Luso Academia

Início » 04 Ensino Superior » 02 Física » Cálculo I – Generalização às séries de algumas propriedades das somas finitas II

Cálculo I – Generalização às séries de algumas propriedades das somas finitas II

Recordando o Teorema 77 vamos agora introduzir a noção de resto de uma série.

Definição 50 Seja {\displaystyle \sum_{n=p}^{+\infty} u_n} convergente. Para cada {m>p} a série {\displaystyle \sum_{n=m+1}^{+\infty} u_n} também converge. Podemos então definir:

\displaystyle   r_m=\sum_{n=m+1}^{+\infty} u_n \ \ \ \ \ (80)

como sendo o resto de ordem {m} da série {\displaystyle \sum_{n=p}^{+\infty} u_n}

Como

\displaystyle  \sum_{n=p}^{+\infty} u_n=\sum_{n=p}^m u_n + \sum_{n=m+1}^{+\infty} u_n

vem que

\displaystyle  \sum_{n=p}^{+\infty} u_n=\sum_{n=p}^m u_n + r_m

Assim é

\displaystyle  r_m =\sum_{n=p}^{+\infty} u_n - \sum_{n=p}^m u_n

Fazendo {m \rightarrow +\infty} vem que {\displaystyle \lim r_m=\sum_{n=p}^{+\infty} u_n- \sum_{n=p}^{+\infty} u_n=0 }

Usando métodos apropriados podemos ainda enquadrar o resto de ordem {m}.

\displaystyle  \zeta^-_m < r_m < \zeta^+_m

Fazendo

\displaystyle  r_m \approx \frac{\zeta^+_m+\zeta^-_m}{2}

Podemos definir

\displaystyle  \varepsilon _m=r_m - \frac{\zeta^+_m+\zeta^-_m}{2}

vem que

\displaystyle  \varepsilon _m < \zeta^+_m-\frac{\zeta^+_m+\zeta^-_m}{2}=\frac{\zeta^+_m - \zeta^-_m}{2}

e

\displaystyle  \varepsilon _m > \zeta^-_m-\frac{\zeta^+_m+\zeta^-_m}{2}=\frac{\zeta^-_m - \zeta^+_m}{2}=- \frac{\zeta^+_m - \zeta^-_m}{2}

Assim

\displaystyle  - \frac{\zeta^+_m - \zeta^-_m}{2} < \varepsilon _m < \frac{\zeta^+_m - \zeta^-_m}{2}

Ou seja

\displaystyle  |\varepsilon _m| < \frac{\zeta^+_m - \zeta^-_m}{2}

Temos assim

\displaystyle  r_m=\frac{\zeta^+_m - \zeta^-_m}{2}+ \varepsilon _m

com

\displaystyle  |\varepsilon _m| < \frac{\zeta^+_m - \zeta^-_m}{2}

e portanto

\displaystyle  \sum_{n=p}^{+\infty} u_n= \sum_{n=p}^m u_n + \frac{\zeta^+_m - \zeta^-_m}{2} + \varepsilon _m

Teorema 78

Uma série de termo geral não negativo converge sse a respectiva sucessão das séries parciais for majorada.

Demonstração:

Seja {\displaystyle\sum_{n=p}^{+\infty} u_n} onde {u_n \geq 0\, \forall n \geq p} e seja {S_m} a respectiva sucessão das somas parciais.

Por definição é

\displaystyle  S_m=\sum_{n=p}^m u_n

Logo

\displaystyle  S_{m+1}-S_m = \sum_{n=p}^{m+1} u_n - \sum_{n=p}^m u_n = u_{m+1} \geq 0

Assim {S_m} é crescente.Se {S_m} converge, {S_m} é limitada (Teorema 13), logo é majorada.

Reciprocamente, se {S_m} é majorada, como é crescente sabemos também que é minorada também é minorada. Logo é limitada.

Então {S_m} converge pelo Teorema da Sucessão Monótona (20).

Assim {S_m} converge sse {S_m} for majorada.

Mas {\displaystyle\sum_{n=p}^{+\infty} u_n} converge sse {S_m} converge.

Assim {\displaystyle\sum_{n=p}^{+\infty} u_n} converge sse {S_m} tem majorante.

\Box

Ainda que o teorema anterior seja um teorema bastante útil convém notar que não providencia em si próprio um critério de convergência.

Teorema 79 {Critério da Comparação}

Sejam {\displaystyle \sum_{n=p}^{+\infty} u_n} e {\displaystyle\sum_{n=p}^{+\infty} v_n} duas séries de termos gerais não negativos. Se {u_n = O(v_n)}

\displaystyle   \sum_{n=p}^{+\infty} v_n \quad \mathrm{converge}\Rightarrow \sum_{n=p}^{+\infty} u_n \quad \mathrm{converge} \ \ \ \ \ (81)

\displaystyle   \sum_{n=p}^{+\infty} u_n \quad \mathrm{diverge}\Rightarrow \sum_{n=p}^{+\infty} v_n \quad \mathrm{diverge} \ \ \ \ \ (82)

Demonstração:

Como 82 é o contra-recíproco de 81 vamos somente provar a equação 81.

Suponha-se {v_n} convergente. Como {u_n= O(v_n)} existe uma sucessão {h_n} limitada e um índice {k} tais que {u_n=h_n v_n \quad \forall n\geq k}.

Sendo então {L} um majorante de {h_n} vem que

\displaystyle   u_n \leq L v_n \ \ \ \ \ (83)

Por outro lado como

\displaystyle  \sum_{n=k}^{+\infty} v_n \leftrightarrow \sum_{n=p}^{+\infty} v_n

vem que {v_n} converge. Pelo Teorema 78 {v_n} tem as somas parciais majoradas. Assim {\exists n \geq 0 } tal que {\displaystyle\sum_{n=k}^m v_n \leq M\, \forall n \geq k} .

De 83 vem então

\displaystyle  \sum_{n=k}^m u_n \leq \sum_{n=k}^m L v_n= L\sum_{n=k}^m v_n \leq LM \quad \forall n \geq k

Assim a série {\displaystyle \sum_{n=k}^{+ \infty} u_n } também as somas parciais majoradas, logo é convergente (Teorema 78).

Como

\displaystyle  \sum_{n=p}^{+ \infty} u_n \leftrightarrow \sum_{n=k}^{+ \infty} u_n

(Teorema 76) vem que {\displaystyle\sum_{n=p}^{+ \infty} u_n} converge.

\Box

Corolário 80

Nas condições do teorema anterior, se existe uma ordem {k} tal que {u_n \leq v_n \quad \forall n \geq k} então

\displaystyle   \sum_{n=p}^{+\infty} v_n \quad \mathrm{converge}\Rightarrow \sum_{n=p}^{+\infty} u_n \quad \mathrm{converge} \ \ \ \ \ (84)

\displaystyle   \sum_{n=p}^{+\infty} u_n \quad \mathrm{diverge}\Rightarrow \sum_{n=p}^{+\infty} v_n \quad \mathrm{diverge} \ \ \ \ \ (85)

Demonstração: Fica como um exercício para o leitor. \Box

Corolário 81

Nas condições do teorema anterior, se

\displaystyle  \lim \frac{u_n}{v_n} \in ]0, + \infty[

então

\displaystyle   \sum_{n=p}^{+\infty} u_n \leftrightarrow \sum_{n=p}^{+\infty} v_n \ \ \ \ \ (86)

Demonstração: Fica como um exercício para o leitor. \Box

Corolário 82

Nas condições do teorema anterior, se

\displaystyle  u_n \sim v_n

então

\displaystyle   \sum_{n=p}^{+\infty} u_n \leftrightarrow \sum_{n=p}^{+\infty} v_n \ \ \ \ \ (87)

Demonstração: Fica como um exercício para o leitor. \Box

Podemos então resumir o resultado anterior com o seguinte:

Em séries de termos gerais não negativos podemos substituir o termo geral por outro assimptoticamente igual sem alterar a natureza da série.


1 Comentário

  1. eaiamigao diz:

    Excelente conteúdo, para quem estiver precisando de ajuda para resolver algum exercicio de ensino superior incluindo calculo , e quiser acesso a exercicios resolvidos gratuitos este site ajuda bem.

    Parabens pelo conteúdo.

    https://www.eaiamigo.com.br

    Liked by 1 person

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers gostam disto: