Luso Academia

Início » 04 Ensino Superior » 02 Física » Estados Estacionários II

Estados Estacionários II

Agora, vamos apresentar algumas características das soluções separáveis, para melhor compreender a sua importância:

— Estados estacionários —

A função de onda é

\displaystyle \Psi(x,t)=\psi(x)e^{-i\frac{E}{\hbar}t}

e é óbvio que depende de {t}. Por outro lado, a densidade de probabilidade não depende de {t}. Esse resultado pode ser facilmente comprovado com a suposição implícita de que {E} é real (num exercício posterior veremos porque {E} tem que ser real).

\displaystyle \Psi(x,t)^*\Psi(x,t)=\psi^*(x)e^{i\frac{E}{\hbar}t}\psi(x)e^{-i\frac{E}{\hbar}t}=|\psi(x)|^2

Se estivéssemos interessados em calcular o valor médio de qualquer variável dinâmica, veríamos que esses valores são constantes no tempo.

\displaystyle  <Q(x,p)>=\int\Psi^*Q\left( x,\frac{\hbar}{i}\frac{\partial}{\partial x} \right)\Psi\, dx

Em particular {<x>} é constante no tempo e como consequência {<p>=0}.

— Energia total definida —

Como vimos na mecânica clássica, o Hamiltoniano de uma partícula é

\displaystyle  H(x,p)=\frac{p^2}{2m}+V(x)

Fazendo as substituições apropriadas, o operador da mecânica quântica correspondente é (na mecânica quântica os operadores são denotados por um chapéu):

\displaystyle \hat{H}=-\frac{\hbar^2}{2m}\frac{d^2}{d x^2}+V

Portanto, a equação de Schroedinger independente do tempo pode ser escrita da seguinte forma:

\displaystyle  \hat{H}\psi=E\psi

O valor médio do Hamiltoniano é

\displaystyle <\hat{H}>=\int\psi ^*\hat{H}\psi\, dx=E\int|\psi|^2\, dx=E

Também temos

\displaystyle \hat{H}^2\psi=\hat{H}(\hat{H}\psi)=\hat{H}(E\psi)=E\hat{H}\psi=EE\psi=E^2\psi

Logo

\displaystyle  <\hat{H}^2>=\int\psi ^*\hat{H}^2\psi\, dx=E^2\int|\psi|^2\, dx=E^2

E a variância é

\displaystyle \sigma_{\hat{H}}^2=<\hat{H}^2>-<\hat{H}>^2=E^2-E^2=0

Em conclusão, para um estado estacionário, toda medição de energia tem o valor {E} uma vez que a distribuição de energia tem valor {E}.

— Combinações lineares —

A solução geral da equação de Schroedinger é uma combinação linear de soluções separáveis.

Veremos em exemplos e exercícios futuros que a equação de Schroedinger independente do tempo contém um número infinito de soluções. Cada uma dessas diferentes funções de onda está associada a uma constante de separação diferente. O que quer dizer que para cada nível de energia permitido existe uma função de onda diferente.

Para a equação de Schroedinger dependente do tempo, qualquer combinação linear de uma solução é também uma solução. Depois de encontrar as soluções separáveis, a tarefa é construir uma solução mais geral da forma

\displaystyle \Psi(x,t)=\sum_{n=1}^{+\infty}c_n\psi_n(x)e^{-i\frac{E_n}{\hbar}t}=\sum_{n=1}^{+\infty}c_n\Psi_n(x,t)

Todas as soluções da equação de Schroedinger dependente do tempo podem ser escritas desta forma, sendo que as condições iniciais do problema sendo estudado fixando os valores das constantes {c_n}.

Tudo isto pode ser um bocado abstrato e como tal vamos resolver alguns exercícios.

Como exemplo, vamos calcular a evolução temporal de uma partícula que começa numa combinação linear de dois estados estacionários:

\displaystyle  \Psi(x,0)=c_1\psi_1(x)+c_2\psi_2(x)

Para a nossa discussão, vamos assumir que {c_n} e {\psi_n} são reais.

Assim a evolução temporal da partícula é:

\displaystyle \Psi(x,t)=c_1\psi_1(x)e^{-i\frac{E_1}{\hbar}t}+c_2\psi_2(x)e^{-i\frac{E_2}{\hbar}t}

Para a densidade de probabilidade é

{\begin{aligned} |\Psi(x,t)|^2 &= \left( c_1\psi_1(x)e^{i\frac{E_1}{\hbar}t}+c_2\psi_2(x)e^{i\frac{E_2}{\hbar}t} \right) \left( c_1\psi_1(x)e^{-i\frac{E_1}{\hbar}t}+c_2\psi_2(x)e^{-i\frac{E_2}{\hbar}t} \right)\\ &= c_1^2\psi_1^2+c_2^2\psi_2^2+2c_1c_2\psi_1\psi_2\cos\left[ \dfrac{E_2-E_1}{\hbar}t \right] \end{aligned}}

Como podemos ver, embora {\psi_1} e {\psi_2} sejam estados estacionários e, portanto,a sua densidade de probabilidade é constante, a densidade de probabilidade da função de onda final oscila sinusoidalmente com frequência angular {(E_2-E_1)/t}.


Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers gostam disto: