Luso Academia

Início » 00 Geral (Página 2)

Category Archives: 00 Geral

1.1. Exercício sobre Dilatação Térmica (Parte 2)

Exercício 4 Considere o micro-sistema abaixo formado por duas pequenas peças metálicas, I e II, presas em duas paredes laterais. Observamos que na temperatura de {16 \ ^oC}, a peça I, tem tamanho igual {2 \ cm}, enquanto que a peça II possui apenas {1 \ cm} de comprimento. Ainda nesta temperatura as peças estavam afastadas por uma pequena distância {d} igual à {6 \cdot 10^{-3}\ cm}. Sabendo que o coeficiente de dilatação linear da peça I é igual a {4 \cdot 10^{-5}(^oC)^{-1}} e que o coeficiente de dilatação linear dada peça II é igual à {5 \cdot 10^{-5}(^oC)^{-1}}, qual deverá ser a temperatura do sistema, em graus Celsius, para que as duas peças estejam afastadas a uma distância igual ao dobro de {d}?

 

NÍVEL DE DIFICULDADE: Regular.

Resolução 4 .
Trata-se de um exercício sobre dilatação linear, quando um corpo o sistema é submetido a variações de temperaturas.A figura do enunciado, na situação 1 apresenta o fenómeno quando o sistema estava em uma temperatura {t_o} e as peças tinham comprimentos {l_{o1}} e {l_{o2}}, respectivamente, e estavam separadas a uma distância {d}.

 

A situação 2, representada na figura a seguir, apresenta o fenómeno de dilatação, quando o sistema sofre variação de temperatura {t_o} para {t} e as dimensões das peças também variam de {l_{o1}} para {l_1} e de {l_{o2}} para {l_2}, respectivamente, e a distâncias entre as peças aumenta de {d} para {2d}.

Dados

{t_o =16 \ ^oC}

{l_{o1} = 2 \ cm}

{l_{o2} = 1 \ cm}

{d = 6 \cdot 10^{-3} \ cm}

{\alpha_1 = 4 \cdot 10^{-5} \ ^oC^{-1}}

{ \alpha_2 = 5 \cdot 10^{-5} \ ^o C^{-1}}

{t \longrightarrow ?} {d' = 2d}

Temos a equação de dilatação linear que é:

\displaystyle \Delta l = \alpha l_o\Delta t

A equação da dilatação para as peças será:

\displaystyle \left\{\begin{array}{cccccccc} \Delta l_1 &=& \alpha_1 l_{o1}\Delta t\ \ (1)\\ \Delta l_2 &=& \alpha_2 l_{o2}\Delta t\ \ (2) \end{array} \right.

Para que as peças estejam separadas a uma distância igual ao dobro de {d}, é necessário que as duas peça se comprimam a uma distância total igual a {d}, como vimos na figura anterior.

Assim é suficiente que:

\displaystyle \Delta l_1 = l_1 - l_{o1}\ \ \ e\ \ \Delta l_2 = l_2 - l_{o2}

Sabemos que: {\Delta l_1+ \Delta l_2=-d}. A diminuição total de comprimento deve ser d. O sinal de menos (-) aparece devido ao facto de estarmos a lidar com uma diminuição de comprimento (variação negativa). Então:

\displaystyle -d = \alpha_1 l_{o1}\Delta t + \alpha_2 l_{o2}\Delta t

\displaystyle \Rightarrow -d = \Delta t (\alpha_1 l_{o1} + \alpha_2 l_{o2})

Isolando {\Delta t} na equação, obtemos:

\displaystyle \Delta t = \dfrac{-d}{\alpha_1 l_{o1} + \alpha_2 l_{o2}}

Substituindo os valores:

\displaystyle \Delta t = \dfrac{-6 \cdot 10^{-3} \cdot 10^{-2} }{4 \cdot 10^{-5} \cdot 2 \cdot 10^{-2} + 4 \cdot 10^{-5} \cdot 1 \cdot 10^{-2} }

\displaystyle \Delta t = -46,15 \ ^oC

Sabemos que a variação da temperatura é dada por:

\displaystyle \Delta t = t - t_o

\displaystyle ou \ t - t_o = \Delta t

Isolando {t}, tem-se:

\displaystyle t = \Delta t + t_o

Substituindo os valores de {\Delta t} e {t_o}, tem-se:

\displaystyle t = -46,15 \ ^oC + 16 \ ^oC

\displaystyle t = -30,15 \ ^oC

Exercício 5 Dois corpos, A e B, de massas { m_{A} = 600 \ g } e { m_{B} = 300 \ g }, são aquecidos separadamente por uma mesma fonte que lhes fornece calor a razão de { 300 \ cal/min}. O gráfico a seguir mostra a variação da temperatura { \theta } dos corpos em função do tempo {t} para o aumento dessa temperatura.

 

Determine:

  1. A relação entre os calores específicos das substâncias que constituem os corpos { (c_{B}/c_{A})} .
  2. Depois de quanto tempo o corpo A atinge a temperatura de { 90 \ ^{o}C }.

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .O problema em questão está relacionado a calorimetria. São dados dois corpos A e B que são aquecidos separadamente através de uma mesma fonte que fornece calor a razão de { 300 \ cal/min }. Esta quantidade de calor por unidade de tempo que a fonte fornece aos corpos representa a potência da fonte, isto é: { P_{F}=300 \ cal/min }. Então temos os seguintes dados.

 

Dados

{ m_{A}=600 \ g}

{ m_{B}=300 \ g}

{ P_{F}=300 \ cal/min}

  1. Buscaremos as equações da quantidade de calor para os corpos A e B.Da calorimetria sabemos que:

    \displaystyle Q=m \cdot c \cdot \Delta \theta \ \ \ \ \ (9)

    Onde:
    m – massa da substância;
    c – calor específico da substância;
    { \Delta \theta} = {(\theta_{f} - \theta_{i})} – variação de temperatura.

    Então temos para o corpo A:

    \displaystyle Q_{A}=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA}) \ \ \ \ \ (10)

    Para o corpo B:

    \displaystyle Q_{B}=m_{B} \cdot c_{B} \cdot(\theta_{fB} - \theta_{iB}) \ \ \ \ \ (11)

    Por outro lado, sabe-se que ambos os corpos, A e B, são aquecidos por uma mesma fonte com potencia { P_{F}=300 \ cal/min}. De acordo com gráfico, os dois corpos são aquecidos durante um intervalo de tempo { \Delta t=10 \ minutos }.

    Sendo assim, os dois corpos recebem a mesma quantidade de calor, isto é, { Q_{A}=Q_{B}=P_F \cdot \Delta t}.

    Dividindo a equação 5 pela 5, obtemos:

    \displaystyle \dfrac{Q_{B}}{Q_{A}}= \dfrac{m_{B}}{m_{A}} \cdot \dfrac{c_{B}}{c_{A}} \cdot (\dfrac{\theta_{fB}-\theta_{iB}}{\theta_{fA}-\theta_{iA}})

    \displaystyle \Rightarrow 1= \dfrac{m_{B}}{m_{A}} \cdot \dfrac{c_{B}}{c_{A}} \cdot (\dfrac{\theta_{fB} - \theta_{iB}}{\theta_{fA} - \theta_{iA}})

    Isolando a razão { \dfrac{c_{B}}{c_{A}}}, obtemos:

    \displaystyle \dfrac{c_{B}}{c_A}= \dfrac{1}{\dfrac{m_{B}}{m_{A}} \cdot \dfrac{\theta_{fB} - \theta_{iB}}{\theta_{fA} - \theta_{iA}}}

    Aplicando a regra de divisão de frações, obtemos:

    \displaystyle \dfrac{c_{B}}{c_{A}}= \dfrac{m_{A} \cdot(\theta_{fA} - \theta_{iA})}{m_{B} \cdot(\theta_{fB} - \theta_{iA})}

    O gráfico inicial dá-nos para o corpo A:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iA}=10 \ ^oC\\ \theta_{fA}=30 \ ^oC\\ \end{array}\right.

    Para o corpo B:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iB}=20 \ ^oC\\ \theta_{fB}=30 \ ^oC\\ \end{array}\right.

    Substituindo os dados, obtemos:{ \dfrac{c_{B}}{c_{A}}= \dfrac{600 \cdot(30-10)}{300 \cdot(30-20)}}

    \displaystyle \dfrac{c_{B}}{c_{A}}=4

    Então, a razão entre os calores específicos das substâncias que constituem os corpos é:

    \displaystyle \dfrac{c_{B}}{c_{A}}=4

  2. Para determinamos o tempo em que o corpo A atinge a temperatura de {90 ^oC}, precisaremos conhecer em primeiro lugar o seu calor específico({c_A}). Vamos obter o valor de { c_{A}} (calor especifico do corpo A) fazendo a análise através do gráfico.Para o corpo A:

    \displaystyle \left\{\begin{array}{ccc} \theta_{iA}=10 \ ^oC \\ \theta_{fA}=30 \ ^oC \\ \end{array}\right.

    Consideremos a equação:

    \displaystyle Q_{A}=m_{A} \cdot c_{a} \cdot(\theta_{fA} - \theta_{iA})

    Entretanto, sabemos que:

    \displaystyle P_{F}=\dfrac{Q_{A}}{\Delta t}

    Isolando {Q_{A}}, temos:

    \displaystyle Q_{A}=P_{F} \cdot \Delta t

    Neste caso:

    \displaystyle P_{F} \cdot \Delta t=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    Onde: { \Delta t=(t_{f} - t_{i})} – Intervalo de tempo.

    Então:

    \displaystyle P_{F} \cdot(t_{f} - t_{i})=m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    Isolando { c_{A}}:

    \displaystyle c_{A}= \dfrac{P_{F} \cdot(t_{f} - t_{i})}{m_{A}(\theta_{fA} - \theta_{iA})}

    Substituindo os dados, obtemos:

    \displaystyle c_{A}= \dfrac{300 \cdot(10-0)}{600 \cdot(30-10)}=0,25

    \displaystyle c_{A}=0,25 \ cal/g \cdot \ ^oC

    Obs: Não fizemos conversão pelo SI, mas determinamos a unidade equivalente.

    Agora, analisando para um novo intervalo de tempo desconhecido, buscamos o tempo necessário para que o corpo A atinja a temperatura de { 90 \ ^oC}, isto é, { \theta_{fA}=90 \ ^oC}.

    Sabemos que:

    \displaystyle Q_{A} =m_{A} \cdot c_{A} \cdot(\theta_{fA} - \theta_{iA})

    \displaystyle \Rightarrow P_{F} \cdot(t_{F} - t_{i})=m_{A} \cdot c_{A}\cdot(\theta_{fA} - \theta_{iA})

    Isolando o intervalo de tempo { t_{f} - t_{i}}, obtemos:

    \displaystyle (t_{f} - t_{i})= \dfrac{m_{A} \cdot c_{A}(\theta_{FA} - \theta_{iA})}{P_{F}}

    Substituindo os dados, obtemos:

    \displaystyle (t_{f} - t_{i})= \dfrac{600 \cdot 0,25 \cdot(90-10)}{300}

    \displaystyle ( t_{f} - t_{i})=40 \ min

    Como no inicio, de acordo ao gráfico, o corpo A em { t_{i}=0} tem temperatura { \theta_{iA}=10 \ ^oC}, como substituindo acima, então temos:

    \displaystyle t_{f}- 0 =40 \ min

    \displaystyle t_{f}=40 \ min

    Portanto, o corpo A atinge de { \theta_{fA}=90 \ ^oC} depois de { 40 \ min} sendo aquecido pela fonte de potencia { P_{F}=300 \ cal/min}.

Exercício 6 Como resultado de um aumento de temperatura de {36 \ ^oC}, uma barra com uma rachadura no centro dobra para cima (ver figura abaixo). Se a distância fixa {L_o} é de {3,78\ m} e o coeficiente de dilatação linear da barra é de {26 \cdot 10^{-6} \ ^oC^{-1}}, determine a altura {x} do centro da barra.

 

NÍVEL DE DIFICULDADE: Regular.

Resolução 6Trata-se do fenómeno de dilatação térmica devido a variação de temperatura. Quando a barra se dilatar, o seu tamanho (comprimentos) aumenta. Fruto desse aumento de comprimento e do orifício já existente, a barra divide-se em duas partes iguais. Se a barra dilatada tem comprimento final { L }, então cada uma das partes (metades) da barra dilatada mede { \dfrac{L}{2} }.

 

Na figura acima, designamos:

A – ponto fixo de ligação da barra a uma extremidade:

B – centro da distancia fixa { L_o };

C – ponto onde, acima do centro, onde a barra se dobra.

{Dados}

{ \Delta t = 36 \ ^oC}

{ L_o = 3,78 \ m}

{ \alpha = 26 \cdot 10^{-6} \ ^oC^{-1}}

{ x \longrightarrow? }

Do triângulo ABC, é válido o Teorema de Pitágoras:

\displaystyle \Big( \dfrac{L}{2} \Big)^2 = x^2 + \Big( \dfrac{L_o}{2} \Big)^2

\displaystyle \Rightarrow \dfrac{L^2}{4} = x^2 + \dfrac{ L_o^2 }{4}

\displaystyle x^2 = \dfrac{L^2}{4} - \dfrac{L_o^2}{4} = \dfrac{L^2 - L_o^2 }{4}

Isolando {x}:

\displaystyle x = \sqrt{ \dfrac{ L^2 - L_o^2 }{4}} \Rightarrow x= \dfrac{ \sqrt{L^2 - L_o^2}}{\sqrt{4}}

\displaystyle x = \dfrac{\sqrt{L^2 - L_o^2}}{2} \ \ \ \ \ (12)

Antes da variação da temperatura a barra tinha o comprimento igual à {L_o}. Depois da variação da temperatura a barra passou a ter um comprimento igual à {L}.

Pela lei da dilatação linear, temos:

\displaystyle \Delta L = \alpha L_o \Delta T

Com { \alpha } em { ^oC^{-1}} e { \Delta t } em { ^o C }. A partir desta equação podemos determinar {L}.

Como { \Delta L = L - L_o }, então:

\displaystyle \Delta L = \alpha L_o \Delta T \Rightarrow L - L_o = \alpha L_o \Delta T

\displaystyle L = \alpha L_o \Delta t + L_o \Rightarrow L = L_o (\alpha\Delta t + 1) \ \ \ \ \ (13)

Substituindo 13 em 12, tem-se:

\displaystyle x = \dfrac{ \sqrt{L^2 - L_o^2} }{2} \Rightarrow x = \dfrac{\sqrt{[L_o (\alpha\Delta t + 1)]^2 - L_o^2}}{2}

\displaystyle \Rightarrow x = \dfrac{\sqrt{L_o^2(\alpha\Delta t + 1)^2 - L_o^2}}{2} \Rightarrow x= \dfrac{\sqrt{L_o^2[(\alpha\Delta t + 1)^2 - 1]}}{2}

\displaystyle \Rightarrow x = \dfrac{\sqrt{L_o^2}\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}}{2} \Rightarrow x= \dfrac{L_o\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}}{2}

\displaystyle \Rightarrow x = \dfrac{L_o}{2}\cdot\sqrt{(\alpha\Delta t + 1)^2 - 1}

Substituindo os valores dados, obtemos:

\displaystyle x = \dfrac{3,78 \ m}{2} \cdot \sqrt{(26 \cdot 10^{-6} \cdot 36 \ + 1)^2 - 1}

\displaystyle \Rightarrow x = 0,082 \ m \ \Rightarrow x= 8,2 \ cm

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercício sobre Dilatação Térmica (Parte 1)

— 1. Exercício sobre Calor e Temperatura —

— 1.1. Exercício sobre Dilatação Térmica —

Exercício 1 Um quadrado de área interna de {2,35 \ m^{2}} foi montado com duas hastes de alumínio {(\alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1} )} e duas hastes de aço {(\alpha_{Aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1})}, todos inicialmente à mesma temperatura de {27 \ ^{o}C}, conforme a figura abaixo. O sistema é, então, submetido a um processo de aquecimento, de forma que a variação de temperatura é a mesma em todas as hastes, até a temperatura final de {100 \ ^{o}{\mathbb C}}.

Considerando que no final as hastes de alumínio continuam perpendiculares as hastes de aço, determine a área do plano limitado pelas hastes após o aquecimento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 1 .

O problema em questão trata de dilatação térmica dos corpos (expansão dos corpos). É dada uma área { A_{o}=2,35 \ m^{2}} limitada por duas hastes de alumínio e duas hastes de aço sob uma temperatura { t_{o}=27\ ^{o}C}.

Dado que a área limitada é a área de quadrado, então, de acordo a definição da área de um quadrado, temos que:

\displaystyle A_{o}=l_{o Aco} \cdot l_{o Al} \ \ \ \ \ (1)

Onde:
{ l_{o Aco}} – Comprimento da haste de aço.

{ l_{o Al}} – Comprimento da haste de alumínio.

Por outro lado, para que as hastes de alumínio e de aço formem ou limitem a área de um quadrado deve-se cumprir a seguinte condição:

\displaystyle l_{o Aco}=l_{o Al}=l_o \ \ \ \ \ (2)

Então, cada haste de alumínio e/ou de aço possui um comprimento { l_{o}} inicialmente.

Entretanto, depois de aquecidas as hastes de aço e alumínio, de modo que a variação de temperatura é a mesma em todas as hastes, até a temperatura de { 100\ ^{o}C}, cada uma das hastes, de alumínio e aço, dilatam e ganham novos comprimento { l_{Al}} e { l_{Aco}} que são diferentes, pois os seus coeficientes de dilatação linear são diferentes, com { \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}} e { \alpha_{Aco}= 1,2 \cdot 10^{-5} \ ^{o}C^{-1}}.

Dados:
{ A_{0}=2,35 \ m^{2}}
{ t_{0}=27\ ^{o}C}
{ \alpha_{Al}=2,4 \cdot 10^{-5} \ ^{o}C^{-1}}
{ \alpha_{aco}=1,2 \cdot 10^{-5} \ ^{o}C^{-1}}
{ t=100 \ ^{o}C}

Depois do aquecimento até { t=100 \ ^{o}C}, as hastes de alumínio ainda permanecem perpendiculares as hastes de aço, conforme enunciado. Logo, como o aumento nos comprimentos nas hastes, temos uma nova área.

Então, a nova área limitada pelas hastes de alumínio e aço é dada como sendo o produto dos comprimento finais das hastes, { l_{Al}} e { l_{Aco}}, de alumínio e aço respectivamente.

\displaystyle A=l_{Al} \cdot l_{Aco} \ \ \ \ \ (3)

Pela figura acima percebe-se que:

\displaystyle l_{Al}=l_{o} + \Delta l_{Al} \ \ \ \ \ (4)

\displaystyle l_{Aco}=l_{o} + \Delta l_{Aco} \ \ \ \ \ (5)

Onde: { \Delta l_{Al}} e { \Delta l_{Aco}} são os aumentos nos comprimentos das hastes, devido o aquecimento, do alumínio e do aço, respectivamente.

Para determinarmos a área que as hastes de alumínio e aço vão limitar após o aquecimento, substituímos as equações 4 e 5 na equação 3. Obtemos:

\displaystyle A= (l_{o}+\Delta l_{Al}) \cdot (l_{o}+ \Delta l_{Aco}) \ \ \ \ \ (6)

Determinamos { l_{o}} pela equação 3:

\displaystyle A_{o}=l_{o} \cdot l_{o} \Rightarrow A_{o}=l^{2}_{o}

Invertendo a igualdade:

\displaystyle l^{2}_{o}=A_{o} \Rightarrow l_{o} = \sqrt{A_{o}}

Substituindo os dados:

\displaystyle l_{o}=\sqrt{2,35}=1,533 \ m

\displaystyle \\ l_{o}=1,533 \ m

Determinemos { \Delta l_{Al}} e { \Delta l_{Aco}} através da relação da dilatação linear.

Para o alumínio:

\displaystyle \Delta l_{Al}=l_{o} \cdot \alpha_{Al} \cdot (t-t_{o}) \ \ \ \ \ (7)

Substituindo os dados:

\displaystyle \Delta l_{Al}=1,533 \cdot 2,4 \cdot 10^{-5} \cdot (100-27)

\displaystyle \Delta l_{Al}=2,685 \cdot 10^{-3} \ m

Para o aço:

\displaystyle \Delta l_{Aco}=l_{Aco} \cdot \alpha_{Aco} \cdot (t-t_{o}) \ \ \ \ \ (8)

Substituindo os dados:

\displaystyle \Delta l_{Aco}=1,533 \cdot 1,2 \cdot 10^{-5}(100-27)

\displaystyle \Delta l_{Aco}=1,343 \cdot 10^{-3} \ m

Portanto, a área limitada pelas hastes após o aquecimento é:

\displaystyle A=(l_{Al}+\Delta l_{Al}) \cdot (l_{Aco}+ \Delta l_{Aco})

\displaystyle A=(1,533+2,685 \cdot 10^{-3}) \cdot (1,533+1,343 \cdot 10^{-3})

\displaystyle A=2,356 \ m^{2}

Exercício 2 Uma ponte tem comprimento {L_1 = 145 \ m} à temperatura de {{26} \ ^oC}. É construída de uma liga metálica especial com o coeficiente de expansão térmica {\alpha = 1 \cdot 10^{-5} \ (^o{\mathbb C}^{-1})}. Calcule o comprimento {L_2} da ponte quando a temperatura for de {{43} \ ^oC}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 2 .

Trata-se do fenómeno de dilatação térmica que um corpo sofre quando é submetido a variações de temperatura.

Dados

{L_1=145 \ m}

{t_1 ={26} \ ^oC}

{\alpha=1 \cdot 10 \ ^{-5} \ ^oC^{-1}}

{L_2 \longrightarrow?}

{t_2 ={43} \ ^oC}

A equação da dilatação térmica de um sólido é:

\displaystyle \Delta L = \alpha L_1\Delta t

Mas {\Delta L=L_2 - L_1 \ } e {\Delta t = t_2 - t_1}.
Substituindo na equação anterior temos:

\displaystyle \Delta L = \alpha L_1\Delta t \Rightarrow L_2 - L_1 = \alpha L_1(t_2 - t_1)

Isolando {L_2}, tem-se:

\displaystyle L_2 = \alpha L_1(t_2 - t_1) + L_1 \Rightarrow L_2 = L_1[\alpha (t_2 - t_1) + 1]

Substituindo os valores:

\displaystyle L_2= 145 \ [1 \cdot 10^{-5} \ (43 - 26) + 1]

\displaystyle L_2 = 145,025 \ m

Exercício 3 Na temperatura ambiente ({26 \ ^oC}) os carris dos caminhos de ferro são montados em unidades de {12 \ m} de comprimento. Entre duas destas unidades fica sempre uma distância de {8,7 \ mm} livre para compensar expansão térmica dos carris. Calcule a temperatura máxima {T}, que considerou o projectista? O coeficiente da expansão térmica do aço utilizado é de {\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 3 .

Trata-se do fenómeno de dilatação térmica numa linha férrea. Para sabermos a temperatura máxima {T} considerada pelo projectista é suficiente que a variação do comprimento de cada peça seja igual a distância livre entre elas.

Dados

{t_o ={26} \ ^oC}

{l_o = 12\ m}

{d = 8,6\ mm = 8,6\cdot 10^{-3}\ m}

{t \longrightarrow?}

{\alpha = 1,1 \cdot 10^{-5} \ (^oC^{-1})}

A equação da dilatação linear é:

\displaystyle \Delta l = \alpha l_o \Delta T)

\displaystyle \Rightarrow \Delta l = \alpha l_o (t - t_o)\

Note que a variação de temperatura em Graus Celcius é igual a variação da temperatura em Kelvins.

Para se saber a temperatura máxima considerada pelo projetista é suficiente que, {\Delta l = d}. Substituindo na relação anterior, obtemos:

\displaystyle \Delta l = \alpha l_o (t - t_o) \Rightarrow d = \alpha l_o (t - t_o)

Isolando {t}:

\displaystyle t - t_o = \dfrac{d}{\alpha l_o} \Rightarrow t = \dfrac{d}{\alpha l_o} + t_o

Substituindo os valores de {t}, {l_o}, {d} e {\alpha} na equação anterior, obtemos:

\displaystyle t = \dfrac{8,6 \cdot 10^{-3}}{1,1 \cdot 10^{-5} \cdot 12} + 26

\displaystyle t = 91,15 \ ^oC

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.2. Exercícios sobre sistema massa-mola (Parte 1)

— 1.2. Sistema massa-mola —

Exercício 16 .

Um corpo está pendurado em uma mola de { k= 600 \ N/m} e oscila com uma amplitude de {5 \ cm}.

Qual é a velocidade máxima desta oscilação e a massa do corpo, se o seu período for de {1 \ s} ?

NÍVEL DE DIFICULDADE: Elementar.

Resolução 16 .
Dados
{k= \ 600 \ N/m}
{A= \ 5 \ cm= \ 0,05 \ m}
{T= \ 1 \ s}
{v_M \rightarrow ?}
{m \rightarrow ?}

A velocidade máxima de um MHS é dada na forma:

\displaystyle v_M= A \cdot\omega

Por sua vez, sabemos que, para qualquer evento período:

\displaystyle \omega= \dfrac{2 \pi}{T}

Logo, substituindo na equação anterior, obtemos:

\displaystyle v_M= A \cdot \dfrac{2 \pi}{T}

\displaystyle \Rightarrow v_M=0,05 \cdot \dfrac{2 \pi}{1}

\displaystyle \Rightarrow v_M= \ 0,314 \ m/s

Para determinarmos a massa, podemos usar a relação de {\omega} para o sistema massa-mola. Sabemos que neste sistema, a relação o {\omega} é dado por:

\displaystyle \omega = \sqrt{ \dfrac{k}{m} }

Ou:

\displaystyle \omega^2 = \dfrac{k}{m}

Então, isolando a massa, obtemos:

\displaystyle m= \dfrac{k}{\omega^2}

Substituindo {\omega} pela sua relação com o período, obtemos:

\displaystyle m= \dfrac{k}{(2 \pi / T)^2}

\displaystyle \Rightarrow m= \dfrac{600}{(2 \pi / 1)^2}

\displaystyle \Rightarrow m= \ 15 \ kg

Exercício 17 .
Um corpo de { 0,1 \ kg} preso em uma mola ideal de rigidez elástica de {200 \ N/m} oscila em MHS com {5 \ cm} de amplitude. Qual é a velocidade do corpo no momento em que a energia cinética do corpo é o dobro da energia potencial?

NÍVEL DE DIFICULDADE: Regular.

Resolução 17 .
Dados
{m= \ 0,1 \ kg}
{k= \ 200 \ N/m}
{A= \ 5 \ cm= \ 0,05 m}
{m \rightarrow ?} ({E_c=2E_p})

Em qualquer ponto do percurso em uma oscilação, a energia total do corpo é a soma da energia cinética com a energia potencial do corpo naquele ponto, ou seja:

\displaystyle E_c + E_p = E_{Total} \ \ \ \ \ (1)

Pretende-se saber qual é a velocidade do corpo no ponto onde a energia cinética é o dobro da energia potencial,ou seja:

\displaystyle E_c=2 E_p \ \ \ \ \ (2)

Substituindo a equação 2 na equação 1, temos:

\displaystyle 2E_p + E_p = E_{Total}

\displaystyle 3E_p = E_{Total}

Substituindo as energias cinéticas e total pelos seus equivalentes, obtemos:

\displaystyle 3\dfrac{mv^2}{2}= \dfrac{kA^2}{2}

Isolando a velocidade, obtemos:

\displaystyle v= \sqrt{ \dfrac{k}{3m} \cdot A^2}

\displaystyle \Rightarrow v=1,29 \ m/s

Exercício 18 .
Um corpo caindo de uma altura de {10 \ cm } (em relação ao topo da mola), comprime a mola (ficando presa nesta) e inicia um MHS .Sendo a massa do corpo de {100 \ g} e a constante da mola {20 \ N/m}, determine a amplitude desta oscilação.

NÍVEL DE DIFICULDADE: Complexo.

Resolução 18 .
Dados
{h=10 \ cm= \ 0,1 \ m }
{m= \ 100 \ g= 0,1 \ kg}
{k= \ 20 \ N/m}
{g= \ 9,8 \ m/s^2}
{A \longrightarrow ?}

Na figura ilustramos o sistema em 3 situações diferentes:

  • Situação 1 – O corpo está na altura de 10 cm e a mola está relaxada. O corpo, inicialmente em repouso, cai em direcção a mola.
  • Situação 2 – O corpo chega na mola (e fica preso nela). A partir daqui a mola e o corpo movem-se como um só. até o momento do encontro, o movimento era acelerado e com aceleração constante. Após esse encontro, no corpo começa a actuar a força elástica e portanto a sua aceleração começa a diminuir. A medida em que o corpo desce, a mola se vai comprimindo mais, a força elástica vai aumentando e a aceleração do corpo diminui até zero e em seguida aumenta negativamente. Ai o corpo começa a fazer um movimento retardado.
  • Situação 3 – Após a sua velocidade reduzir até zero, o corpo pára momentaneamente (e em seguida faz o movimento de retorno a posição de equilíbrio).

Vamos adoptar a posição da situação 3 como referencial de altura.

De acordo com a ilustração do fenómeno é possível concluir que:

  • A oscilação começou no ponto de equilíbrio;
  • Na posição da situação 1 o corpo estava em repouso. Existe apenas a energia potencial gravítica (devido a altura de {h + A});
  • Na posição da situação 2, após cair aos { 10 \ cm}, o corpo está em movimento com uma velocidade definida pela altura de queda. O sistema possuí energia cinética (do corpo) e energia potencial gravítica (devido a altura {A});
  • Após comprimir a mola até ao máximo, o corpo para. Nesse momento o sistema só tem a energia potencial elástica.

Usando a descrição acima, para a situação 1, a energia do sistema será:

\displaystyle E_1=E_{c1}+E_{pel1}+E_{pgrav1}

\displaystyle \Rightarrow E_1=0+0+E_{pgrav1}

\displaystyle \Rightarrow E_1= m \cdot g \cdot (h+A)

Para a situação 2, a energia do sistema será:

\displaystyle E_2=E_{c2}+E_{pel2}+E_{pgrav2}

\displaystyle \Rightarrow E_2=E_{c2}+0+E_{pgrav2}

\displaystyle \Rightarrow E_2=\dfrac{m \cdot v_2^2}{2}+0+m \cdot g \cdot A

\displaystyle \Rightarrow E_2=\dfrac{m \cdot v_2^2}{2}+m \cdot g \cdot A

Para a situação 3, a energia do sistema será:

\displaystyle E_3=E_{c3}+E_{pel3}+E_{pgrav3}

\displaystyle \Rightarrow E_3=0+E_{pel3}+0

\displaystyle \Rightarrow E_3=E_{pel3}

\displaystyle \Rightarrow E_3=\dfrac{k \cdot A^2}{2}

Sabemos que neste movimento apenas actuam as forças de gravida e elástica, que são ambas conservativas. Então, a energia mecânica deste sistema permanece constante:

\displaystyle E_1=E_2=E_3=E

Obtemos a partir desta análise um sistema de 3 equações. Resolvendo-o, podemos obter todos os valores desconhecidos ({v_2}, {A} e {E}). Para obter a amplitude, podemos igualar as equações de {E_1} e {E_3}. Neste caso, obteremos:

\displaystyle E_1=E_3

\displaystyle \Rightarrow m \cdot g \cdot (h+A)=\dfrac{k \cdot A^2}{2}

\displaystyle \Rightarrow m \cdot g \cdot h+m \cdot g \cdot A=\dfrac{k \cdot A^2}{2}

\displaystyle \Rightarrow 0=\dfrac{k \cdot A^2}{2} - m \cdot g \cdot A - m \cdot g \cdot h

\displaystyle \Rightarrow \dfrac{k \cdot A^2}{2} - m \cdot g \cdot A - m \cdot g \cdot h =0

Substituindo os dados, obtemos:

\displaystyle \Rightarrow \dfrac{20 \cdot A^2}{2} - 0,1 \cdot 9,8 \cdot A - 0,1 \cdot 9,8 \cdot 0,1 =0

\displaystyle \Rightarrow 10 \cdot A^2 - 0,98 \cdot A - 0,098 =0

Em seguida, resolvemos a equação do segundo grau obtida pela fórmula resolvente ou por qualquer outro método conveniente.

Obtemos os seguintes resultados: {A_1=0,159 \ m} e {A_2=-061 \ m}.

como sabemos, a amplitude não pode ser negativa, então o valor aceite para amplitude deste MHS é:

\displaystyle A=0,159 \ m

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 4)

Exercício 12 .
Uma partícula realiza um MHS de período { 8 \ s} e amplitude { 10 \ cm}.
Determine:

  1. A equação da posição.
  2. A equação da velocidade.
  3. A aceleração { 1 \ s} após ela ter passado pelo extremo negativo.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 12 .

O exercício apresenta um problema simples de MHS. O objectivo é determinar as equações da posição e da velocidade, bem como a posição num instante dado. Para obter as equações da posição e da velocidade, basta encontras as constantes destas equações ({A}, {\omega} e {\varphi_0}) e substitui-las.

Para obter a aceleração no instante dado, primeiro vamos obter o instante, por análise gráfica, e em seguida vamos substituir este instante na equação da aceleração.

Dados

{A= \ 10 \ cm = \ 0,1 \ m}

{ T= \ 8 \ s}

  1. A equação da posição de uma partícula em MHS pode ser dada na forma:

    \displaystyle x= A sen ( \omega t + \varphi_0)

    Como o enunciado não diz nada sobre a situação da partícula no instante inicial { ( t=0 \ s)}, então podemos considerar que:

    \displaystyle \varphi_0= 0 \ rad

    Sabendo que { T= 8 \ s} e que {\omega =\dfrac{2\pi }{T}}, então:

    \displaystyle \omega =\dfrac{2 \pi}{8} = \dfrac{1}{4} \pi \ rad/s

    Então, substituindo os valores obtidos na equação do MHS, teremos:

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t+0)

    \displaystyle x=0,1 sen (\dfrac{\pi}{4}t)

  2. A velocidade de uma partícula é definida como a derivada da sua posição em função do tempo,ou seja:

    \displaystyle v=\dfrac{d}{dt}[0,1 sen (\dfrac{\pi}{4}t)]

    \displaystyle v=0,1 \dfrac{d (\dfrac{\pi}{4}t)}{dt} cos (\dfrac{\pi}{4}t)

    \displaystyle v=0,1 \cdot \dfrac{\pi}{4} \cdot \cos(\dfrac{\pi}{4}t)

    \displaystyle v= 0,079 \cos(\dfrac{\pi}{4}t)

  3. Para saber essa aceleração, primeiro precisamos saber quanto tempo a partícula demora, para chegar até à posição do extremo negativo, partindo da posição de equilíbrio.

    Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

    • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
    • Sai deste 1º extremo para a posição de equilíbrio.
    • Sai da posição de equilíbrio para o outro extremo (2º extremo, no lado oposto).
    • Sai deste 2º extremo para a posição de equilíbrio.

    Esta é a descrição de um ciclo completo.

    O tempo que a partícula leva a completar o ciclo acima é o período ({T}).

    Cada um dos movimentos descritos acima tem a mesma duração, para o MHS. Esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

    Do estudo generalizado da função seno, conhecemos o gráfico genérico da figura a seguir.

    Observamos então que, para atingir o extremo negativo, partindo da posição de equilíbrio, passa 3/4 do ciclo. Neste caso, o tempo que leva a completar este movimento até ao extremo negativo é {3T/4}.

    Neste caso, o instante referido no enunciado (1 segundo após passar pelo extremo negativo) será:

    \displaystyle t= \ \dfrac{3T}{4}+1 = \ \dfrac{3 \cdot 8}{4}+1 = \ 7 \ s

    Agora basta determinarmos a equação da aceleração que por definição,é a derivada da velocidade da partícula.

    \displaystyle a=\dfrac{d}{dt}[0,07 \cos(\dfrac{\pi}{4}t)]

    \displaystyle a=[0,07 \dfrac{d(\dfrac{\pi}{4}t)}{dt} sen (\dfrac{\pi}{4}t)]

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4}t)

    Fazendo { t=7 \ s}, temos:

    \displaystyle a=-0,079 \cdot \dfrac{\pi}{4} sen (\dfrac{\pi}{4} \cdot 7)

    \displaystyle a=-0,043 \ m/s^2

Exercício 13 .
Uma partícula em MHS oscila com frequência de { 10 \ Hz} entre os pontos {L} e {-L} de uma reta. No instante { t_{0}}, a partícula está no ponto { \dfrac{\sqrt{3}}{2}L} caminhando em direcção a valores inferiores, e atinge o ponto { - \dfrac{\sqrt{2}}{2}L}, no instante t. Determine o tempo gasto neste deslocamento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 13 .

O problema apresenta-nos um MHS onde é conhecida a frequência e a amplitude. Nos é pedido para determinarmos o tempo que a partícula leva para sair de uma posição para outra.

A resolução deste problema consiste em escrever a equação do MHS, e para as duas posições, formar duas equações. Em seguida, resolvemos o sistema de equações de acordo com a regra escolhida.\

Para calcularmos esse tempo, primeiro, precisamos saber como a partícula se move ao longo dessa recta. Para isso, temos que escrever a sua equação da posição.

Como a escolha do referencial de tempo não tem influência sobre os cálculos, e o problema não oferece referencial de tempo nenhum, consideraremos o instante inicial como sendo nulo: {t_0 = \ 0 \ s}.

Dados
{A= \ L}

.
{ t_0=0 } ;{ x_0=\dfrac{\sqrt{3}}{2}L }

.

{ t_1 \Rightarrow ?} ; { x_1=\dfrac{\sqrt{2}}{2}}

{ f=10 \ Hz}

A equação da posição de uma partícula em MHS pode ser dada na forma:

\displaystyle x= A sen(\omega t + \varphi_{0})

Sabemos que {\omega =2 \pi \cdot f }. Logo:

\displaystyle \omega =2 \pi \cdot 10=20 \pi \ rad/s

Logo ,temos:

\displaystyle x=A sen( \omega t + \varphi_{0})

\displaystyle x=L sen( \varphi_0 +20 \pi t)

Resta sabermos o valor de { \varphi_0 }. Apesar de não definir o valor de { \varphi_0 }, mas o problema nos dá informações da posição em certo instante. Logo, isso define o valor de { \varphi_0 }.

O exercício informa que, no instante inicial { t_0(t=0 \ s)}, a partícula se encontrava na posição { x= \dfrac{\sqrt{3}}{2}L}. Colocando na equação da posição, isso quer dizer que:

\displaystyle \dfrac{\sqrt{3}}{2}L= L sen( 20 \pi \cdot 0 + \varphi_0)

Simplificando {L}, obtemos:

\displaystyle \dfrac{\sqrt{3}}{2}= sen( 20 \pi \cdot 0 + \varphi_0)

\displaystyle \Rightarrow sen(\varphi_0)=\dfrac{\sqrt{3}}{2}

\displaystyle \Rightarrow \varphi_0= \ arcsen(\dfrac{\sqrt{3}}{2}) \ ou \ \varphi_0 = 180^o - \ arcsen(\dfrac{\sqrt{3}}{2})

\displaystyle \Rightarrow \varphi_0= 60^o \ ou \ \varphi_0= 120^o

Como, no instante {t_0} a partícula caminhava para posições negativas, ou seja, a sua posição diminuía, então escolhemos o ângulo de {120^o= \ \dfrac{2 \pi}{3} }, pois esse é que conscide a um decrescimento no gráfico da função seno.

Logo, temos que:

\displaystyle x=L sen( 20 \pi t + \dfrac{2 \pi}{3})

Agora precisamos saber o tempo t que a partícula demora para chegar até { x= - \dfrac{\sqrt{2}}{2}L}. Vamos usar a equação da posição:

\displaystyle -\dfrac{\sqrt{2}}{2} L=L sen( 20 \pi t + \dfrac{2 \pi}{3})

\displaystyle \Rightarrow sen (20 \pi t + \dfrac{2 \pi}{3})=-\dfrac{\sqrt{2}}{2}

\displaystyle 20 \pi t + \dfrac{2 \pi}{3} =arcsen(-\dfrac{\sqrt{2}}{2})

Note: {arcsen(-\dfrac{\sqrt{2}}{2})= 225^o \ ou \ 315^o}. Neste caso, como estamos a analisar um movimento oscilatório, e queremos o menor tempo, usaremos o {225^o=\dfrac{5 \pi}{4} rad}.

\displaystyle \Rightarrow 20 \pi t + \dfrac{2 \pi}{3}=\dfrac{5}{4} \pi

Isolando t, obtemos:

\displaystyle t =\dfrac{\dfrac{5 \pi}{4} - \dfrac{2 \pi}{3}}{20 \pi}

\displaystyle t=\dfrac{7}{240}

\displaystyle t=0,029 \ s

Exercício 14 O diagrama representa a elongação de um corpo em MHS em função do tempo.

  1. Determine a amplitude e o período para esse movimento.
  2. Escreva a função elongação, usando função cosseno.

NÍVEL DE DIFICULDADE: Regular.

Resolução 14 .
O problema apresenta um gráfico da posição de um MHS e nos pede a amplitude, período e equação da posição deste MHS.

A amplitude é lida directamente no gráfico. O período é obtido por interpretação do gráfico, escolhendo dois pontos especiais da oscilação (extremos, posições de equilíbrio, etc.). Com estes dados, após determinação da fase inicial ({\varphi_0}), é possível escrever a equação deste MHS.

  1. Precisamos primeiro recolher os dados a partir do gráfico. Observe a figura:

    No gráfico, observamos claramente que {A= \ 5 \ m}.

    Também podemos notar o tempo que o corpo leva a sair de um extremo ao outro. Ele está num extremo no instante {t= \ 2 \ s} e no outro no instante {t= \ 6 \ s}. Neste caso, o corpo demorou {4\ s} para sair de um extremo ao outro. Sabemos que, num MHS, o tempo que o corpo leva a sair de um extremo para o outro é igual a metade do período. Logo:

    \displaystyle \dfrac{T}{2} = 4\ s

    \displaystyle \Rightarrow T = 4\cdot2

    \displaystyle \Rightarrow T = 8\ s

  2. A função da elongação pode ser dada na forma {x = A .sen (\omega t + \varphi_0)} ou {x = A .cos(\omega t + \varphi_0)}.

    Sabemos que {\omega =2 \pi / T }. Logo:

    \displaystyle \omega =2 \pi / 8= \ \pi / 4 \ rad/s

    Sendo que em {t = 0}, o corpo se encontra na posição de equilíbrio,então, substituindo na equação da posição (o enunciado pede para usarmos função cosseno), obtemos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos(\dfrac{\pi}{4} .0 + \varphi_0)

    \displaystyle \Rightarrow 0 = 5 .cos( \varphi_0)

    \displaystyle \Rightarrow cos( \varphi_0)=0

    \displaystyle \Rightarrow \varphi_0= \ arccos(0) \ ou \ \varphi_0= \ 360^o - \ arccos(0)

    \displaystyle \Rightarrow \varphi_0= 90^o \ ou \ \varphi_0= 270^o

    Considerando que no gráfico dado, na posição inicial e nos instantes imediatamente a seguir, o corpo desce (movimenta-se para o sentido negativo), então, com base no gráfico genérico da função cosseno, escolheremos o valor de {90^o= \dfrac{\pi}{2} rad }.

    Então, substituindo na equação do MHS, temos:

    \displaystyle x = A .cos(\omega t + \varphi_0)

    \displaystyle x = 5 .cos(\dfrac{\pi}{4} t + 90^o)

Está a gostar da Abordagem? Veja também:

Exercícios e problemas resolvidos e explicados de Mecânica (Física 1);
Exercícios e Problemas resolvidos e explicados de Termodinâmica (Física 2);
Exercícios e problemas resolvidos e explicados de Gravitação (Física 2);
Exercícios e problemas resolvidos e explicados de Oscilações e Ondas (Física 2);
Exercícios e problemas resolvidos e explicados de Fluidos (Física 2);
Exercícios e problemas resolvidos e explicados de Electromagnetismo (Física 3);
Exercícios e problemas resolvidos e explicados de Luz e Óptica (Física 4);
Exercícios e problemas resolvidos e explicados de Física Moderna e Mecânica Quântica (Física 4);
Exercícios e problemas resolvidos e explicados de Equações diferenciais ordinárias;
Exercícios e problemas resolvidos e explicados de Cálculo;
Todas as Categorias (Início).

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 3)

 

Exercício 8 .

Um corpo em MHS desloca-se entre as posições extremas { -50 \ cm} e { +50 \ cm} de sua trajectória, gastando 10 segundos para ir de um extremo à outro.
Considerando que, no instante inicial, o móvel estava na posição de equilíbrio e em movimento retrogrado, determine:

  1. O período;
  2. A equação da elongação do movimento;

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

O problema nos apresenta um corpo em MHS. Nos é dada a amplitude deste movimento, através do valor das posições dos extremos. É dado o tempo que o corpo leva a sair de um extremo para o outro.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximações e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremo de volta para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremo (2º Extremo, no lado oposto).
  • Sai deste 2º extremo para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS estaéesta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Para sair de um extremo ao outro, a partícula deve fazer dois destes movimentos. Então, o tempo que a partícula leva a sair de um extremo para outro corresponde então a metade do período.

Quanto a fase, este problema nos dá informação sobre sentido  do movimento e posição da partícula no momento inicial. Como vamos usar a função seno, podemos observar o gráfico generalizado da função seno.

Observamos que a função seno atinge o valor zero (posição de equilíbrio, no MHS) quando {\varphi = 0^o}, {\varphi = 180^o}, {\varphi = 360^o}, etc.

No caso em análise, não poderemos adoptar {\varphi = 0^o}. Porquê? A reposta está no movimento descrito no enunciado. Se repararmos no gráfico genérico da função seno, observamos que, a seguir {\varphi = 0^o} o valor da função começa a subir. Em movimento, isso equivale a um movimento progressivo.

Como o enunciado diz que a partícula está na posição de equilíbrio, mas em movimento retrógrado, então, o ângulo de fase para este momento deve ser {\varphi = 180^o}.

O gráfico esboçado do movimento do exercício é o seguinte:

  1. Se o corpo demora {10 \ s} para ir de um extremo ao outro, então esses { 10 \ s} correspondem à metade do período, ou seja:

    \displaystyle \dfrac{T}{2}=10

    \displaystyle \Rightarrow T=10 \cdot 2

    \displaystyle \Rightarrow T=20 \ s

  2. A equação da elongação (ou equação horária) de um MHS pode ser dada na forma:

    \displaystyle x=A \cos(\varphi_0+ \omega t) \ ou \ x=A sen (\varphi_0+ \omega t)

    O uso de seno ou cosseno é opcional. Usaremos a função seno, conforme descrito na análise.

    Já ficou mostrado que { \varphi_0=180^o}.

    A amplitude do movimento é definida pela coordenada do extremo. Neste caso:

    \displaystyle A= \ 50 \ cm= \ 0,5 \ m

    Com o valor do período, podemos determinar a frequência angular:

    \displaystyle \omega =\dfrac{2 \pi}{T}=\dfrac{2 \pi}{20 }\ rad/s

    \displaystyle \omega = \dfrac{\pi}{10 }\ rad/s

    Então, para equação do movimento, teremos:

    \displaystyle x=A sen (\omega t+ \varphi)

    \displaystyle x=0,5 sen (\dfrac{\pi }{10 }t+ 180^o)

Exercício 9 .

Considere o gráfico da oscilação abaixo. Determine a amplitude deste MHS.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 9 .

O problema nos apresenta o gráfico da velocidade de um MHS.

Pela ilustração, nota-se que o período de oscilação é {T=4 \ s } e a velocidade máxima da oscilação é { 5 \ m/s}.

Logo, sabemos que a velocidade máxima de um corpo em oscilação é dada por:

\displaystyle v_{max}=A \omega

Sabemos também que:

\displaystyle \omega =2 \pi /T

Então, combinado as duas relações, temos:

\displaystyle v_{max}=A \cdot \dfrac{2\pi}{T}

\displaystyle \Rightarrow 5=A \cdot \dfrac{2\pi}{4}

\displaystyle \Rightarrow 5=A \cdot \dfrac{\pi}{2}

\displaystyle \Rightarrow 2 \cdot 5= A \pi

Invertendo a igualdade, temos:

\displaystyle A \pi=2 \cdot 5

\displaystyle \Rightarrow A= \dfrac{2 \cdot 5}{\pi}

\displaystyle A=3,2 \ m

Exercício 10 .

Um corpo executa um MHS ao longo do eixo x, oscilando em torno da posição de equilíbrio { x=0 }.
Abaixo está o gráfico de sua aceleração em função do tempo.

Determine:

  1. A frequência do movimento.
  2. A amplitude do movimento.
  3. O módulo da velocidade do corpo em { t=2 \ s }

NÍVEL DE DIFICULDADE: Regular.

Resolução 10 .

O período e a amplitude da aceleração (ou aceleração máxima) deste MHS podem ser obtidos no gráfico abaixo:

Com isso conclui-se que:

\displaystyle a_{max}=10 \ m/s^2

\displaystyle T=4 \ s

  1. Por definição, a frequência de um MHS é igual ao inverso do seu período, ou seja,{ f=\dfrac{1}{T}}. Logo:

    \displaystyle f=\dfrac{1}{4}=0,25 \ Hz

  2. Com os dados que temos, podemos calcular a amplitude (A ) do movimento partindo da equação da aceleração máxima { a_{max}} do movimento. Sabendo que:

    \displaystyle a_{max}=A \cdot \omega ^2

    \displaystyle \omega = \dfrac{2 \pi}{T}

    Logo:

    \displaystyle a_{max}=A \cdot ( \dfrac{2 \pi}{T})^2

    \displaystyle A= a_{max} \cdot (\dfrac{T}{2\pi})^2

    \displaystyle A=10 \cdot (\dfrac{4}{2\pi})^2

    \displaystyle A=4,053 \ m

  3. Para calcularmos o módulo da velocidade no instante { t=2 \ s}, precisamos saber primeiro a equação da velocidade dessa partícula em MHS. Podemos fazer isso com base nos dados gráficos e nos valores já calculados.
    No instante { t=0}, a aceleração é a { a=-10 \ m/s^2}, logo percebe-se que a partícula iniciou a sua oscilação quando estava no extremo, pois a aceleração de um MHS é máxima nos extremos. O movimento inicia-se no extremo positivo, pois a aceleração é negativa. Uma sinusoide atinge os extremos quando {\varphi = 90^o}, {\varphi = 270^o}, {\varphi = 450^o}, etc. Veja gráfico da função seno.

    Como o nosso caso é o caso em que a partícula se encontra no extremo positivo, então a fase inicial { \varphi_0= \ 90^o= \ \pi /2 \ rad}.

    A equação da aceleração é dada por { a= -A \omega ^2 sen (\varphi_0+ \omega t)} ou então por { a=-A \omega ^2 \cos(\varphi_0+ \omega t)}. Estamos a trabalhar com a função seno.

    Logo temos que:

    \displaystyle a=-A \omega ^2 sen (\omega t + \varphi_0)

    Para um MHS em que a posição é descrita por uma função seno, a velocidade tem a seguinte equação:

    \displaystyle v=A \omega \cos(\omega t + \varphi_0)

    Sabemos também que:

    \displaystyle \omega =2 \pi /T

    Então:

    \displaystyle \omega =2 \pi / 4

    \displaystyle \Rightarrow \omega = \pi / 2

    Sabendo que { A=4,053 \ m }, { \omega =\dfrac{\pi}{2} \ rad/s} ; {\varphi_0= \pi/2}, então, substituindo estes valores na equação da velocidade, teremos:

    \displaystyle v=4,053 \cdot \dfrac{\pi}{2}\cos(\dfrac{\pi}{2} \cdot t+\dfrac{\pi}{2})

    Como foi pedido para determinar a velocidade no instante {t=2 \ s}, então:

    \displaystyle v=4,053 \cdot \dfrac{\pi}{2}\cos(\dfrac{\pi}{2} \cdot 2+\dfrac{\pi}{2})

    \displaystyle \Rightarrow v=-6,37 \ m/s

Exercício 11 .

Uma partícula realiza um MHS segundo a equação { x=0,2 \cos( \pi t /2+\pi /2 )}, no SI. A partir da posição de elongação máxima, determine o menor tempo que está partícula gastará para passar pela posição de equilíbrio.

NÍVEL DE DIFICULDADE: Elementar.

Resolução 11 .

Apesar de parecer complexo, mas o problema é Elementar . Muito elementar mesmo.
O problema nos apresenta a equação de um MHS e nos pede para determinarmos o menor tempo que a partícula leva a sair da posição de desvio máximo para a posição de equilíbrio.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corpo move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremo para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremo (2º Extremo, no lado oposto).
  • Sai deste 2º extremo para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração. Para o MHS, esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Com a descrição acima, percebemos que, para sair de um extremo para a posição de equilíbrio, a partícula leva um tempo igual a um quarto do período.

O período pode ser obtido a partir de {\omega}. O {\omega} pode ser obtido na equação da oscilação. Olhando na equação, vemos que:

\displaystyle \omega= \dfrac{\pi}{2}

Sabemos também que:

\displaystyle \omega =2 \pi /T

Então:

\displaystyle \dfrac{2 \pi}{T}= \dfrac{\pi}{2}

Fazendo multiplicação cruzada, obtemos:

\displaystyle 2 \pi \cdot 2= \pi \cdot T

Ou:

\displaystyle \pi \cdot T = 2 \pi \cdot 2

Então:

\displaystyle T = \dfrac{2 \pi \cdot 2}{\pi}

\displaystyle \Rightarrow T = \ 4 \ s

Como o tempo de passagem, do extremos para a posição de equilíbrio é {t=T/4}, então:

\displaystyle t=T/4= 4/4

\displaystyle \Rightarrow t= \ 1 \ s

Com isso, percebe-se que, para sair da posição de elongação máxima { x=\pm 0,2} para a posição de equilíbrio { (x=0)}, a partícula demora {1} segundo.

Está a gostar da Abordagem?

Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Generalidades do MHS (Parte 2)

— 1. Oscilações —

— 1.1. Generalidades do MHS —

Exercício 5 .

Um MHS tem {x=5 \cos (10 \pi \ t+ \dfrac{\pi}{2})}.

Determine a velocidade máxima e a aceleração máxima deste movimento.

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .

O problema trata de um Movimento Harmónico Simples (MHS) cuja posição é descrita por uma função cosseno.

Nos é pedido para determinar a velocidade máxima (amplitude da velocidade) e a aceleração máxima (amplitude da aceleração).

Sendo um MHS, para obter as equações da velocidade e da aceleração, deveremos derivar a posição em função do tempo. A primeira derivada será a velocidade. A segunda derivada será a aceleração.

A amplitude da velocidade e da aceleração serão os coeficientes das funções seno ou cosseno nas equações da velocidade e aceleração.

Sendo que as grandezas estão no SI, os resultados obtidos dos cálculos também estarão no SI.

.

Pelas leis do movimento:

\displaystyle v= \dfrac{dx}{dt}

E:

\displaystyle a= \dfrac{dv}{dt}

Logo:

\displaystyle v= \dfrac{dx}{dt}=\dfrac{d [5 \cos (10 \pi \ t+ \dfrac{\pi}{2})]}{dt}

\displaystyle \Rightarrow v= [5 \cos (10 \pi \ t+ \dfrac{\pi}{2})]'

\displaystyle \Rightarrow v= 5 \cdot (10 \pi \ t+ \dfrac{\pi}{2})' \cdot [-sen (10 \pi \ t+ \dfrac{\pi}{2})]

\displaystyle \Rightarrow v= 5 \cdot 10\pi [- sen (10\pi \ t+ \dfrac{\pi}{2}) ]

\displaystyle \Rightarrow v=-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})

A partícula em oscilação harmónica atinge a velocidade máxima quando o factor da função seno ou cosseno é igual a {\pm 1}. Na velocidade, isso ocorre quando a partícula passa pela posição de equilíbrio. Neste caso, isso ocorre quando { sen (10\pi \ t+ \dfrac{\pi}{2})=\pm 1}. Para efeitos de cálculos, vamos trabalhar apenas com o valor absoluto.

Neste caso:

\displaystyle v_{max}=| -50 \pi \cdot 1|

Logo, o valor absoluto da velocidade máxima é:

\displaystyle v_{max} = \ 50 \pi \ m/s \approx \ 157,1 \ m/s

Para a aceleração:

\displaystyle a= \dfrac{dv}{dt}=\dfrac{d [-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})]}{dt}

\displaystyle \Rightarrow a= [-50\pi sen (10 \pi \ t+ \dfrac{\pi}{2})]'

\displaystyle \Rightarrow a= 50\pi \cdot (10 \pi \ t+ \dfrac{\pi}{2})' \cdot [cos (10 \pi \ t+ \dfrac{\pi}{2})]

\displaystyle \Rightarrow a=-50\pi \cdot (10 \pi) \ \cos(10\pi \ t+ \dfrac{\pi}{2} )

\displaystyle \Rightarrow a=-500\pi^2 \ \cos(10\pi \ t+ \dfrac{\pi}{2} )

A partícula em oscilação harmónica atinge a aceleração máxima quando o factor da função seno ou cosseno é igual a {\pm 1}.Na aceleração, isso ocorre quando a partícula passa pela posição de desvio máximo. Neste caso, atinge quando {\cos(10\pi \ t+ \dfrac{\pi}{2})= \pm 1 }. De igual modo, para efeitos de cálculos, vamos trabalhar apenas com o valor absoluto.

Logo, o valor absoluto da aceleração máxima é:

\displaystyle a_{max}= |-500\pi^2 \ \cdot 1 |

\displaystyle \Rightarrow a_{max}=500\pi^2 \ m/s^2 \approx 4934,8 \ m/s^2

.

Exercício 6 .

Um sistema realiza oscilações harmónicas com amplitude de { 2 \ cm} e frequência {10 \ Hz}.

Considerando que oscilação inicia na posição de equilíbrio; Determine a equação desta MHS, se descrito por uma função seno.
NÍVEL DE DIFICULDADE: Elementar.

Resolução 6 .

O problema dado apresenta um MHS onde nos é dado a frequência e a amplitude. Atenção que a amplitude está em {cm} que não é a unidade no SI. Então, teremos de converte-la para o SI.

Nos é pedido para determinar a equação deste MHS.

Para determinar a equação do MHS, precisamos de conhecer a amplitude, a frequência angular e a fase inicial. Usaremos a equação geral do MHS já conhecida.

A frequência angular será determinada pela relação entre frequência angular e linear.

A fase é obtida por análise da posição inicial do movimento e a função trigonométrica a ser usada na descrição desta oscilação.

Dados

{A= \ 2 \ cm= \ 2 \cdot 10 ^{-2} \ m}

{ f= \ 10 \ Hz}

Do estudo generalizado da função seno, conhecemos o gráfico genérico da figura a seguir.

Sabemos a partir dos dados que, no momento inicial, a partícula se encontrava na posição de equilíbrio ({x=0}).

Do gráfico anterior da função seno, observamos que a função seno atinge o zero para vários ângulos ({\varphi = 0}, {\varphi = 180^o}, {\varphi = 360^o}, etc.).Qualquer um dos ângulos anteriores é válido, pois não nos deram nenhuma referência do sentido da oscilação ou da velocidade.

Neste contexto, é costume optarmos pelo primeiro valor.

Pelos argumentos apresentados anteriormente, como a oscilação inicia na posição de equilíbrio,logo { \varphi_0 = \ 0 ^o = \ 0 \ rad }

A euação geral do MHS é:

\displaystyle x= A sen (\omega \cdot t+\varphi_0)

Para escrevermos a equação, temos de saber qual é o valor de {\omega} .

Sabemos que:

\displaystyle \omega = \ 2 \cdot \pi \cdot f

Logo, substituindo {f}, temos:

\displaystyle \omega =2 \cdot \pi \cdot 10

\displaystyle \Rightarrow \omega =20 \pi \ rad/s

Neste caso, substituindo os valores na equação da oscilação,temos:

\displaystyle x= A sen (\omega \cdot t+\varphi_0)

\displaystyle \Rightarrow x= 2 \cdot 10^{-2} sen (20 \pi \cdot t+0)

\displaystyle \Rightarrow x=2 \cdot 10^{-2} \cdot sen (20 \pi \ t)

Exercício 7 .

Numa oscilação, o corpo sai de um extremo outro em { 5 \ s } e chega com uma aceleração de {10 \ cm/s^2}. Determine a equação deste MHS.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7 .

O problema trata de um MHS. Nos é dado directamente o valor da aceleração com que o corpo chega no outro extremo. Na realidade, do conhecimento do MHS, a aceleração que o corpo tem quando atinge o extremo é a aceleração máxima ou amplitude da aceleração.

Também foi fornecida uma informação do tempo de duração da oscilação. Essa informação foi dada de modo indirecto, pelo que, carece de alguma interpretação.

Sabemos que um movimento oscilatório é um movimento de sucessivas aproximação e afastamentos de uma posição fixa chamada de posição de equilíbrio. Então, num MHS o corto move-se ciclicamente do seguinte modo:

  • Sai da posição de equilíbrio para um dos extremos (1º Extremo).
  • Sai deste 1º extremos para a posição de equilíbrio.
  • Sai da posição de equilíbrio para o outro extremos (2º Extremo, no lado oposto).
  • Sai deste 2º extremos para a posição de equilíbrio.

Esta é a descrição de um ciclo completo.

O tempo que a partícula leva a completar o ciclo acima é o período {T}.

Cada um dos movimentos descritos acima tem a mesma duração, para o MHS. Esta duração é de {0,25 \cdot T} ou seja, {\dfrac{T}{4}}.

Para sair de um extremo ao outro, a partícula tem de fazer dois destes movimento. Então, o tempo que a partícula leva a sair de um extremo para outro corresponde então a metade do período.

.

Dados

{a_{max}= \ 10 \ cm/s^2= \ 10 \cdot 10 ^{-2} \ m/s^2= \ 0,1 \ m/s^2}

{ \dfrac{T}{2}= \ 5 \ s}

.

A equação de uma MHS é a seguinte:

\displaystyle x=A sen ( \omega t+\varphi_0)

Precisamos saber qual é o valor da amplitude A, da frequência angular {\omega} e da fase inicial { \varphi_0}.

O fenómeno pode ser analisado conforme a ilustração abaixo:

Onde:

{E_1} – Extremo 1.

{E_2} – Extremo 2.

Pela ilustração é possível observar que os { 5 \ s} levados pelo corpo para sair de um extremo para o outro corresponde à metade do período da oscilação.

Logo:

\displaystyle T=2 \cdot 5=10 \ s

Além disso,nota-se que no momento do inicio da oscilação, o corpo de encontra num dos extremos (Ver figura anterior).

A função seno atinge os extremos quando {\varphi = 90^o}, {\varphi = 207^o}, {\varphi = 450^o}, etc. Reveja o gráfico genérico da função seno.

Sabemos que podemos adoptar qualquer um dos ângulos, visto que não nos é dada nenhuma referência sobre o sentido do movimento ou a velocidade.

Então, o ângulo de fase inicial é:

\displaystyle \varphi_0= \ 90^o= \ \dfrac{\pi}{2} \ rad

Sabemos que:

\displaystyle \omega= \dfrac{2 \pi}{T}

Logo:

\displaystyle \omega= \dfrac{2 \pi}{10}= \dfrac{\pi}{5}

Falta-nos saber o valor da amplitude da oscilação.

O enunciado afirma que o corpo atinge uma aceleração de { 10 \ cm/s^2} quando chega ao outro extremo.

Lembrar que, a aceleração máxima de um movimento é:

\displaystyle a_{max}=A \omega^2

Pretendemos determinar a amplitude. Isolando a amplitude, teremos:

\displaystyle \dfrac{a_{max}}{\omega^2}= \ A

\displaystyle \Rightarrow A= \ \dfrac{a_{max}}{\omega^2}

Substituindo valores, teremos:

\displaystyle A= \ \dfrac{0,1}{(\dfrac{\pi}{5})^2}

\displaystyle \Rightarrow A= \dfrac{0,1}{( \pi / 5)^2}= 0,253 \ m

Substituindo na equação geral, temos:

\displaystyle x=A sen ( \omega t+\varphi_0)

\displaystyle \Rightarrow x = 0,253 \cdot sen ( \dfrac{ \pi}{5} t + \dfrac{\pi}{2})

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.3. Exercícios sobre Polarização da Luz (Parte 1)

— 1.3. Exercícios sobre Polarização da Luz —

Exercício 7 Duas películas polarizadas tem seus eixos de transmissão cruzados de tal forma que nenhuma luz é transmitida. Uma terceira película inserida entre elas com seu eixo de transmissão fazendo um ângulo de {45^o} em relação a cada um dos eixos. A combinação é mostrada na figura ao lado.Suponha que cada película ideal. Encontre a fracção da luz que é transmitida pelo sistema.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7 .

Neste problema, analisamos a passagem da luz em filtros polarizadores. Esta passagem obedece a lei de Malus. A luz passa por um polarizador, e em por outros dois polarizadores (chamamos {P_1}, {P_2} e {P_3}). Incide luz natural em {P_1}. Após a passagem neste polarizador, já teremos luz linearmente polarizada, na direcção vertical. Em seguida, essa luz linearmente polarizada incide num segundo polarizador ({P_2}). Ao passar por este polarizador, a luz transmitida tem intensidade que obedece a lei de Malus, e portanto, é proporcional ao ângulo entre estes dois polarizadores (ou entre a direcção de polarização da luz incidente e o eixo do polarizador em questão). No terceiro polarizador, acontece o mesmo.

Dados

{\theta_{1} \ = \ 0^{o}}

{\theta_{2} \ = \ 45^{o}}

{\theta_{3} \ = \ 90^{o}}

{\dfrac{I_{f}}{I_0} \ - \ ?}

Utilizamos a lei de Malus e os conhecimentos de geometria, podemos determinar a fracção da Luz transmitida pelo sistema. O polarizado {P_{1} \ } está colocado a {0^{o}} com as componentes paralelas da Luz, então Depois deste polarizadores só passa as componentes paralelas da Luz, ou seja {50 \%} da intensidade da Luz.

Então, a intensidade após o primeiro polarizador será:

\displaystyle I_{1} \ = \ 0,5 \cdot I_{0}

A intensidade da Luz depois do polarizador {P_{2}} é determinado pela lei de Malus.

Conforme vimos pelo gráfico, o ângulo entre {P_{1}} e {P_{2}} é:

\displaystyle \theta_{12}= |\theta_{1}-\theta_{2}|

Neste caso, a intensidade após o segundo polarizador será:

\displaystyle I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{12})

\displaystyle \Rightarrow I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{2} \ - \ \theta_{1})

Obs: Não se usou o modulo pois a função cosseno é par.

Por fim a intensidade da Luz depois do terceiro polarizador e que Por conseguinte será a intensidade da Luz transmitida pelo sistema, também é determinado pela Lei Malus.

De acordo com a figura, ângulo formado entre {P_{2}} e {P_{3}} é:

\displaystyle \theta_{23}= |\theta_{2}-\theta_{3}|

Deste modo, a intensidade após o terceiro polarizador será:

\displaystyle I_{3} \ = \ I_{f} \ = \ I_{2} \cdot cos^{2} \ (\theta_{23} )

\displaystyle \Rightarrow I_{3} \ = \ I_{f} \ = \ I_{2} \cdot cos^{2} \ (\theta_{3} \ - \ \theta_{2})

Neste caso, a passagem de luz pelo sistema é definida pelas seguintes equações:

\displaystyle \left\{\begin{array}{cccccc} I_{1} \ = \ 0,5 \ (I_{0})\\ I_{2} \ = \ I_{1} \cdot cos^{2} \ (\theta_{2} \ - \ \theta_{1})\\ I_{3} \ = \ I_{2} \cdot cos^{2} \ (\theta_{3} \ - \ \theta_{2})\\ \end{array}\right.

Substituindo as equações 1 na equação 2 e sem seguida substituindo a equação 2 na equação 3, obtemos:

\displaystyle I_{3} \ = \ I_{f} \ = \ I_{2} \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ [I_{1} \ cos^{2} \ (\theta_{2} \ - \ \theta_{1})] \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ cos^{2} \ (\theta_{2} \ - \ \theta_{1}) \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (\theta_{2} \ - \ \theta_{1}) \ cos^{2} \ (\theta_{3} \ - \ \theta_{2})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (45^{o} \ - \ 0^{o})] \ cos \ (90^{o} \ - \ 45^{o})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ [cos \ (45^{o} \ - \ 0^{o})] \ cos \ (90^{o} \ - \ 45^{o})]^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos \ 45^{o} \ . \ cos \ 45^{o})^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos^2 \ 45^{o} \ )^{2}

\displaystyle \Rightarrow I_{f} \ = \ 0,5 \ I_{0} \ (cos \ 45^{o})^{4}

\displaystyle \Rightarrow I_{f} \ = \ 125 \cdot I_{o}

Então, passando {I_0} para o membro esquerdo da equação acima, obtemos:

\displaystyle \dfrac{I_{f}}{I_{o}} \ = \ 0,125=\dfrac{1}{8}

A fracção da intensidade da Luz transmitida pelo sistema é de {\dfrac{1}{8}} ({12,5 \ \% }).

Exercício 8 Um feixe de luz não polarizada incide sobre duas placas polarizadas super expostas. Qual deverá ser ângulo entre os eixos dos polarizadores para que intensidade do feixe transmitido seja um terço da intensidade do feixe incidente?

NÍVEL DE DIFICULDADE: Regular.

Resolução 8

O problema tem a ver com o fenómeno de polarização da Luz. A luz passa por duas placas polarizadas, que formam um certo ângulo. A condição de calculo é que intensidade da luz após passar as placas seja um terço da intensidade da luz antes de passar as placas.

Neste caso, é-nos dada uma relação de forma indirecta: a razão entre a intensidade da luz depois dos polarizadores e a intensidade inicial.

Dados

{\dfrac{I_{2}}{I_{0}} \ = \ \dfrac{1}{3} }

Considerarmos {I_{0}} a intensidade da luz incidida ao primeiro polarizador, {I_{1}} A intensidade da luz que emerge do primeiro polarizador e incide no segundo polarizador e e {I_{2}} a intensidade da luz que emerge do segundo polarizador.

De acordo com o funcionamento dos filtros polarizadores ideais, quando a luz natural incide nele, é transmitida apenas {50 \% } da sua intensidade. Então, teremos:

\displaystyle I_{1} \ = \ \dfrac{1}{2} \ I_{0}

Pela lei de Malus sabe-se que :

\displaystyle I_{2} \ = \ I_{1} \cdot cos^{2} \alpha

Substituindo {I_2} pela relação anterior de {I_{1}}, teremos:

\displaystyle I_{2} \ = \dfrac{1}{2} \cdot I_{0}\cdot cos^{2} \alpha

Passando o {I_0} para o membro esquerdo, obtemos:

\displaystyle \dfrac{I_{2}}{I_0} \ = \dfrac{1}{2} \cdot cos^{2} \alpha

Então:

\displaystyle cos^2 \alpha \ = 2 \cdot \dfrac{I_{2}}{I_{1}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{2 \cdot \dfrac{I_{2}}{I_{1}}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{2 \cdot \dfrac{1}{3}}

\displaystyle \Rightarrow cos \alpha \ = \sqrt{\dfrac{2}{3}}

Nota: Antes da raiz, deveria ter sinal {\pm }, porém, como estamos apenas interessados na amplitude do ângulo, desprezamos o sinal negativo.

Insolando {\alpha}, obtemos:

\displaystyle \alpha \ = \ arccos \left(\sqrt{\dfrac{2}{3}}\right)

\displaystyle \Rightarrow \alpha \ \approx 35,3^o

O ângulo entre as direcções de polarização das Placas para que a intensidade do feixe transmitido seja um terço do feixe incidido, deve ser de {35^{o}}.

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Carga, Forças Eléctricas (Parte 4)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 10 Um conjunto de 4 cargas iguais, de {5 \ \mu C} estão dispostas da base de uma pirâmide de base quadrada, dada na figura.

{a= \ h= \ 20 \ mm}.

Qual deverá ser a massa da carga de prova (de valor igual) para que ela flutue em equilíbrio dinâmico?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 10 .

O exercício nos apresenta uma carga de prova {(q_{o})} que está acima de um arranjo quadrado de cargas, formando assim uma pirâmide. As cargas se encontram nos vértices da pirâmide.

A carga flutua por interacção electrostática. Sendo que todas as cargas são positivas, existem forças repulsivas constantes entre as cargas.Dados

{K \approx \ 9 \cdot 10^9 \ Nm^2/C^2}

{H= \ a= \ 20 \ mm= \ 20 \cdot 10^{-3} m}

{q_0=q_1=q_2=q_3=q_4= \ 5 \ \mu C= \ 5 \cdot 10^{-6} \ C}

{m-?}

.

Sendo que a figura geométrica é regular e simétrica, a distancia entre a carga {q_0} com as outras cargas é igual. Chamamos a esta distancia de {d}.

Veja a figura abaixo.

Considerando o triângulo rectângulo formado entre as cargas {q_1}, {q_2} e o centro do quadrado da base {O}, teremos:

\displaystyle b^2+b^2=a^2

\displaystyle \Rightarrow 2 \cdot b^2=a^2

\displaystyle \Rightarrow \cdot b^2=\dfrac{a^2}{2}

Isolando {b}, teremos:

\displaystyle b=\sqrt{\dfrac{a^2}{2}}

Analisando o triângulo rectângulo formado pelas cargas {q_1}, {q_0} e o centro do quadrado da base {O}, teremos:

\displaystyle b^2+h^2=d^2

Ou:

\displaystyle d^2=b^2+h^2

\displaystyle \Rightarrow d^2= \dfrac{a^2}{2}+a^2

\displaystyle \Rightarrow d^2= \dfrac{3a^2}{2}

Na carga {q_0} actuam ao todo 4 forças repulsivas, da sua interacção com as outras cargas (1, 2, 3 e 4).

Chamamos a estas forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}}.

Então:

\displaystyle F_{01}=F_{02}=F_{03}=F_{04}

O facto de as distâncias serem todas iguais e de as cargas terem o mesmo valor absoluto, pela lei de Coulomb, nos leva a concluir que as forças electrostáticas de repulsão entre {q_0} e as outras cargas (1, 2, 3 e 4) são todas iguais.

Os seus módulos serão:

\displaystyle F_{01} \ = F_{02} \ = F_{03} \ =F_{04} \ = \ k\dfrac{|q_{1}|.|q_{0}|}{d^{2}}

Substituindo {d^2}, teremos:

\displaystyle F_{01} = \ k\dfrac{|q_{1}|.|q_{0}|}{3a^{2}/2}

Calculando:

\displaystyle F_{01} = \ 9 \cdot 10^9 \dfrac{5 \cdot 10^{-6} \cdot 5 \cdot 10^{-6}}{3(20 \cdot 10^{-3}) ^{2}/2}

\displaystyle \longleftrightarrow F_{01} = 375 \ N

Lembre que:

\displaystyle F_{01} \ = F_{02} \ = F_{03} \ =F_{04}

\displaystyle \Rightarrow F_{01} \ = F_{02} \ = F_{03} \ =F_{04} \ = 375 \ N

As forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}}, além de terem o mesmo modulo, são todas respectivamente paralelas a diagonal formada pelo segmento que une as cargas que as originam. Neste caso, pela simetria do problema, todas estas diagonais formam o mesmo ângulo {\theta} com o plano horizontal {xOy}.

Neste caso, todas estas forças formarão também o mesmo ângulo {\theta} com o plano horizontal {xOy}.

Se inserirmos um sistema de coordenadas cartesiano em {q_0} e projectarmos as forças, as projecções destas forças no plano {xOy} vão anular-se mutuamente.

Na figura, só representamos as projecções para {F_{03}} e para {F_{04}}. Pela simetria do problema, poderemos deduzir as outras.

O eixo {x} foi traçado de modo a ser paralelo a diagonal que contem {q_1} e {q_3}.

O eixo {y} foi traçado de modo a ser paralelo a diagonal que contem {q_4} e {q_2}.

O eixo {x} foi traçado de modo a ser paralelo a vertical que contem o ponto O e {q_0}.

Neste caso:

  • {F_{01}} pertence ao plano {xOz},
  • {F_{02}} pertence ao plano {yOz},,
  • {F_{03}} pertence ao plano {xOz},
  • {F_{04}} pertence ao plano {zOz}.

As componentes horizontais (no plano {xOy}) anulam-se:

  • {F_{01x}} anula {F_{03x}},
  • {F_{02y}} anula {F_{04y}}.

Sobram apenas as componentes verticais. As projecçõpes verticais das forças {F_{01}}, {F_{02}}, {F_{03}} e {F_{04}} podem ser calculadas pelas seguintes relação:

\displaystyle F_{01z}=F_{01z} \sin \theta

Temos de obter o ângulo {\theta}. Considerando o triângulo rectângulo formado pelas cargas {q_1}, {q_0} e o centro do quadrado da base {O}, teremos:

\displaystyle tg \theta = \dfrac{h}{b} \Rightarrow \theta = arctg \dfrac{h}{b}

Substituindo {h} e {b} pelos seus valores, obtemos:

\displaystyle \theta = arctg \dfrac{a}{a/\sqrt{2}}

\displaystyle \Rightarrow \theta = arctg \sqrt{2}

\displaystyle \Rightarrow \theta = 54,7^o

Sabemos que, pela simetria do problema {F_{01z}=F_{02z}=F_{03z}=F_{04z}}. Então:

\displaystyle F_{01z}=F_{01} \sin \theta = 375 cos 54,7^o

\displaystyle F_{01z}=216,7 \ N

As resultante das componentes verticais será igual a força eléctrica resultante em {q_0}, que chamamos de {F_{el}}.

Neste caso:

\displaystyle F_{el}=F_{01z} + F_{02z} +F_{03z} + F_{04z}

\displaystyle F_{el}=4 \cdot F_{01z}

\displaystyle F_{el}=4 \cdot 216,7

\displaystyle F_{el}=866,8 \ N

Para quê a carga de prova flutue em equilíbrio dinâmico é necessário que a força eletrostática resultante que atua nela seja igual a força de gravidade:

\displaystyle F_{el} \ = \ F_{g}

Então:

\displaystyle F_{el} \ = \ m \ . \ g

Ou:

\displaystyle \ m \ . \ g = F_{el}

\displaystyle \Rightarrow m \ = \dfrac{F_{el}}{g}

\displaystyle \Rightarrow m \ = \dfrac{866,8}{9,8}

\displaystyle \Rightarrow m \ = \ 88,44 \ kg

Exercício 11 Uma carga de prova {q_0= \ 10 \ \mu C} de massa depressível, esta presa numa mola também de massa depressível, com constante {K'= \ 10 \ N/m}, conforme a figura abaixo.

Uma outra carga {q_1 \ =50 \ \mu C} é fixada abaixo desta. qual devera ser a distância entre as cargas para que a mola seja comprimida em 3 cm.

NÍVEL DE DIFICULDADE: Regular.

Resolução 11 .

O sistema apresenta um arranjo de cargas, onde a carga {q_0} está presa a uma mola. Actuam nela a força eléctrica {F_{01}} e a força elástica {(F_k)}.

A mola está comprimida devido a força de repulsão. A massa da mola é depressível. {K'}-constante elástica e {K}– constante electrostática. O uso de {K'} em vez do habitual {K} para a constante elástica da mola é para distingui-lo da constante electrostática do meio {K}.

As duas cargas são positivas, logo a força de interacção entre elas é de repulsão. Esta força tenderá a comprimir a mola. A compressão termina quando se atinge o equilíbrio entre a força deformadora (força eléctrica) e a força restauradora (força elástica).

Aplicaremos a condição de equilíbrio, substituiremos a força eléctrica pela relação obtida da lei de Coulomb, e isolaremos a distância d.

Dados

{K'= \ 10 \ N/m}

{K \approx \ 9 \cdot 10^9 \ Nm^2/C^2}

{x= \ 3 \ cm= \ 3 \cdot 10^{-2}}

{q_0= \ 10 \ \mu C= \ 10 \cdot 10^{-6} \ C}

{q_1= \ 50 \ \mu C= \ 50 \cdot 10^{-6} \ C}

{d-?}

Sabemos que, pela lei de Hook:

\displaystyle F_{k}=K' \cdot x (

Sabemos também, pela Lei de Coulomb, que:

\displaystyle F_{01}=K\dfrac{|q_0| \cdot |q_1|}{d^2}

.

Considerando que na carga {q_0} as duas forças estão em equilíbrio, temos:

\displaystyle \vec{F_{k}}+\vec{F_{01}}=0

Em módulo, teremos:

\displaystyle F_{k}-F_{01}=0

\displaystyle \Rightarrow F_{k}=F_{01}

Substituindo as forças pelas suas relações, temos:

\displaystyle K' \cdot x=K\dfrac{|q_0| \cdot |q_1|}{d^2}

Passando o {d^2} no membro esquerdo e a {K' \cdot x} para o membro direito, obtemos:

\displaystyle d^2=\dfrac{K \cdot |q_0| \cdot |q_1|}{K' \cdot x}

\displaystyle \Rightarrow d=\sqrt{\dfrac{K \cdot |q_0| \cdot |q_1|}{K' \cdot x}}

Substituindo os valores:

\displaystyle \Rightarrow d=\sqrt{\dfrac{9 \cdot 10^9 \cdot 10 \cdot 10^{-6} \cdot 50 \cdot 10^{-6}}{10 \cdot (3 \cdot 10^{-2})}}

\displaystyle d= \ 3, 87 \ m

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

 

1.1. Exercícios sobre Carga, Forças Eléctricas e Campo Eléctrico(Parte 3)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 7 .

O sistema abaixo mostra três cargas { q_1= \ -1,5 \ \mu C }; { q_2= \ 5 \ \mu C } e { q_3= \ 10 \ \mu C }.

Qual é a força resultante sobre {q_2}.

.

NÍVEL DE DIFICULDADE: Regular.

Resolução 7

.

Dados .

{ q_1= \ -1,5 \ \mu C = \ -1,5 \cdot 10 ^{-6} \ C } .

{ q_2= \ 5 \ \mu C = \ 5 \cdot 10^6 \ C } .

{ q_3= \ 10 \ \mu C = \ 10 \cdot 10 ^{-6} \ C }

O exercícios nós pede para calcular a força resultante { q_2}.

O sistema apresenta um conjunto de 3 cargas. Neste caso, as forças na carga em questão surgem devido a interacção com as outras duas cargas.

Então, temos 2 forças de interacção. A natureza da interacção depende do sinal das cargas. A interacção entre { q_2} e { q_1} é de atracção, pois ambas têm sinais opostos. A interacção entre { q_2} e { q_3} é de repulsão, pois ambas têm sinais iguais.

Denotamos por {\vec{F_{12}}} e {\vec{F_{21}}} as forças de interacção entre { q_2} e { q_1}.

Denotamos por {\vec{F_{32}}} e {\vec{F_{23}}} as forças de interacção entre { q_2} e { q_3}.

Veja a figura.

neste caso calculamos em cada caso:

Então, observamos que em { q_2} actua duas forças: {\vec{F_{21}}} e {\vec{F_{23}}}.

Para calcular o valor dos módulos destas forças vamos usar a formula obtida pela lei de Coulomb.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_3} temos:

\displaystyle F_{23}= K \dfrac{| q_2 | | q_3 |}{r_{23}^2}= \dfrac{9 \cdot 10^9 \cdot 5 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(3 \cdot 10 ^{-3} )^2}

\displaystyle F_{23}= \ 5 \cdot 10^4 \ N

A distancia {r_{23}} foi obtida pela diferença das coordenadas de cada carga: {r_{23}= \ |x_3-x_2|= \ 7-4= \ 3 m}.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

\displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{r_{12}^2}=\dfrac{9 \cdot 10^9 \ 1,5 \cdot 10 ^{-6} \cdot 5 \cdot 10 ^{-6}}{(6 \cdot 10 ^{-3} )^2}

\displaystyle F_{21}= 0,1875 \cdot 10^{-4} \ N

Como tem duas forças que interagem em {q_2} podemos calcular a força resultante em {q_1}.

No caso, as duas forças têm mesmo sentido e mesma direcção. Então, não existe necessidade de projectarmos ou usarmos a lei dos cossenos. A força resultante será obtida pela soma dos módulos dos vectores obtidos:

\displaystyle F_{r2}=F_{23} + F_{21}=50.000+1.875=51.184 \ N

Exercício 8 Um sistema apresenta três cargas dispostas nos vértices de um quadrado de aresta a=0,02 mm. Sendo: {q_1=q_2=q_3= \ 10 \ \mu C}, qual será:

  1. O campo eléctrico no outro vértice?
  2. A força na carga {q_2}?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 8

O problema nos pede para determinar o Campo eléctrico no ponto O e a força eléctrica resultante na carga {q_2}.

Para obter o campo eléctrico no ponto {O}, devemos ter em conta que o campo eléctrico obedece ao principio de super posição. Neste caso, o campo eléctrico provocado por um sistemas de cargas é igual á soma (vectorial, visto que o campo eléctrico é uma grandeza vectorial dos campos produzidos por cada carga. (Nota: aqui, quando nos referimos ao campo eléctrico, estamos a falar da sua intensidade).
Para o efeito, temos de achar o campo eléctrico produzidos por cada carga no ponto {O}, para termos o campo resultante neste ponto.

No caso de forças, temos de analisar todas as interacções de {q_2}. Neste caso, são duas: A interacção entre { q_2} e { q_1}, e a interacção entre { q_2} e { q_3}.

Então, temos 2 forças de interacção. A natureza da interacção depende do sinal das cargas. A interacção entre { q_2} e { q_1} é de repulsão, pois ambas têm mesmo sinal. A interacção entre { q_2} e { q_3} também é de repulsão, pois ambas têm sinais iguais.

Denotamos por {\vec{F_{12}}} e {\vec{F_{21}}} as forças de interacção entre { q_2} e { q_1}.

Denotamos por {\vec{F_{32}}} e {\vec{F_{23}}} as forças de interacção entre { q_2} e { q_3}.

Dados

{a = 0,02 \ mm = 0,02 \cdot 10^{-3} }

{q_1 = q_2 = q_3 = 10 \ \mu C=10 \cdot 10^{-6} \ C}

{ K=8,99 \cdot 10^9 \ Nm^2/C^2}

{ E_{R}-? }

{F_{q_{2}}-? }

.

  1. Para calcularmos o campo eléctrico resultante no ponto {O}, vamos calcular o campo produzido por cada carga e fazer a soma vectorial deles. Como as direcções e sentidos têm importância na soma vectorial, devemos, além de calcular os módulos, representar e determinar geometricamente os ângulos entre estes vectores. Traçando os campos eléctricos no ponto {O}, todos apontando para o sentido oposto as cargas que os origina (visto que as cargas são positivas), observamos que teremos neste 3 campos eléctricos: {\vec{E_1}}, {\vec{E_2}} e {\vec{E_3}}, sendo que o primeiro é vertical e apontando para baixo, o segundo é oblíquo, dirigido paralelamente a diagonal do quadrado e o terceiro é horizontal apontando para a direita. Veja figura.

    A diagonal de um quadrado faz um ângulo de {45^o} com as suas arestas.

    Pela relação do campo criado por uma carga pontual temos:

    \displaystyle E= K \dfrac{q}{r^2}

    Então para o caso da carga {q_1}, temos:

    \displaystyle E_1=K \dfrac{q_1}{r_1^2}=K \dfrac{q_1}{a^2}

    \displaystyle \Rightarrow E_1 =9 \cdot 10^9 \cdot \dfrac{10 \cdot 10^{-6}}{(0,02 \cdot 10^{-3})^2}= 2,25 \cdot 10^{14} \ N/C

    Para o caso da carga {q_3}, não precisamos fazer o cálculo, pois { E_3 = E_1 }, por ter mesmo valor de carga e mesmas distâncias.

    Para o caso da carga {q_2}, temos:

    \displaystyle E_2 = K \cdot \dfrac{q_2}{r_2^2} = K \cdot \dfrac{q_2}{b^2}

    Para tal, temos de obter uma relação para {b}.

    Usando o teorema de Pitágoras,temos:

    \displaystyle b^2=a^2 + a^2

    \displaystyle \Rightarrow b=\sqrt{a^2 + a^2}

    \displaystyle \Rightarrow b=\sqrt{2 \cdot a^2}= \sqrt{2} a

    Logo, voltando a {E_2}, temos:

    \displaystyle E_2 = K \cdot \dfrac{q_2}{(\sqrt{2} a)^2}

    \displaystyle \Rightarrow E_2=9 \cdot 10^9 \cdot \dfrac{10 \cdot 10^{-6}}{(0,02 \cdot 10^{-3} \cdot \sqrt{2})^2}=1,125 \cdot 10^{14} \ N/C

    Para calcularmos o campo resultante, trabalharemos com o método de projecções. Como s campo eléctrico {E_2}, vamos obter as suas projecções em {Ox} e em {Oy}.

    \displaystyle E_{Rx}=E_3+E_{2x}

    \displaystyle E_{Ry}=E_1 + E_{2y}

    Substituindo as projecções pelos seus equivalentes, obtemos:

    \displaystyle E_{Rx}=E_3+E_{2} \cdot \cos 45^o

    \displaystyle E_{Ry}=E_1 + E_{2} \cdot \sin 45^o

    Neste caso, o módulo do vector resultante será:

    \displaystyle E_R=\sqrt{ E_{Rx}^{2} + E_{Ry}^{2}}

    \displaystyle \Rightarrow E_R=\sqrt{(E_3+E_{2} \cdot \cos 45^o)^2 + (E_1 + E_{2} \cdot \sin 45^o)^2}

    Substituindo os valores obtidos anteriormente, obtemos:

    \displaystyle E_{R}=\sqrt{( 2,25 \cdot 10^{14}+1,125 \cdot 10^{14} \cdot \cos 45^o)^2 + ( 2,25 \cdot 10^{14} + 1,125 \cdot 10^{14} \cdot \sin 45^o)^2}

    \displaystyle E_{R}= \ 4,31 \cdot 10^{14} \ N/C

  2. Para determinamos a Forças resultante na carga {q_2}, devemos representar as forças que actuam nela, conforme explicação anterior. Veja a figura.
    De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

    \displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{a^2}=\dfrac{9 \cdot 10^9 \ 10 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(0,02 \cdot 10 ^{-3} )^2}

    \displaystyle F_{21}= 2,25 \cdot 10^9 \ N

    Para interacção da carga {q_2} em {q_3}, não é necessário calcular, pois as cargas que interagem são iguais e estão colocadas a igual distância. Neste caso, temos:

    \displaystyle F_{23}= F_{21}= 2,25 \cdot 10^9 \ N

    Para achar a força resultante, visto que temos a soma de dois vectores perpendiculares entre si, aplicaremos o teorema de Pitágoras. Pelo teorema de Pitágoras, temos:

    \displaystyle F_{q_{2}}=\sqrt{F^{2}_{23} + F^{2}_{21}}

    Como {F_{23}= F_{21}}, então:

    \displaystyle F_{q_{2}}=\sqrt{F^{2}_{23} + F^{2}_{23}}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2 \ F^{2}_{23}}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2} \ F_{23}

    \displaystyle \Rightarrow F_{q_{2}}=\sqrt{2} \ 2,25 \cdot 10^9

    \displaystyle \Rightarrow F_{q_{2}}=3,18 \cdot 10^9

Exercício 9 Um sistema apresenta três cargas dispostas nos vértices de um quadrado de aresta a=0,02 mm. As cargas são: {q_1=q_2=q_3=10 \ \mu C}.

Qual carga(módulo e sinal) deve ser colocado no vértice do quadrado para que a força eléctrica resultante em {q_2} seja igual a zero?

NÍVEL DE DIFICULDADE: Complexo.

Resolução 9 .

Dados

{q_1 =q_2 =q_3 = \ 10 \ \mu C= \ 10 \cdot 10^{-6} \ C}

{q_4-? }

{F_{q_{2}}=0}
A resolução deste problema possui dois caminhos e dois modos:

Modo 1: Calcular a força eléctrica que as cargas actuais exercem no na carga {q_2}. Em seguida calcular, pela lei de Coulomb, qual carga provocaria uma força tal que anulasse esta força.

Modo 1: Representar o sistema de 4 cargas e representar as 3 forças na carga {q_2}. Aplicar a resultante na carga {q_2}, através das componentes e com a condição de que a força deve ser nula, calcular essa carga desconhecida.

Além dos dois modos, há ainda duas variantes de parâmetros: Podemos resolver considerando a Força eléctrica ou considerando o campo eléctrico.

Vamos resolver este problema considerando o 1º modo e usando a força eléctrica.

Primeiro, vamos calcular a força eléctrica resultante na carga {q_2} no sistema, antes da adição da carga {q_4}

Para determinamos a força resultante na carga {q_2} dos efeitos de {q_1} e {q_3} ({F_{2,13}}), devemos representar as forças que actuam nela, conforme explicação anterior. Veja a figura.

De acordo com a lei de Coulomb, para interacção da carga {q_2} em {q_1} temos:

\displaystyle F_{21}= K\dfrac{| q_1 | | q_2 |}{a^2}=\dfrac{9 \cdot 10^9 \ 10 \cdot 10 ^{-6} \cdot 10 \cdot 10 ^{-6}}{(0,02 \cdot 10 ^{-3} )^2}

\displaystyle F_{21}= 2,25 \cdot 10^9 \ N

Para interacção da carga {q_2} em {q_3}, não é necessário calcular, pois as cargas que interagem são iguais e estão colocadas a igual distância. Neste caso, temos:

\displaystyle F_{23}= F_{21}= 2,25 \cdot 10^9 \ N

Para achar a força resultante dos efeitos de {q_1} e {q_3}, visto que temos a soma de dois vectores perpendiculares entre si, aplicaremos o teorema de Pitágoras. Pelo teorema de Pitágoras, temos:

\displaystyle F_{2,13}=\sqrt{F^{2}_{23} + F^{2}_{21}}

Como {F_{23}= F_{21}}, então:

\displaystyle F_{2,13}=\sqrt{F^{2}_{23} + F^{2}_{23}}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2 \ F^{2}_{23}}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2} \ F_{23}

\displaystyle \Rightarrow F_{2,13}=\sqrt{2} \ 2,25 \cdot 10^9

\displaystyle \Rightarrow F_{2,13}=3,18 \cdot 10^9

Portanto, {F_{2,13}} é a força resultante dos efeitos de {q_1} e {q_3} sobre {q_2}.

Para que a resultante em {q_2} seja zero, é necessário adicionar no vértice {O} uma carga {q_4} que produza em {q_2} uma força ({F_{24}}) de igual módulo, mas de sentido oposto.

Neste caso, já concluímos que a carga {q_4} deve ser negativa.

O seu módulo dever ser:

\displaystyle F_{24} = F_{2,13}

\displaystyle K\dfrac{| q_2 | | q_4|}{b^2} = F_{2,13}

A diagonal do quadrado {b} é obtida da aplicação do Teorema de Pitágoras no triângulo que ele forma com as duas arestas do quadrado.

\displaystyle b^2=a^2 + a^2

\displaystyle \Rightarrow b=\sqrt{a^2 + a^2}

\displaystyle \Rightarrow b=\sqrt{2 \cdot a^2}= \sqrt{2} a

Então:

\displaystyle K\dfrac{| q_2 | | q_4|}{(\sqrt{2} a )^2} = F_{2,13}

Então, isolando o modulo de {q_4}, obtemos:

\displaystyle | q_4| = \dfrac{ F_{2,13}(\sqrt{2} a )^2}{K \cdot| q_2 | }

\displaystyle \Rightarrow | q_4| = \dfrac{ 3,18 \cdot 10^9 (\sqrt{2} 0,02 \ \ \cdot 10^{-3} )^2}{ 9 \cdot 10^{9}\cdot 10 \cdot 10^{-6} }

\displaystyle \Rightarrow | q_4| = 2,83 \cdot 10^{-5} \ C

Então:

\displaystyle q_4 = \ - 2,83 \cdot 10^{-5} \ C

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

1.1. Exercícios sobre Carga e Forças Eléctricas (Parte 2)

— 1.1. Exercícios sobre Carga e Forças Eléctricas —

Exercício 4 .

A soma de duas cargas é igual 0. Quando colocadas afastadas em {1 \ mm } a força electrostático entre elas fica igual a {100 \ mN}.

Determine o valor destas cargas .

NÍVEL DE DIFICULDADE: Regular.

Resolução 4 .

Dados

{ q_1+q_2=0 } .

{F=100 \ mN = 0,1 \ N } .

{ K= 9 \cdot 10^9 \dfrac{Nm^2}{C^2} } .

{ d=1 \ mm = \ 1 \cdot 10 ^{-3} \ m } .

{ q_1 \rightarrow ? } .

{ q_2 \rightarrow ? }

Este problema apresenta uma situação de aplicação directa da Lei de Coulomb.

São dadas duas cargas de valores desconhecidos, e definidas duas condições: soma algébrica das cargas e força electrostática.

Uma vez que não temos os valores das duas cargas eléctricas, mais temos a força é essa distância podemos criar um sistema de equação para encontrarmos as duas cargas.

O facto de a soma ser igual a zero, já implica que as cargas têm sinais opostos. Vamos pressupor que a carga {q_1} é positiva e que {q_2} é negativa. Este procedimento será relevante na eliminação do módulo na formula afecta a Lei de Coulomb.

\displaystyle \left\{\begin{array}{ccc} q_1 +q_2=0\\ \\ k\dfrac{| q_1 | | q_2 |}{(r)^2}=0,1\\ \end{array}\right.

Nota que, a primeira equação deriva da condição de que a soma seja zero. A segundo equação provém da igualdade entre a relação da força pela Lei de Coulomb e o valor da força dado no enunciado.

Substituindo valores para as constantes e dos dados, temos:

\displaystyle \left\{\begin{array}{ccc} q_1 +q_2=0\\ 9 \cdot 10^9 \dfrac{| q_1 | | q_2 |}{(1 \cdot 10 ^{-3})^2}=0,1 \\ \\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1 +q_2=0\\ \\ 9 \cdot 10^9 \dfrac{| q_1 | | q_2 |}{1 \cdot 10 ^{-6}}=0,1\\ \end{array}\right.

Resolvendo, temos:

\displaystyle \left\{\begin{array}{ccc} q_1 +q_2=0\\ \\ 9 \cdot 10^{15} | q_1 | | q_2 | =0,1\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1 +q_2=0 \\ \\ | q_1 | | q_2 | = \dfrac{0,1}{9 \cdot 10^{15}}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1 +q_2=0 \\ \\ | q_1 | | q_2 | = \dfrac{1 \cdot 10 ^{-1}}{9 \cdot 10^15}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1 +q_2=0 \\ \\ | q_1 | | q_2 | =\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} q_1= -q_2 \\ \\ | q_1 \cdot q_2 | ==\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

Substituindo {q_1} da primeira equação na segunda, teremos:

\displaystyle \left\{\begin{array}{ccc} --- \\ \\ | -q_2 \cdot q_2 | =\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} --- \\ \\ | -q^2_2 | =\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

Eliminando o módulo, temos:

\displaystyle \left\{\begin{array}{ccc} --- \\ \\ q^2_2 = =\dfrac{1 \cdot 10 ^{-16}}{9}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} --- \\ \\ |q_2| = \sqrt{\dfrac{1 \cdot 10 ^{-16}}{9}}\\ \end{array}\right.

\displaystyle \Rightarrow \left\{\begin{array}{ccc} --- \\ \\ |q_2| \approx 3,33 \cdot 10^{-3} \ C\\ \end{array}\right.

Eliminando o modulo de {q_2}, obtemos:

\displaystyle \left\{\begin{array}{ccc} --- \\ \\ q_2 = - 3,33 \cdot 10^{-3} \ C\\ \end{array}\right.

Como {q_1= -q_2}, então:

\displaystyle q_1=3,33 \cdot 10^{-3} \ C

Exercício 5 Um conjunto de cargas colocadas nos vértices de um triângulo equilátero de {50 \ \mu m} de aresta, tem todas {10 \ \mu C}. Qual é a força resultante em qualquer carga dos vértices?

NÍVEL DE DIFICULDADE: Regular.

Resolução 5 .

Dados

{q_1=q_2=q_3=10 \ \mu C=10 \cdot 10^{-6} \ C }

{a=50 \ \mu m=50 \cdot 10^{-6} \ m }

{F_{r_{q3}}-? }

{K=9 \cdot 10^9 \ Nm^2/C^2 }

O problema apresenta um sistema de 3 cargas (num plano). A disposição das cargas é tal que forma um Triângulo Equilátero.

Da geometria plana, sabemos que o triângulo equilátero tem todos os lados e ângulos internos iguais. O valor dos ângulos internos é sempre de {60^o}.

Devemos fazer a figura, inserir um sistema de coordenadas. escolher uma das cargas e indicar as interacções das forças nesta carga.

Como as cargas são todas do mesmo sinal a força entre elas é sempre de repulsão. Escolhemos a carga {q_3} para análise.

A partir da figura, observamos que actuam na carga {q_3} duas forças: {F_{13}} (Força de interacção entre as cargas 1 e 3) e {F_{23}} (força de interacção entre as cargas 2 e 3.

Essas forças estão na direcção da linha que une as cargas em questão e representamo-las como setas que saem da carga naquelas direcções. Como as forças são de repulsão, o sentido escolhido é o sentido que tende a afastar as cargas.

Como temos adição de dois vectores, podemos optar por um dos dois métodos: lei dos cossenos ou decomposição em projecções.

Neste exercício, faremos a decomposição em projecções (por livre escolha).

A força {\vec{F_{23}}} é um vector paralelo ao eixo {Ox}. Não precisa ser projectado.

A força {\vec{F_{13}}} , por não ser paralela ao eixo {Ox} nem ao eixo {Oy}, vamos projecta-la. Dá origem então as projecções {\vec{F_{13x}}} e {\vec{F_{13y}}}.

A partir da figura temos:

Sabemos que {F_{23}=F_{13}=F}, porque tem as mesma cargas e a mesmas distâncias. Então, pela lei de Coulomb, temos:

\displaystyle \Rightarrow F_{23}=\dfrac{K \cdot |q_2| \cdot |q_3|}{a^2}=\dfrac{9 \cdot 10^{9} (10 \cdot 10^{-6})^2}{(50 \cdot 10^{-6})^2}

Resolvendo, temos:

\displaystyle F_{23}=36 \cdot 10^{10} \ N =F_{13}=F

Os ângulos da força {\vec{F_{13}}} se obtêm por análise gráfica. Considerando o axioma de rectas concorrentes, concluímos que o ângulo entre {\vec{F_{13}}} e o eixo {Ox} é {60^o}. O ângulo de {\vec{F_{13}}} com o eixo {Oy} é o complementar de {60^o}, portanto, {30^o}. Neste método, o vector resultante é obtido pelas resultantes em cada eixo.

Neste caso, a projecções resultantes são:

\displaystyle F_{Rx}=F_{23} + F_{13} \cdot \sin 30^o=F + F \cdot \cos 60^o

\displaystyle F_{Ry}=F_{13} \cdot \cos 30^o= \ F \cdot \sin 60^o

Neste caso, usando o teorema de Pitágoras, teremos:

\displaystyle F_{r_{q3}}=\sqrt{(F_{Rx} )^2 + (F_{Ry} )^2 }

\displaystyle \Rightarrow F_{r_{q3}}=\sqrt{(F + F \cdot \cos 60^o)^2 + (F \cdot \sin 60^o)^2 }

\displaystyle \Rightarrow F_{r_{q3}}=\sqrt{[F(1 + \cos 60^o)]^2 + (F \cdot \sin 60^o)^2 }

\displaystyle \Rightarrow F_{r_{q3}}=\sqrt{[36 \cdot 10^{10}(1 + \cos 60^o)]^2 + (36 \cdot 10^{10} \cdot \sin 60^o)^2 }

\displaystyle F_{r_{q3}}=62,35\cdot 10^{10} \ N

Está a gostar da Abordagem? Veja também:

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.
%d bloggers gostam disto: