Luso Academia

Início » Articles posted by ateixeira (Página 2)

Author Archives: ateixeira

Estilo Rouge

 

Estilo Rouge, há 11 anos a produzir em Angola. Encontre-nos nas nossas redes sociais ou entre em contacto connosco através dos contactos mencionados.

  1. Estilo Rouge no facebook
  2. Estilo Rouge no Instagram
  3. +244 929 121 529

Aguardamos pelo vosso contacto.

Cálculo I – Generalização às séries de algumas propriedades das somas finitas II

Recordando o Teorema 77 vamos agora introduzir a noção de resto de uma série.

Definição 50 Seja {\displaystyle \sum_{n=p}^{+\infty} u_n} convergente. Para cada {m>p} a série {\displaystyle \sum_{n=m+1}^{+\infty} u_n} também converge. Podemos então definir:

\displaystyle   r_m=\sum_{n=m+1}^{+\infty} u_n \ \ \ \ \ (80)

como sendo o resto de ordem {m} da série {\displaystyle \sum_{n=p}^{+\infty} u_n}

Como

\displaystyle  \sum_{n=p}^{+\infty} u_n=\sum_{n=p}^m u_n + \sum_{n=m+1}^{+\infty} u_n

vem que

\displaystyle  \sum_{n=p}^{+\infty} u_n=\sum_{n=p}^m u_n + r_m

Assim é

\displaystyle  r_m =\sum_{n=p}^{+\infty} u_n - \sum_{n=p}^m u_n

Fazendo {m \rightarrow +\infty} vem que {\displaystyle \lim r_m=\sum_{n=p}^{+\infty} u_n- \sum_{n=p}^{+\infty} u_n=0 }

Usando métodos apropriados podemos ainda enquadrar o resto de ordem {m}.

\displaystyle  \zeta^-_m < r_m < \zeta^+_m

Fazendo

\displaystyle  r_m \approx \frac{\zeta^+_m+\zeta^-_m}{2}

Podemos definir

\displaystyle  \varepsilon _m=r_m - \frac{\zeta^+_m+\zeta^-_m}{2}

vem que

\displaystyle  \varepsilon _m < \zeta^+_m-\frac{\zeta^+_m+\zeta^-_m}{2}=\frac{\zeta^+_m - \zeta^-_m}{2}

e

\displaystyle  \varepsilon _m > \zeta^-_m-\frac{\zeta^+_m+\zeta^-_m}{2}=\frac{\zeta^-_m - \zeta^+_m}{2}=- \frac{\zeta^+_m - \zeta^-_m}{2}

Assim

\displaystyle  - \frac{\zeta^+_m - \zeta^-_m}{2} < \varepsilon _m < \frac{\zeta^+_m - \zeta^-_m}{2}

Ou seja

\displaystyle  |\varepsilon _m| < \frac{\zeta^+_m - \zeta^-_m}{2}

Temos assim

\displaystyle  r_m=\frac{\zeta^+_m - \zeta^-_m}{2}+ \varepsilon _m

com

\displaystyle  |\varepsilon _m| < \frac{\zeta^+_m - \zeta^-_m}{2}

e portanto

\displaystyle  \sum_{n=p}^{+\infty} u_n= \sum_{n=p}^m u_n + \frac{\zeta^+_m - \zeta^-_m}{2} + \varepsilon _m

Teorema 78

Uma série de termo geral não negativo converge sse a respectiva sucessão das séries parciais for majorada.

Demonstração:

Seja {\displaystyle\sum_{n=p}^{+\infty} u_n} onde {u_n \geq 0\, \forall n \geq p} e seja {S_m} a respectiva sucessão das somas parciais.

Por definição é

\displaystyle  S_m=\sum_{n=p}^m u_n

Logo

\displaystyle  S_{m+1}-S_m = \sum_{n=p}^{m+1} u_n - \sum_{n=p}^m u_n = u_{m+1} \geq 0

Assim {S_m} é crescente.Se {S_m} converge, {S_m} é limitada (Teorema 13), logo é majorada.

Reciprocamente, se {S_m} é majorada, como é crescente sabemos também que é minorada também é minorada. Logo é limitada.

Então {S_m} converge pelo Teorema da Sucessão Monótona (20).

Assim {S_m} converge sse {S_m} for majorada.

Mas {\displaystyle\sum_{n=p}^{+\infty} u_n} converge sse {S_m} converge.

Assim {\displaystyle\sum_{n=p}^{+\infty} u_n} converge sse {S_m} tem majorante.

\Box

Ainda que o teorema anterior seja um teorema bastante útil convém notar que não providencia em si próprio um critério de convergência.

Teorema 79 {Critério da Comparação}

Sejam {\displaystyle \sum_{n=p}^{+\infty} u_n} e {\displaystyle\sum_{n=p}^{+\infty} v_n} duas séries de termos gerais não negativos. Se {u_n = O(v_n)}

\displaystyle   \sum_{n=p}^{+\infty} v_n \quad \mathrm{converge}\Rightarrow \sum_{n=p}^{+\infty} u_n \quad \mathrm{converge} \ \ \ \ \ (81)

\displaystyle   \sum_{n=p}^{+\infty} u_n \quad \mathrm{diverge}\Rightarrow \sum_{n=p}^{+\infty} v_n \quad \mathrm{diverge} \ \ \ \ \ (82)

Demonstração:

Como 82 é o contra-recíproco de 81 vamos somente provar a equação 81.

Suponha-se {v_n} convergente. Como {u_n= O(v_n)} existe uma sucessão {h_n} limitada e um índice {k} tais que {u_n=h_n v_n \quad \forall n\geq k}.

Sendo então {L} um majorante de {h_n} vem que

\displaystyle   u_n \leq L v_n \ \ \ \ \ (83)

Por outro lado como

\displaystyle  \sum_{n=k}^{+\infty} v_n \leftrightarrow \sum_{n=p}^{+\infty} v_n

vem que {v_n} converge. Pelo Teorema 78 {v_n} tem as somas parciais majoradas. Assim {\exists n \geq 0 } tal que {\displaystyle\sum_{n=k}^m v_n \leq M\, \forall n \geq k} .

De 83 vem então

\displaystyle  \sum_{n=k}^m u_n \leq \sum_{n=k}^m L v_n= L\sum_{n=k}^m v_n \leq LM \quad \forall n \geq k

Assim a série {\displaystyle \sum_{n=k}^{+ \infty} u_n } também as somas parciais majoradas, logo é convergente (Teorema 78).

Como

\displaystyle  \sum_{n=p}^{+ \infty} u_n \leftrightarrow \sum_{n=k}^{+ \infty} u_n

(Teorema 76) vem que {\displaystyle\sum_{n=p}^{+ \infty} u_n} converge.

\Box

Corolário 80

Nas condições do teorema anterior, se existe uma ordem {k} tal que {u_n \leq v_n \quad \forall n \geq k} então

\displaystyle   \sum_{n=p}^{+\infty} v_n \quad \mathrm{converge}\Rightarrow \sum_{n=p}^{+\infty} u_n \quad \mathrm{converge} \ \ \ \ \ (84)

\displaystyle   \sum_{n=p}^{+\infty} u_n \quad \mathrm{diverge}\Rightarrow \sum_{n=p}^{+\infty} v_n \quad \mathrm{diverge} \ \ \ \ \ (85)

Demonstração: Fica como um exercício para o leitor. \Box

Corolário 81

Nas condições do teorema anterior, se

\displaystyle  \lim \frac{u_n}{v_n} \in ]0, + \infty[

então

\displaystyle   \sum_{n=p}^{+\infty} u_n \leftrightarrow \sum_{n=p}^{+\infty} v_n \ \ \ \ \ (86)

Demonstração: Fica como um exercício para o leitor. \Box

Corolário 82

Nas condições do teorema anterior, se

\displaystyle  u_n \sim v_n

então

\displaystyle   \sum_{n=p}^{+\infty} u_n \leftrightarrow \sum_{n=p}^{+\infty} v_n \ \ \ \ \ (87)

Demonstração: Fica como um exercício para o leitor. \Box

Podemos então resumir o resultado anterior com o seguinte:

Em séries de termos gerais não negativos podemos substituir o termo geral por outro assimptoticamente igual sem alterar a natureza da série.

Cálculo I – Generalização às séries de algumas propriedades das somas finitas

— 8.2. Generalização às séries de algumas propriedades das somas finitas —

Teorema 73 Se {\displaystyle \sum_{n=p}^{+\infty} u_n} converge e {\alpha \in \mathbb{R}}, então também {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} converge e tem-se

\displaystyle   \sum_{n=p}^{+\infty} \alpha u_n = \alpha \sum_{n=p}^{+\infty} u_n \ \ \ \ \ (76)

Demonstração: Temos efectivamente

{\begin{aligned} \displaystyle \sum_{n=p}^{+\infty} \alpha u_n &= \lim_{m \rightarrow +\infty}\sum_{n=p}^m \alpha u_n \\ &= \lim_{m \rightarrow +\infty} \alpha \sum_{n=p}^m u_n \\ &= \alpha \lim_{m \rightarrow +\infty} \sum_{n=p}^m u_n \\ &= \alpha \sum_{n=p}^{+\infty} u_n \end{aligned}}

\Box

Corolário 74

Se {\alpha \neq 0} as séries {\displaystyle \sum_{n=p}^{+\infty} u_n} e {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} têm a mesma natureza.

Demonstração: Se {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} é convergente vem, pelo Teorema 73, que a série {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} também é convergente.

Reciprocamente, suponha-se que {\displaystyle \sum_{n=p}^{+\infty} \alpha u_n} é convergente. Então, pelo pelo Teorema 73, {\displaystyle \sum_{n=p}^{+\infty} \frac{1}{\alpha}\alpha u_n} também é convergente. Ou seja, {\displaystyle \sum_{n=p}^{+\infty} u_n} é convergente \Box

Para simplificação de linguagem vamos introduzir o símbolo {\leftrightarrow } como sendo equivalente à expressão “têm a mesma natureza”.

Assim quando escrevermos {\displaystyle \sum_{n=p}^{+\infty}\dfrac{5}{n} \leftrightarrow \sum_{n=p}^{+\infty}\dfrac{1}{n}} queremos dizer que as séries {\displaystyle \sum_{n=p}^{+\infty}\dfrac{5}{n}} e {\displaystyle \sum_{n=p}^{+\infty}\dfrac{1}{n}} têm a mesma natureza.

Teorema 75 Se {\displaystyle \sum_{n=p}^{+\infty} u_n} e {\displaystyle \sum_{n=p}^{+\infty} v_n} são ambas convergentes então também {\displaystyle \sum_{n=p}^{+\infty} (u_n+v_n)} é convergente e tem-se

\displaystyle   \sum_{n=p}^{+\infty} (u_n+v_n)=\sum_{n=p}^{+\infty} u_n+ \sum_{n=p}^{+\infty} v_n \ \ \ \ \ (77)

Demonstração: {\begin{aligned} \displaystyle \sum_{n=p}^{+\infty} (u_n+v_n) &= \lim_{m \rightarrow +\infty}\sum_{n=p}^m(u_n+v_n) \\ &= \lim_{m \rightarrow +\infty} \left( \sum_{n=p}^m u_n+ \sum_{n=p}^m v_n \right) \\ &=\lim_{m \rightarrow +\infty}\sum_{n=p}^m u_n+ \lim_{m \rightarrow +\infty}\sum_{n=p}^m v_n \\ &= \sum_{n=p}^{+\infty} u_n+ \sum_{n=p}^{+\infty} v_n \end{aligned}} \Box

Teorema 76 {Teorema da Mudança de Índice de Série} As séries {\displaystyle \sum_{n=p}^{+\infty} u_n} e {\displaystyle \sum_{n=0}^{+\infty} u_{n+p}} têm a mesma natureza e em caso de convergência a mesma soma.

\displaystyle   \sum_{n=p}^{+\infty} u_n = \sum_{n=0}^{+\infty} u_{n+p} \ \ \ \ \ (78)

Demonstração: Fica como um exercício para o leitor. \Box

Como aplicação do teorema anterior vamos calcular

\displaystyle  \sum_{n=p}^{+\infty} r^n

Onde temos que {|r|<1}.

Temos então

{\begin{aligned} \sum_{n=p}^{+\infty} r^n &= \sum_{n=0}^{+\infty} r^{n+p} \\ &= \sum_{n=0}^{+\infty} r^n\cdot r^p \\ &= r^p \sum_{n=0}^{+\infty} r^n \\ &= r^p \dfrac{1}{1-r} \end{aligned}}

Assim fica

\displaystyle  \sum_{n=p}^{+\infty} r^n=\frac{r^p}{1-p} \quad |r|<1

Teorema 77 Dada uma série {\sum_{n=p}^{+\infty} u_n}, um índice {k>p}, as séries {\sum_{n=p}^{+\infty} u_n} e {\sum_{n=k}^{+\infty} u_n} têm a mesma natureza, e em caso de convergência é válido

\displaystyle   \sum_{n=p}^{+\infty} u_n= \sum_{n=p}^{k-1} u_n+\sum_{n=k}^{+\infty} u_n \ \ \ \ \ (79)

Demonstração: Vamos apenas apresentar a ideia da demonstração e deixamos para o leitor a sua correcta formalização.

Sugerimos ao leitor começar a partir da identidade:

\displaystyle  \sum_{n=p}^m u_n= \sum_{n=p}^{k-1} u_n+\sum_{n=k}^m u_n

e tomar o limite {m \rightarrow +\infty} \Box

Utilizando a estenografia introduzida anteriormente podemos escrever:

\displaystyle  \sum_{n=k}^{+\infty} \leftrightarrow \sum_{n=p}^{+\infty} \quad \forall k>p

Podemos então dizer o seguinte:

A natureza de uma série não depende do valor do índice onde começa a série.

Cálculo I – Somas de Mengoli

— 8.1. Somas de Mengoli —

Nesta subsecção vamos introduzir as somas de Mengoli, também chamadas de somas telecópicas.

{\begin{aligned} \displaystyle \sum_{n=p}^{+\infty}(v_n-v_{n+1}) &= \lim_{m \rightarrow +\infty}\sum_{n=p}^{m}(v_n-v_{n+1}) \\ &= \lim_{m \rightarrow +\infty}(v_p-v_{m+1})\\ &= v_p-\lim v_{m+1} \\ &=v_p -\lim v_n \end{aligned}}

Assim sendo,

\displaystyle \sum_{n=p}^{+\infty}(v_n-v_{n+1})

converge sse a sucessão {v_n} é convergente e temos

\displaystyle \sum_{n=p}^{+\infty}(v_n-v_{n+1})=v_p -\lim v_n

Exemplo 4

\displaystyle \sum_{n=1}^{+\infty}\frac{1}{n(n+1)} \ \ \ \ \ (74)

 

Ora para a equação 74 é válido a seguinte igualdade:

\displaystyle \sum_{n=1}^{+\infty}\frac{1}{n(n+1)}= \sum_{n=1}^{+\infty}\left( \frac{1}{n}-\frac{1}{n+1} \right)

Assim fica

{\begin{aligned} \displaystyle \sum_{n=1}^{+\infty}\frac{1}{n(n+1)} &= \sum_{n=1}^{+\infty}\left( \frac{1}{n}-\frac{1}{n+1} \right) \\ &= \dfrac{1}{1}-\lim\dfrac{1}{n}\\ &=1 \end{aligned}}

Ou seja, o que nós temos é

\displaystyle \sum_{n=1}^{+\infty}\frac{1}{n(n+1)}=\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+\cdots =1

Exemplo 5

Vamos agora olhar para outro exemplo de uma série de Mengoli

\displaystyle \sum_{n=2}^{+\infty}\log \left( 1-\frac{1}{n} \right) \ \ \ \ \ (75)

 

Podemos reescrever a equação 75 da seguinte forma:

{\begin{aligned} \sum_{n=2}^{+\infty}\log \left( 1-\frac{1}{n} \right) &= \sum_{n=2}^{+\infty}\log \left( \frac{n}{n}-\frac{1}{n} \right) \\ &= \sum_{n=2}^{+\infty}\log \left( \frac{n-1}{n} \right) \\ &=\sum_{n=2}^{+\infty}\left( \log (n-1)- \log n \right) \end{aligned}}

que é uma série de Mengoli divergente.

Em geral é muito difícil achar o valor de uma série. É então preciso construirmos métodos que nos possibilitem obter conhecimento sobre a natureza de uma série mesmo que não sejamos capazes de calcular o seu valor.

Vamos então começar a construir uma teoria que nos permita obter conhecimento sobre uma série sem ser necessário efectuar cálculos.

Teorema 71

Se {\displaystyle \sum_{n=p}^{+\infty} u_n} é convergente então {\lim u_n=0}

Demonstração:

Seja {\displaystyle \sum_{n=p}^{+\infty} u_n} convergente e seja {a \in \mathbb{R}} a sua soma.

Pondo {S_m=sum_{n=p}^m u_n} {\forall m \geq p} temos então {\lim S_m =a}.

Assim também é {\lim S_{m-1}=a}. Logo {\lim (S_m-S_{m-1})=0}

Ou seja

\displaystyle \lim \left( \sum_{n=p}^m u_n - \sum_{n=p}^{m-1} u_n =0\right)

E portanto {\lim u_n=0}

\Box

Corolário 72

Se {\lim u_n \neq 0}, a série {\displaystyle \sum_{n=p}^{+\infty} u_n} é divergente.

Demonstração: É o contra-recíproco do Teorema 71 \Box

Tomemos

\displaystyle \sum_{n=0}^{+\infty}r^n

Se {|r|\geq 1}, {|r^n|=|r|^n}. Ora {|r|^n} não tende para {0}. Logo {r^n} também não tende para {0}. Assim {\displaystyle \sum_{n=0}^{+\infty}r^n } diverge.

 

Cálculo I – Introdução às Séries Numéricas

— 8. Introdução às Séries Numéricas —

Tomemos os termos de uma sucessão {u_n} onde {n \geq p} para um certo {p}. Ou seja temos {u_p}, {u_{p+1}}, , {u_{p+2}}, …, , {u_n},…

Uma questão que podemos colocar de forma bastante natural é qual é o resultado da soma destes termos:

\displaystyle u_p+ u_{p+1}+ u_{p+2}+ \cdots + u_n+ \cdots =\sum_{n=p}^{+\infty} u_n

A soma que contém um número infinito de termos acima definida tem o nome de: série de termo geral {u_n}.

Seja {m \geq p}.

{\displaystyle \sum_{n=p}^m u_n = u_p+ u_{p+1}+\cdots + u_m}

Tomando o limite

\displaystyle \lim_{n \rightarrow +\infty} \sum_{n=p}^m u_n

podemos definir de forma matematicamente rigorosa o valor da soma da série.

\displaystyle \sum_{n=p}^{+\infty} u_n =\lim_{m \rightarrow +\infty} \sum_{n=p}^m u_n

Podemos ainda definir a sucessão das somas parciais de uma série, {S_m}

\displaystyle S_m=\sum_{n=p}^m u_n

e escrever

\displaystyle \sum_{n=p}^{+\infty} u_n =\lim_{m \rightarrow +\infty} S_m

Dizemos que a série converge se e só se {S_m} é convergente.

Após estas definições iniciais referentes à séries numéricas vamos olhar para um dos paradoxos de Zenão como motivação para a introdução da teoria das séries numéricas.

Imaginemos que temos um corpo que vai percorrer uma distância de 2 metros tendo uma velocidade constante de {1 m/s}.

Se alguém nos perguntar qual será o intervalo de tempo necessário para percorrer uma distância de 2 metros tendo uma velocidade de 1 {m/s} não precisamos de ser grandes físicos para responder que o tempo total será de 2 segundos.

No entanto sabemos que o corpo em questão antes de percorrer a totalidade do seu percurso terá que percorrer antes de mais a sua metade. E antes de percorrera metade terá que percorrer a metade da metade. E assim sucessivamente. A expressão que permitirá expressar a soma dos intervalos de tempo referentes às distâncias parciais face à distância total é:

\displaystyle T=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots +\frac{1}{2^n}+\cdots

Na altura em que este paradoxo foi proposto a teoria matemática não era tão avançada como é hoje em dia e questão de qual seria o resultado desta soma era também uma questão de debate filosófico.

Assim sendo a resposta a esta questão tinha duas possibilidades.

Por um lado, Zenão argumenta que o resultado da soma {\displaystyle \sum_{k=0}^{+\infty}\frac{1}{2^n}} era infinito pois estávamos a somar um número infinito de parcelas que são sempre maior do que {0}, e por outro lado toda a gente sabia que do ponto de vista experimental a resposta deveria ser {2 \, s}.

É precisamente esta tensão entre as duas respostas que dá o nome a este argumento de um paradoxo. Por um lado nós sabemos qual é a resposta correcta, mas não somos capazes de providenciar um argumento que a justifique de uma forma matematicamente rigorosa.

Definição 49 Uma série geométrica de razão {r} é definida através da seguinte expressão:

\displaystyle \sum_{n=0}^{+\infty} r^n \ \ \ \ \ (73)

Para as series geométricas é válido o seguinte:

{\begin{aligned} \displaystyle \sum_{n=0}^{+\infty} r^n &= \lim_{m \rightarrow \infty} \sum_{n=0}^m r^n \\ &= \lim_{m \rightarrow \infty} \dfrac{1- r^{m+1}}{1-r} \end{aligned}}

Se {|r|<1} vem que {r^{m+1}\rightarrow 0} quando {m \rightarrow +\infty}.

Assim vem que

\displaystyle \lim_{m \rightarrow \infty} \frac{1- r^{m+1}}{1-r}= \frac{1}{1-r}

Assim podemos escrever com todo o rigor matemático

\displaystyle \sum_{n=0}^{+\infty} r^n= \frac{1}{1-r}

Caso se tenha {|r|>1} a série diverge.

Voltando então ao paradoxo de Zenão e utilizando este simples resultado derivado por nós vem que:

{\begin{aligned} \displaystyle \sum_{n=0}^{+\infty}\dfrac{1}{2^n} &= \left(\dfrac{1}{2} \right)^n \\ &= \dfrac{1}{1-1/2}\\ &= \dfrac{1}{1/2} \\ &=2 \end{aligned}}

Que é a resposta que nós sabemos estar correcta!

Curso de Astronomia – Primeira Sessão

Tal como já havíamos anunciado neste artigo do nosso blog: Curso de Astronomia – 1º Programa – Luso Academia a Luso Academia em conjunto com o Acelera Angola está a realizar um curso de Astronomia para poder divulgar esta ciência para o público em geral.

Hoje decorreu a primeira sessão do nosso curso e tivemos a comparência de várias pessoas interessadas que ao longo da sessão fizeram perguntas e comentários muito pertinentes.

Partilhamos com os os nossos leitores algumas fotografias e um vídeo da sessão e esperamos poder contar convosco para a segunda sessão que será já no próximo sábado.

 

 

 

Resolução de Exercícios – Movimento Circular Uniforme

— 1. Introdução —

A pedido de uma participante de um grupo de facebook do qual a Luso Academia é um membro propomos as seguintes resoluções para os exercícios apresentados.

— 2. Exercícios —

Exercício 1 Um corpo executa um movimento harmónico simples, e as suas posições são observadas numa régua graduada em centímetros posicionada atrás do corpo. Inicialmente, em {t=0\,\mathrm{s}}, a posição ocupada pelo corpo na régua de {8,0\,\mathrm{cm} } corresponde à máxima elongação. em {t=0,1 \pi\,\mathrm{s}} o corpo passa pela primeira vez na posição {2,0\,\mathrm{cm}} com velocidade nula.

Determine o módulo da aceleração máxima do corpo nesse movimento.

Como sabemos as equações de movimento para o movimento harmónico simples podem ser escritas do seguinte modo:

  • {x(t)=A\cos(\omega t)}
  • {v(t)=-A\omega\sin(\omega t)}
  • {v(t)=-A\omega ^2\cos(\omega t)}

Assim sendo o módulo da aceleração máxima deste movimento é dada por {A\omega ^2} sendo que nos resta determinar os valores para {A} e {\omega}.

Pelo enunciado sabemos que para {t=0} é válido o seguinte

\displaystyle  x(0)=A\cos(\omega 0)=8 \Rightarrow A\cos (0)=8 \Rightarrow A=8

Também pelo enunciado sabemos que para a equação de velocidade é válido o seguinte:

\displaystyle  v(0,1\pi)=-8\omega\sin(0,1\pi \omega)=0

o que implica que o argumento da função seno tem que ser igual a {\pi}, pois a velocidade é nula.

Assim é

{\begin{aligned} \omega &= \frac{\pi}{0,1\pi} \\ &=\frac{1}{0,1} \\ &= 10 \end{aligned}}

Após calcularmos o valor de {A} e de {\omega} podemos então calcular o valor do módulo da aceleração máxima.

{\begin{aligned} |a_{max}| &= A\omega ^2 \\ &=8\times 100^2 \\ &= 800\,\mathrm{m/s^2} \end{aligned}}

Exercício 2 Um movimento circular uniforme de raio {R=40\,\mathrm{cm}} possui velocidade tangencial {2,0\,\mathrm{m/s}} e um ângulo inicial de {30 ^\circ } em relação ao eixo {x} girando no sentido anti-horário.

Considerando o MHS descrito pela projecção desse movimento no eixo {x}, determine a função velocidade do MHS (nas unidades do Sistema Internacional.

Uma vez que neste exercício faz sentido considerar uma fase inicial vamos escrever as equações de movimento na forma:

  • {x(t)=R\cos(\omega t -\varphi)}
  • {v(t)=-R\omega\sin(\omega t-\varphi)}
  • {v(t)=-R\omega ^2\cos(\omega t-\varphi)}

Pelo enunciado sabemos que para {v(0)} é válido o seguinte

{\begin{aligned} 2 &= -40\omega\sin(-\pi /6) \\ 2 &= 40\omega\sin(\pi /6) \\ 2 &= 40\omega\frac{1}{2} \\ 2 &=20\omega \end{aligned}}

Assim sendo temos que a velocidade angular é dada por

\displaystyle  \omega = 0,1 \mathrm{rad} /s

Assim a expressão para a velocidade fica

\displaystyle  v(t)=-4\sin\left(0,1t-\dfrac{\pi}{6}\right)

Intelc Angola – Curso de Marketing Digital

No seguimento da parceria entre a Intelc Centro Ensino e a Luso Academia viemos por este meio divulgar um curso de Marketing Digital dos nossos parceiros.
Porquê é que o MARKETING DIGITAL é tão importante?
Ajuda a VENDER RÁPIDO e em GRANDE QUANTIDADE
 
INSCREVA-SE:
CURSO: Marketing Digital – Estratégias & Metodologias
DATA: 05 e 06 de Julho de 2018
INVESTIMENTO: 10 Mil Kwanzas
LOCAL: Bloco V1, 2º Andar casa nº 22, Centralidade do Kilamba, Luanda-Angola |
VOCÊ RECEBERÁ:
– Manual de Instrução
– Coffee Break
– Acompanhamento Pós-Curso
– Certificado
OBJECTIVOS
Ajudar a dominar as principais tendências, estratégias e ferramentas de Marketing Digital.
Conhecer as ferramentas como Analytics, Easy-SMS, metodologias de email marketing, SEO, Social Media, Marketing de Conteúdo e outros.
FAÇA A SUA RESERVA: 
Facebook: @INTELC Centro de Ensino
(+244) 222 019 471 / 944 716 177 / 915 421 031
Bloco V1, 2º Andar Apart. nº 22, Centralidade do Kilamba, Luanda-Angola

Cálculo I – Volume I

Várias pessoas já o haviam solicitado e neste momento o primeiro volume de Cálculo I está preparado.

Deste modo já é possível aos nossos leitores estudarem de uma forma mais estruturada a primeira parte do conteúdo da disciplina de Cálculo I.

Uma vez que nossos leitores vêm de várias partes do mundo iremos disponibilizar várias modalidades de pagamento.

Os interessados deverão entrar em contacto através do email lusoacademia@gmail.com e solicitar uma cópia.

Introdução à Lógica – Classificação de Argumentos

— 6. Definições Lógicas —

Nesta secção vamos introduzir de uma forma mais sistemática algumas das ideias básicas em lógica que nos vão permitir utilizar de uma forma mais poderosa os ensinamentos desta disciplina.

Tal como já vimos, existe na Lógica uma distinção entre forma e conteúdo. De modo análogo existe também uma distinção na lógica entre argumentos que são correctos quanto à sua forma e argumentos que são correctos quanto ao seu conteúdo.

Esta distinção é melhor entendida se dermos alguns exemplos:

  1. Todos os peixes são seres humanos;
  2. Todos os seres humanos são quadrúpedes;
  3. Assim, todos os peixes são quadrúpedes.
  1. Todos os gatos são animais;
  2. Todos os mamíferos são animais;
  3. Assim, todos os gatos são mamíferos.

Nenhum destes argumentos é correcto ainda que sejam incorrectos por razões diferentes.

Em primeiro lugar vamos considerar o seu conteúdo. Enquanto que no primeiro argumento todas as sentenças são falsas, todas as sentenças no segundo argumento são verdadeiras. Por outro lado, uma vez que nem todas as premissas do primeiro argumento são verdadeiras este argumento não é válido quanto ao seu conteúdo; ao contrário do segundo argumento que é perfeitamente válido quanto ao seu conteúdo.

Vamos agora considerar os argumentos quanto à forma. Aqui a pergunta essencial é: “As premissas suportam a conclusão?”. Ou dito de outra forma: mesmo que as premissas não sejam verdadeiras, será que a conclusão a que se chega deriva directamente das premissas estipuladas? No caso do segundo argumento as premissas são todas verdadeiras assim como a conclusão. Ainda assim a verdade da conclusão não é uma função da veracidade das premissas (queremos com isto dizer que este argumento não foi bem construído). Tudo isto é perfeitamente inteligível a um nível intuitivo, mas iremos dar agora algumas definições para tornar a nossa explanação mais rigorosa. Ao examinar um argumento temos sempre que colocar duas questões:

  1. As premissas são verdadeiras?
  2. A conclusão deriva das premissas?

As respostas às duas perguntas acima irão ajudar a classificar os argumentos apresentados.

Definição 6

Um argumento diz-se factualmente correcto se e só se todas as suas premissas são verdadeiras.

Definição 7

Um argumento diz-se válido se e só se a conclusão deriva logicamente das premissas.

Definição 8

Um argumento diz-se sólido se e só se for válido e factualmente correcto.

De uma forma simples podemos dizer que um argumento factualmente correcto tem um bom conteúdo enquanto que um argumento tem boa forma. Um argumento sólido, por sua vez, tem sempre um bom conteúdo e uma boa forma.

De notar que um argumento factualmente correcto pode ter uma conclusão falsa, uma vez que a sua definição somente se refere às premissas.

A validade de um argumento por vezes é difícil de se afirmar com certeza. Pode acontecer que seja impossível de se saber se a conclusão deriva ou não das premissas. Parte deste problema tem a ver com o facto de termos de saber o que queremos dizer com “deriva”.

Por outro lado a Lógica analisa a validade ou invalidade de um argumento, mas nada pode dizer sobre a verdade factual das premissas. A questão da verdade factual é uma questão deixada para as ciências experimentais.

Podemos então em jeito de conclusão deixar a seguinte definição:

Definição 9

Um argumento diz-se válido se e só se é impossível que a conclusão seja falsa quando as premissas são todas verdadeiras.

Ou ainda de forma equivalente:

Definição 10

Dizer que um argumento é válido é o mesmo que dizer que se as premissas fossem verdadeiras, então a conclusão seria necessariamente verdadeira também.

De acordo com tudo o que foi dito acima vamos então listar todas as possibilidades para os argumentos:

  • Os argumentos podem ser válidos com premissas verdadeiras e conclusão verdadeira
  • Os argumentos podem ser válidos, com premissas falsas e conclusão falsa
  • Os argumentos podem ser válidos com premissas falsas e conclusão verdadeira
  • Os argumentos podem ser inválidos com premissas verdadeiras e conclusão verdadeira
  • Os argumentos podem ser inválidos com premissas verdadeiras e conclusão falsa
  • Os argumentos podem ser inválidos com premissas falas e conclusão falsa
  • Os argumentos podem ser inválidos com premissas falsas e conclusão verdadeira

Mas nunca podermos ter

  • Um argumento válido, com premissas verdadeiras e conclusão falsa.

Para terminar este artigo vamos deixar um simples argumento que deverá ser analisado pelos nossos leitores:

  • Todos os números pares são números primos.
  • Vinte e um é um número par.
  • Logo, Vinte e um é um número primo.

%d bloggers like this: