Luso Academia

Início » 04 Ensino Superior » 02 Física » Estados Estacionários

Estados Estacionários

— 23.6. Estados estacionários —

Nos artigos anteriores nós normalizamos as funções de onda, calculamos valores médios para o momento e posição de uma partícula, mas nunca, em momento algum, fizemos uma pergunta bastante lógica:

Como se calcula a função de onda em primeiro lugar?

A resposta para essa pergunta é obviamente:

Resolvendo a equação de Schroedinger.

A equação de Schroedinger é

\displaystyle  i\hbar\frac{\partial \Psi(x,t)}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2}+V\Psi(x,t)

Que é a equação a derivadas parciais de segunda ordem. Equações a derivadas parciais são muito difíceis de resolver, enquanto que as equações diferenciais ordinárias são fáceis de resolver.

Temos então que transformar esta equação em derivadas parciais numa equação diferencial ordinária.

Para fazer isso, usamos a técnica de separação de variáveis.

Vamos supor que {\Psi(x,t)} pode ser escrito como o produto de duas funções. Uma das funções é uma função da posição, enquanto a outra função é apenas uma função de {t}.

\displaystyle  \Psi(x,t)=\psi(x)\varphi(t)

Essa restrição pode parecer excessiva para a classe de soluções das Equações de Schroedinger, mas neste caso as aparências iludem. Como veremos mais adiante, soluções mais generalizadas da Equação Schroedinger podem ser construídas com soluções separáveis.

Calculando os derivados apropriados para {\Psi(x,t)} temos:

\displaystyle  \frac{\partial \Psi}{\partial t}=\psi\frac{d\varphi}{dt}

e

\displaystyle  \frac{\partial^2 \Psi}{\partial x^2} = \frac{d^2 \psi}{d x^2}\varphi

Substituindo as equações anteriores naa equação de Schroedinger vem:

\displaystyle  i\hbar\psi\frac{d\varphi}{dt}=-\frac{\hbar^2}{2m}\frac{d \psi^2}{d x^2}\varphi+V\psi\varphi

Dividindo a igualdade anterior por {\psi\varphi}

\displaystyle  i\hbar\frac{1}{\varphi}\frac{d\varphi}{dt}=-\frac{\hbar^2}{2m}\frac{1}{\psi}\frac{d \psi^2}{d x^2}+V

Na igualdade anterior, o lado esquerdo é uma função de {t} enquanto o lado direito é uma função de {x} (por hipótese {V} não é uma função de {t}).

Esses dois factos fazem com que a igualdade expressa na última equação exija um equilíbrio forte. Por exemplo, se {x} variasse sem variar {t} então o lado direito mudaria enquanto o lado esquerdo continuaria o mesmo desfazendo a nossa igualdade.

Evidentemente, tal coisa não pode acontecer. A única forma de manter a igualdade sempre válida é obrigar a ambos os lados da equação a serem constantes.

Por razões que se tornarão óbvias adiante, denotaremos essa constante (a chamada constante de separação) por {E}.

\displaystyle  i\hbar\frac{1}{\varphi}\frac{d\varphi}{dt}=E \Leftrightarrow \frac{d\varphi}{dt}=-\frac{i E}{\hbar}\varphi

e para a segunda equação

\displaystyle  -\frac{\hbar^2}{2m}\frac{1}{\psi}\frac{d^2 \psi}{d x^2}+V=E \Leftrightarrow -\frac{\hbar^2}{2m}\frac{d^2 \psi}{d x^2}+V\psi=E\psi

A primeira equação pode ser facilmente resolvida e uma solução é

\displaystyle  \varphi=e^{-i\frac{E}{\hbar}t}

A segunda equação, a chamada equação de Schroedinger independente do tempo, só pode ser resolvida quando um potencial é especificado.

Como podemos ver, o método das soluções separáveis cumpriu com à minha promessa. Com isso, conseguimos produzir duas equações diferenciais ordinárias que podem, em princípio, ser resolvidas.

Na verdade, uma das equações já está resolvida mas falaremos mais sobre isso no artigo seguinte.


Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Donativos

Donate Button

Localização

wordpress com stats
%d bloggers like this: