Luso Academia

Início » 00 Geral » Continuidade em Espaços Métricos. Continuação.

Continuidade em Espaços Métricos. Continuação.

— 1.2.10. Continuidade em Espaços Métricos. Continuação —

Agora apresentaremos alguns exemplos de funções contínuas. Vou assumir que os leitores já estão familiarizados com a noção de continuidade apresentada nos cursos de Cálculo, principalmente as funções trigonométricas, logaritimicas e polinomiais. Em seguida, darei alguns exemplos sobre o conceito de continuidade nos espaços métricos.

Proposição 33 Seja {(X,d)} um espaço métrico e {A\subseteq X}, com {A\neq\emptyset}. Então para todo {x,y\in X} e {z\in A}, temos:

\displaystyle  \mid d(x,A)-d(y,A)\mid\leq d(x,y) \ \ \ \ \ (2)

Demonstração: Como {X} éum espaço métrico, então é válida a desigualdade triângular:

\displaystyle d(x,y)\leq d(x,z)+d(z,y)

tomando o ínfimo para todo {z\in A} e considerando

\displaystyle  d(x,A)=\inf_{z\in A}d(x,z)

e

\displaystyle d(y,A)=\inf_{z\in A}d(y,z)

teremos, {d(x,A)-d(y,A)\leq d(x,y)}, e depois trocando {x} e {y} se obtem:

\displaystyle \mid d(x,A)-d(y,A)\mid\leq d(x,y)

\Box

Proposição 34 Seja {(X,d)} um espaço métrico, e {x_{0}\in X}. Se definirmos a função distância {f:X\longrightarrow \mathbb{R}}, como

\displaystyle f(x)=d(x,x_{0})

então {f} é contínua.

Demonstração: Para provarmos isto usaremos a Prop. 1.31 assim como a 1.33. Sabemos que uma função é contínua em um ponto {a} se e só se {\forall x_{n}\subset X: x_{n}\longrightarrow a\implies f(x_{n})\longrightarrow f(a)}.

É importante notarmos que na definição da função distância o espaço imagem é basicamente {(Y=\mathbb{R},\rho_{\text{usual}})} portanto, {\rho(f(x),f(y))=\mid f(x)-f(y)\mid}.

Seja {x_{n}} uma sequência de {X} tal que : {x_{n}\longrightarrow a}, então por definição {d(x_{n},a)<\epsilon}, onde {\epsilon>0}. Logo,

\displaystyle \rho(f(x_{n}),f(a))=\mid f(x_{n})-f(a)\mid=\mid d(x_{n},x_{0})-d(x_{0},a)\mid\leq d(x_{n},a)<\epsilon

Portanto, é suficiente tomar {\delta=\delta(a,\epsilon)=\epsilon} e {d(x,a)<\delta}, para garantirmos a continuidade de {f}. E como {a\in X} é arbitrário isto significa que {f(x)=d(x,x_{0})} é contínua para todo {\mathbb{R}}. \Box

Exemplo 13

  1. Se {(X,d)} é um espaço métrico discreto e {(Y,\rho)} um espaço métrico qualquer, então as únicas funções contínuas {f:x\longrightarrow Y} são as funções constantes.

    Para provarmos isto, seja {\epsilon>0} basta tomar {\delta<1}, com {d(x,a)<\delta<1} e como {d} é a métrica discreta, i.e.,

    \displaystyle  d(x,y) = \left \{ \begin{array}{cl} 1 & \mbox{, } x\neq y\\ 0 & \mbox{, } x= y \end{array}\right.

    então obviamente {d(x,a)=0} o que implica {x=a}. Assim,

    \displaystyle \rho(f(x),f(a))=\rho(f(a),f(a))=0.

  2. A função {f:\mathbb{R}\times\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n}} definida como:

    \displaystyle f(k,x)=kx

    é contínua.(É facíl provar, deixada ao leitor, não esquecer que {x\in\mathbb{R}^{n}} é um vector, i.e., {x=(x_{1},\cdots,x_{n})}).

Proposição 35 Seja {(X,d)} um espaço métrico e {f,g:X\longrightarrow \mathbb{R}} duas funções contínuas. Então:

  1. {(f+g)(x)=f(x)+g(x)} e {(fg)(x)=f(x)g(x)} são contínuas.
  2. Se {f(x)\neq0} para todo {x\in X}, então {h(x)=\frac{1}{f(x)}} é uma função contínua.

Demonstração: Deixada ao leitor. \Box

O conceito de continuidade reveste-se de capital importância para a Topologia por isso em aulas subsequentes continuaremos a explorar o conceito até as suas aplicações mais importantes.


Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: