Luso Academia

Início » 00 Geral » Exercícios Sobre de Fluidos: Conceitos Gerais

Exercícios Sobre de Fluidos: Conceitos Gerais

— 1. Exercícios de Fluidos: Conceitos Gerais —

Exercício 1 A unidade de Pressão no SI é o Pascal({Pa}).

Além desta, usam outras unidades como a atmosfera({atm}), milímetros de mercúrio({mmHg}), Torricelli ({Torr}), Bar({bar }), etc.

Conhecendo a relação:

\displaystyle 1 \ atm = 101325 \ Pa \approx 760 \ mmHg

\displaystyle 1 \ bar = 10^5 \ Pa

Converta para o SI os seguintes valores de pressão:

  1. {0,857 \ atm}.
  2. {850 \ mmHg}.
  3. {3,5 \ bar}.

NÍVEL DE DIFICULDADE: Elementar .

Resolução 1 .

  1. Pela relação anterior, usando a regra de “{3} simples”, podemos escrever:

    \displaystyle 1 \ atm \longrightarrow 101325 \ Pa

    \displaystyle 0,857 \ atm \longrightarrow \textbf{X}

    Então, fazendo multiplicação cruzada, obteremos:

    \displaystyle 1 \ atm\textbf{.}\textbf{X} = 101325 \ Pa\textbf{.}0,857 \ atm

    Resolvendo e simplificando a unidade {atm}, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 86835,5 \ Pa

  2. Pela mesma regra de “3 simples”, obtemos:

    \displaystyle 101325 \ Pa \longrightarrow 760 \ mmHg

    \displaystyle \textbf{X} \longrightarrow 850 \ mmHg

    Fazendo a multiplicação cruzada, obtemos:

    \displaystyle 760 \ mmHg\textbf{.}\textbf{X} = 101325 \ Pa\textbf{.}850 \ mmHg

    Passando o {760 \ mmHg} para o membro direito, simplificando a unidade {mmHg} e resolvendo, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 113324,0 \ Pa

  3. Pela mesma regra de “3 simples”, obtemos:

    \displaystyle 1 \ bar \longrightarrow 10^5 \ Pa

    \displaystyle 3,5 \ bar \longrightarrow \textbf{X}

    Fazendo a multiplicação cruzada, obtemos:

    \displaystyle 1 \ bar\textbf{.}\textbf{X} = 10^5 \ Pa\textbf{.}3,5 \ bar

    Resolvendo e simplificando a unidade {bar}, obtemos:

    \displaystyle \Rightarrow \textbf{X} = 3,5.10^5 \ Pa \Leftrightarrow \textbf{X} = 350000 \ Pa

Exercício 2 Uma caixa em forma de cubo, tem faces com área de {3 \ m^2} e está cheia com {10 \ kg} de um certo material. Qual é a pressão que ela exerce sobre o solo?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 2 .

Dados

{A_{face} = 3 \ m^2}

{m = 10 \ kg}

{g = 9,8 \ m/s^2}

{P - \ ?}

Como só uma das faces do cubo é que toca no chão, a área de contacto corresponde à área de uma das faces. Neste caso: {A = A_{face} = 3 \ m^2.}

Com a massa da caixa, podemos calcular o peso (força) que ela exerce ao solo, nesse caso:

\displaystyle P = F_g = m\textbf{.}g = 10 \ Kg\textbf{.}9,8 \ m/s^2 \Rightarrow P = 98 \ N

\bf{Nota: {1kg\textbf{.}1m/s^2 = 1N}}

Usando o conceito de pressão, podemos escrever:

\displaystyle p = \dfrac{F_{aplicada}}{A_{contacto}} = \dfrac{P}{A_{face}} \Rightarrow p = \dfrac{98\ N}{3m^2} \approx 32,67 \ Pa.

Exercício 3 Uma caixa tem um peso de {17 \ kg} e está apoiada em uma mesa. A pressão exercida pela caixa é de {200 \ Pa}. Qual é a área de contacto entre a caixa e a mesa?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 3 .

Dados

{P = 17 \ kgf}

{p = 200 \ Pa}

{A_{contacto} - ?}

A Unidade {Kgf} é uma unidade de força mas não está no SI. Sabendo que {1 \ kgf = 9,8 \ N}.

Neste caso: {P = 17 \ kgf = 17\textbf{.}9,8 \ N = 1666,6 \ N}

Como:

\displaystyle p = \dfrac{F_{aplicada}}{A_{contacto}} = \dfrac{P}{A_{contacto}}

Nesse caso, isolando a área, obtemos:

\displaystyle A_{contacto} = \dfrac{P}{p} =\dfrac{166,7}{200} \approx 0,834 \ m^2

Exercício 4 Um corpo tem uma massa de 3  kg e um volume de 5 litros. Determine a sua massa específica.

NÍVEL DE DIFICULDADE: Elementar .

Resolução 4 .

Dados

{m = 13 \ kg}

{V = 5 \ l}

{\rho - \ ?}

A Unidade litro({l}) não é a unidade de volume no SI e se quisermos obter a massa específica no SI(como é regra), devemos converter esta unidade.

Sabendo que:

\displaystyle 1 \ l \longrightarrow 10^{-3} \ m^3

\displaystyle 5 \ l \longrightarrow V_{SI}

Neste caso: {1 \ l\textbf{.}X = 5 \ l\textbf{.}10^{-3} \ m^3 \Rightarrow V_{SI} = 5\textbf{.}10^{-3} \ m^3}

Quer dizer que o {V_{SI} = 5\textbf{.}10^{-3} \ m^3}

A definição de massa específica impõe que:

\displaystyle \rho = \dfrac{m_{corpo}}{V_{corpo}} = \dfrac{m}{V_{SI}} = \dfrac{13}{5\textbf{.}10^{-3}}

\displaystyle \rho = 2600 \ kg/m^3

Exercício 5 Um corpo apresenta uma massa específica de {25 \ g/cm^3}. Qual é a sua massa específica no SI?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 5 .

Estamos diante de um problema de conversão de unidades, onde a unidade apresenta uma fracção:

\displaystyle \rho = 25 \dfrac{g}{cm^3}

Neste caso, faremos a conversão no numerador e denominador. Para simplificar faremos a conversão por substituição directa. Sabendo que {1 \ kg = 1000 \ g} e {1 \ g = 10^{-3} \ kg}.

Sabendo também que o prefixo “centi”(c) equivale a {10^{-2}}, neste caso {1 \ cm^3 = 1\textbf{.}(10^{-2})^3 \ m^3= \ (10^{-6}) \ m^3.}

Note que, o facto de a unidade ({cm}) estar elevada a 3, quando separamos o prefixo “centi”, ele também fica elevado a 3. Neste caso: {1 \ cm^3 = 10^{-6} \ m^3}. Então:

\displaystyle \rho = \dfrac{25\textbf{.} \ g}{cm^3} = \dfrac{25\textbf{.}10^{-3} \ kg}{10^{-6} \ m^3} = 25\textbf{.}10^{-3+6} \ kg/m^3

\displaystyle \rho = 25\textbf{.}10^3 \ kg/m^3

Exercício 6 Uma esfera maciça de alumínio tem uma massa de {50 \ g}. Qual é o seu volume?

NÍVEL DE DIFICULDADE: Elementar .

Resolução 6 .

Dados

{m = 50 \ g = 50\textbf{.}10^{-3} \ kg}

{V - \ ?}

Apesar de não ser dado, mas a massa específica do alumínio é conhecida {\rho{al} = 2700 \ kg/m^3}. Neste caso, pela definição de massa específica, temos:

\displaystyle \rho = \dfrac{m}{V} \Rightarrow \rho\textbf{.}V = m \Rightarrow V = \dfrac{m}{\rho}

Neste caso:

\displaystyle V = \dfrac{50\textbf{.}10^{-3} \ kg}{2700 \ kg/m^3} = 1,852\textbf{.}10^{-5} \ m^3

OBS: Como qualquer trabalho, esta publicação pode estar sujeita a erros de digitação, falta de clareza na imagem ou alguma insuficiência na explicação. Neste sentido, solicitamos aos nossos leitores o seguinte:

  1. Deixe a sua interacção nos comentários deste Post;
  2. Para sugestões ou criticas, enviar email para: sugestao.lusoacademia@gmail.com;
  3. Partilhe este Post nas tuas redes sociais.

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Donativos

Donate Button

Localização

wordpress com stats
%d bloggers like this: