^{3}-6.(0)^{2}-15.(0)+40

    \displaystyle \Rightarrow x_{i}=40 \ m

    A distância percorrida é dada por :

    \displaystyle \Delta x = |x_{f}-x_{xi}| \Rightarrow \Delta x = |-60-40| \Rightarrow\Delta = 100 \ m

  3. A aceleração instantânea é dada por:

    \displaystyle a=\dfrac{d^{2} x}{d t^{2}} \Rightarrow a=\dfrac{d{v}}{d{t}}

    Derivando a velocidade se obtém:

    \displaystyle a=6 \ t-12

    Logo, quando { t=5 \ s}, teremos :

    \displaystyle a=6.(5)-12 \Rightarrow a \ = \ 18 \ m/s^{2}

Exercício 4 Quando a luz verde de um semáforo acende, um condutor acelera uniformemente o seu veiculo durante 6 s em {2 \ m/s^{2}}. Em seguida ele passa a ter velocidade constante. No instante em que o carro começou a se mover, ele foi ultrapassado por uma motorizada movendo-se no mesmo sentido com a velocidade constante de 10 m/s. Após quanto tempo, os dois veículos encontrar-se-ão novamente?
NÍVEL DE DIFICULDADE: Complexo .
Resolução 4 .

Dados:

{a_{1A}=2 \ m/s^{2}}

{ t_{1A}= \ 6 \ s = t_{02}}

{ x_{01A}= \ 0 \ }

{ v_{0A}=0}

{ v_B=6 \ s}

{x_{0B}=0}

  • Neste Problema temos dois veículos A e B, mas o veiculo A não tem uma única equação de movimento, visto que inicialmente faz um MRUV, mas sem seguida faz um MRU. Então vamos usar os índices 1 e 2 para distinguir as duas partes do movimento do veiculo A. Para o veiculo B isto não é necessário.A Equação de movimento para o Veiculo A (condutor) :

Na 1ª Parte, em MRUV : { x_{1A}=\dfrac{1}{2}at^{2}}

Na 2ª parte (após os 6 s de MRUV), começa um MRU : {x_{2A} = x_{02A}+ v_{02A}.t}

A equação de movimento para a motorizada (Veiculo B) é a seguinte :

Na 1ª Parte em MRU {x _{B}=v_{B}.t}

Na 2ª parte ainda em MRU): {x_{B}=x_{0B2}+ v_{B}.t}

Calculando a posição e velocidade dos 2 após os primeiros 6 segundos, obtemos:

Para o veiculo A:

{x_{f1A}=\dfrac{1}{2}at^{2}=\dfrac{1}{2}.(2).(6)^{2}\Rightarrow x_{f1A}=36 \ m}

{v_{f1A}=v_{01A}+a_1.t \Rightarrow v_{f1A}=0+2.6=12 m/s}

Para o veiculo B:

{x_{f1B}=x_{01B}+v_{1B}.t \Rightarrow x_{f1B}=0+10.(6)\Rightarrow x_{f1B}=60 \ m}

Como o veiculo B faz MRU a velocidade é constante, logo:{v_{f1B}=v_{01B}=10 \ m/s}

Como podemos observar n figura, após o tempo {t_1=6 \ s} o condutor (A) ainda não alcançou a motorizada (B). Então para determinar a posição de encontro, vamos usar as equações da 2ª parte.

{x_{2A}=x_{02A}+v_{2A}.t \Rightarrow x_{2A}=36+12 \ t}

{x_{2B}=x_{02B}+v_{2B}.t \Rightarrow x_{2B}=60+10 \ t}

O encontro ocorre quando: {x_{2A}=x_{2B}}

\displaystyle \Rightarrow 36+12 \ t =60+10 \ t

Isolando o tempo, obtemos:

\displaystyle t = 12

Atenção que este 12 segundos é após o inicio da 2ª Parte (pois reiniciamos a analise dos movimentos no final da 1ª Parte). Considerando então os {6 \ s} de duração da primeira parte, temos:

\displaystyle t = \ 12+6 =18 \ s

Exercício 5 Partindo do repouso, um veiculo mantém uma aceleração de {4 \ m/s^{2}} durante {4 \ s}. Nos {10 \ s} seguintes ele tem um movimento rectilíneo uniforme. para travar, o veiculo passa a ter um movimento uniformemente retardado com aceleração de {8 \ m/s^{2}}, até parar. Fazer um gráfico da velocidade em função do tempo e mostrar que a área limitada pela curva e pelo eixo dos tempos é igual a distância total percorrida.
NÍVEL DE DIFICULDADE: Regular .
Resolução 5

Dados:

{x_{01}=0}

{v_{01}=0 \ m/s}

{a_{1}=4 \ m/s^{2}}

{t_{1}=4 \ s }

{x_{02}=x_{f2} \longrightarrow ?}

{v_{2}=v_{f1} \longrightarrow ?}

{t_{2}= 10 \ s}

{x_{03}=x_{f2} \longrightarrow ?}

{v_{03}=v_{f2}}

{a_{3}=8 \ m/s^{2}}

{t_{3} \longrightarrow ?}

Para este problema, temos de calcular a velocidade em cada um dos trechos e os respectivos tempos. é um movimento dividido em 3 partes. UM MRUV (acelerado), um MRU e um MRUV (Retardado).

A partir da equação das velocidades, para a 1ª parte,teremos:

\displaystyle v_{f1}=v_{01} + a_1.t_1=0+4.4=16

…para a 2ª etapa: {a=0}(M.R.U):

\displaystyle \Rightarrow v_{f2}=v_{02}=v_{f1} \Rightarrow v_{f2}=16 \ m/s

…para a 3ª etapa :

\displaystyle v_{f3}=0

Como conhecemos o tempo da 1ª e da 2ª parte, para completarmos o gráfico, precisamos obter o tempo da 3ª parte. Neste caso, usando a equação da velocidade, teremos:

\displaystyle v_{f3}=v_{03} - a_{3} . t_{3}\Rightarrow 0=v_{f_{2}} - a_{3} . t_{3} \Rightarrow t_{3}=\dfrac{v_{03}}{a_{3}}=2 \ s

Com os dados obtidos marcamos os 4 pontos no gráfico de {v=f(t)} e traçamos as rectas que unem os pontos:

{(t_{01};v_{01})=(0;0)}

{(t_{02};v_{02})=(4;16)}

{(t_{03};v_{03})=(14;16)}

{(t_{f1};v_{f1})=(16;0)}

Vamos então calcular a áreas do gráfico.

A primeira região é um triângulo. Neste caso:

{ A_{1}=\dfrac{1}{2}.l.h=\dfrac{1}{2}.4.16 }

{A_{1}=32 \ m}

A primeira região é um rectângulo. Neste caso:

{A_{2}=l.h=10.16=160 \ m}

A primeira região é um rectângulo. Neste caso:

{A_{3}=\dfrac{1}{2}.l.h=\dfrac{1}{2}.16}

{A_{3}=16 \ m}

Neste caso: {A_{Total}=A_{1}+A_2+A_3=208 \ m}

Calculando os deslocamentos de cada parte, temos:

{\Delta x_{1}=\dfrac{1}{2}a_{1}{t_1}^{2}=\dfrac{1}{2}.4.(4)^{2}}

{\Delta x_{1}=32 \ m}

{ \Delta x_{2}=v_2.t_2=16.(10)}

{\Delta x_{2}=160 \ m}

{ \Delta x_{3}=v_{03}.t-\dfrac{1}{2} a_3 t^{2}}

{ \Delta x_{3}=16.(2)-\dfrac{1}{2}.8.(2)^{2}=16 \ m}

{ \Delta x_{Total}=\Delta x_{1}+\Delta x_{2} + \Delta x_{3} = 208 \ m}

Logo a área total {A_{Total}=208 \ m} é igual á distancia total { \Delta x_{Total}=208 \ m"}

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers like this: