Luso Academia

Início » 04 Ensino Superior » 02 Física » Como calcular quantidades dinâmicas utilizando a função de onda II

Como calcular quantidades dinâmicas utilizando a função de onda II

Exercício 3 Por que não podemos fazer a integração por partes diretamente em

\displaystyle \frac{d<x>}{dt}=\int x\frac{\partial}{\partial t}|\Psi|^2 \, dx

puxando a derivada em ordem ao tempo para {x} e notando que {\partial x/\partial t=0} para concluir que {d<x>/dt=0} ?

Porque integração por partes só pode ser usada quando a diferenciação e integração são feitas com a mesma variável.

Exercício 4 Calcular

\displaystyle  \frac{d<p>}{dt}

Primeiro, vamos lembrar a equação de Schroedinger:

\displaystyle \frac{\partial \Psi}{\partial t}=\frac{i\hbar}{2m}\frac{\partial^2\Psi}{\partial x^2}-\frac{i}{\hbar}V\Psi

E seu complexo conjugado

\displaystyle  \frac{\partial \Psi^*}{\partial t}=-\frac{i\hbar}{2m}\frac{\partial^2\Psi^*}{\partial x^2}+\frac{i}{\hbar}V\Psi^*

para a evolução do tempo do valor médio de momento é

{\begin{aligned} \dfrac{d<p>}{dt} &= \dfrac{d}{dt}\int\Psi ^* \dfrac{\hbar}{i}\dfrac{\partial \Psi}{\partial x}\, dx\\ &= \dfrac{\hbar}{i}\int \dfrac{\partial}{\partial t}\left( \Psi ^* \dfrac{\partial \Psi}{\partial x}\right)\, dx\\ &= \dfrac{\hbar}{i}\int\left( \dfrac{\partial \Psi^*}{\partial t}\dfrac{\partial \Psi}{\partial x}+\Psi^* \dfrac{\partial}{\partial x}\dfrac{\partial \Psi}{\partial t} \right) \, dx\\ &= \dfrac{\hbar}{i}\int \left[ \left( -\dfrac{i\hbar}{2m}\dfrac{\partial^2\Psi^*}{\partial x^2}+\dfrac{i}{\hbar}V\Psi^* \right)\dfrac{\partial \Psi}{\partial x} + \Psi^*\dfrac{\partial}{\partial x}\left( \dfrac{i\hbar}{2m}\dfrac{\partial^2\Psi}{\partial x^2}-\dfrac{i}{\hbar}V\Psi \right)\right]\, dx\\\ &= \dfrac{\hbar}{i}\int \left[ -\dfrac{i\hbar}{2m}\left(\dfrac{\partial^2\Psi^*}{\partial x^2}\dfrac{\partial\Psi}{\partial x}-\Psi^*\dfrac{\partial ^3 \Psi}{\partial x^3} \right)+\dfrac{i}{\hbar}\left( V\Psi ^*\dfrac{\partial\Psi}{\partial x}-\Psi ^*\dfrac{\partial (V\Psi)}{\partial x}\right)\right]\, dx \end{aligned}}

Primeiro vamos calcular o primeiro termo da integral (ignorando os fatores constantes) fazendo a integração por partes (lembre-se que os pontos fronteira são nulos) duas vezes

{\begin{aligned} \int \left(\dfrac{\partial^2\Psi^*}{\partial x^2}\dfrac{\partial\Psi}{\partial x}-\Psi^*\dfrac{\partial ^3 \Psi}{\partial x^3}\right)\, dx &= \left[ \dfrac{\partial \Psi^*}{\partial x^2} \dfrac{\partial \Psi}{\partial x}\right]-\int\dfrac{\partial \Psi^*}{\partial x}\dfrac{\partial ^2 \Psi}{\partial x^2}\, dx- \int \Psi^*\dfrac{\partial ^3 \Psi}{\partial x^3}\, dx \\ &=-\left[ \Psi ^*\dfrac{\partial ^2 \Psi}{\partial x^2} \right]+\int \Psi^*\dfrac{\partial ^3 \Psi}{\partial x^3}\, dx - \int \Psi^*\dfrac{\partial ^3 \Psi}{\partial x^3}\, dx \\ &= 0 \end{aligned}}

Depois vamos calcular o segundo termo do integral

{\begin{aligned} \int \left( V\Psi ^*\dfrac{\partial\Psi}{\partial x}-\Psi ^*\dfrac{\partial (V\Psi)}{\partial x} \right)\, dx &= \int \left( V\Psi ^*\dfrac{\partial\Psi}{\partial x}-\Psi ^* \dfrac{\partial V}{\partial x}\Psi-\Psi ^*V\dfrac{\partial \Psi}{\partial x} \right)\, dx\\ &= -\int\Psi ^* \dfrac{\partial V}{\partial x}\Psi\, dx\\ &=<-\dfrac{\partial V}{\partial x}> \end{aligned}}

Em conclusão, é

\displaystyle  \frac{d<p>}{dt}=<-\dfrac{\partial V}{\partial x}>

Portanto, o valor médio do operador momento obedece ao Segundo Axioma de Newton .

O resultado anterior pode ser generalizado e sua generalização é conhecida na literatura da Mecânica Quântica como o Teorema de Ehrenfest


Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: